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1. Introduction

In the design process of individual junctions and
structural components for microelectronic devices, there
appears the necessity to mathematically model thermal
processes in thermosensitive structures with foreign
inclusions that are one of the important parts in modern
engineering researches. The construction and study of
mathematical models for thermoconductivity processes
in thermosensitive structures with foreign inclusions
requires the development of new efficient methods to
solve boundary mathematical physics problems of both
theoretical and practical significance.

The thermal process is nonlinear, and the presence of
foreign inclusions complicates these mathematical models
but increases the research accuracy, which is topical as to
their heat resistance. This requires new algorithms for
construction and appropriate software development for the
temperature condition analysis of individual junctions and
structural elements of electronic devices.

In the process of solving the boundary thermal
conductivity problems, it is important to consider the
dependence of thermal-and-physical characteristics on
temperature, which allows describing the distribution of
temperature fields and their gradients in the systems
under consideration to be more accurate and precise.

The approximate analytical solution for half-space
with a small foreign heat dissipating cylindrical

inclusion was obtained in the paper [1]. The analytical
solution for the isotropic strip with the rectangular
inclusion of an arbitrary size is produced in the paper
[2]. General thermal conductivity equations for the
thermosensitive piecewise homogeneous solids are
presented in the works [3, 4].

2. Problem statement

Due to the complex structure of separate junctions and
construction elements in modern electronic devices the
necessity in modeling of thermosensitive systems with
foreign inclusions has arisen. Therefore we consider the
isotropic thermosensitive strip with rectangular inclusion
with square 4hl referred to the Cartesian coordinate
system Oxy with its origin in the center of inclusion
(Figure). At the coupling
E={Ehy):ly|<t),  ={(xz):]|x|<h}, the
conditions of ideal thermal contact are fulfilled. At the
edges K+={(x,l+d1):|x|<oo},

K_= {(x,i ): |x| < h}, the conditions of convective heat

intervals

strip

exchange with the constant environment temperature ¢,
are given. In the inclusion area
Q, = {(x,y): |x’ < h,|y’ < l} with uniformly distributed

internal heat sources, the power is g,.

© 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

439



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443.

3. Partially linearized initial boundary problem

The distribution of steady state temperature field #(x, y)

in the thermosensitive strip is obtained by solving the
nonlinear thermal conductivity equation [3, 4]

0 ot 0 ot
a[k(x,y,t)~g}+${k(x,y,t)~g}— (1)

=—q9 N(xsh)N(ysl) ’
taking into account the following boundary conditions:

ot
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where A(x,,0) =, (1) + [y () = 1, (0] N(x, h)- N(p.1)
is the thermal
heterogeneous

coefficient of the
heat conduction

conductivity
strip; Ay, A,
coefficients of the inclusion and strip; O, — coefficient
of heat elimination from the strip edges K, ;
NCm=SC+n-5.(C-n); S.(0) — asymmetric
unit functions.
Input the function [5]
t(x) ((x)
8= [rQ)dc+{ [Bro(0)-2i(C)lac-N(y.1)-
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t(x,~1)
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t(x,0)
o [l Q-5 (r=0)l-5_(-]x)
t(xh,1)
and obtain by differentiating with respect to x and y:
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Considering the expressions (4) and equation (1),
we can write:

{ a2 )2

.6x

-S_(y+1)]-s_(h—|x]) -

o5 (=) Mo~

ol {m(r)—w))- ﬂ (=) N (1)L
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Here, A is the Laplace operator.
% =_a+'(t’ —ld_IC)’ 8 =0,
ay y=l+d, y_+l ‘x“)w
09 09 ( )
= =0 = =—al\d_, -] (6)
x| y y=—I-d,

Hence, the nonlinear boundary equations (1), (2)
with application of the input function (3) can be reduced
to a partially linearized problem (5), (6).

4. Fully linearized boundary problem

Let wus approximate t(th,y), t(x,£l), t(x,/+d;),

t(x,—l —d,) functions with the following expressions

n—1
+h +h +h
th, ) =t 4 Y @ =) s (=),
J=1

n-l1
(el =10 (@G =) S (- x)),
=1
/ )

m—1
(0l +d) =1+ () — 1S (x - xp),
k=1

m—1
Wxl—dy) =117 + Z(t};)l 1SS (x —xp),
k=1

where t}i"), t;i’), £V, are unknown approximating
temperature values y, € ]—l,l[; V<V, <e<Vuis
x; € ]— h,O[, ]O,h[; X, € ]0, X. [;

X <X, <..<X x. is the abscissa value for which

X <Xy <o <X,

m-1>
the temperature is practically equal to ¢, (is obtained
from the relevant linear problem); n— number of
partitions in the intervals |—7,1[, ]—h,O[ and 0,h[, m -
number of partitions in the interval ]O,x*[ .

Substituting expressions (7) in the equation (5) and
boundary conditions (6) at the edges of strip K,, a
linear boundary problem for finding the function 9 is
obtained
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where &_(§) is the asymmetric Dirac delta function .

5. Construction of analytical solution to the linear
boundary problem (8), (9)

Applying the Fourier integral transform by the x
coordinate for the boundary problem (8), (9), we obtain

the ordinary differential equations with constant

coefficients:

0”9 1 N (J>) <—1)))

st o bl a2
=1

<D =) s -
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j=1
U LX)
(10)

and the following boundary conditions:
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09
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where 5:1/%- Ieié"de — function 9 transformant;
T

i =~-1.

The general solution to the equation (10) is:
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Here C, and C, are integrating constants.
Having applied the boundary conditions (11), a
partial solution to the problem (10), (11) is obtained
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(12)
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Applying the inverse Fourier transform to the
relation (12), the following expression for the function
9 could be found:
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ro St e et
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Substituting the specific subjection coefficients of
inclusion materials and strip thermal conduction in the
relation (3), (13) and equalizing the expressions of 9 -

function on the edges K, and on contact intervals L,

Lj the system of nonlinear algebraic equations to

determine unknown values

() (j=Ln), t7, ) (k =1,m) is obtained.

The desired temperature field for the nonlinear
boundary heat conduction problem (1), (2) is determined
from the nonlinear algebraic equation obtained after the
application of relations (3), (13) and substitution of the
specific expressions for coefficient dependences of
thermal conductivity inherent to inclusion and strip
materials.

of temperature ",

6. Partial examples and analysis of the results

There is such a dependency between the coefficient of
thermal conductivity and temperature in many practical
cases [6, 7]:

=20 (1- ki),

where A’,k are reference and temperature coefficients
for the thermal conductivity.

Then, applying expressions (3), (13), the formula to
determine the temperature ¢ in areas is obtained

QO:{(x,y):x_ < },

1—\/1—2k{}%+9f)
0

k, ’
0, = (5 2): || ~1-dyy<ival,
Q, ={(x,y):]x|£h, —1-d, §y<_[}’

=

- [1-2k9
t= A
k, ’
Q3:{()C’y)5|x|5h, 1<y£l+d1},
1- 1—2k[‘?}+gj
A
t= I
k, ’
where
21l ]
ST_ 1_—O _(_ol'kl_ko t|-t +
Ao 2\
5 g
0 (Y l
" _—(} Py T.l ki —ky |-t]-t +
20220
] h y==1
_}\,O 1 7\’0 T
Hal =T+ ko - t]-1 ;
22 2170 50
- 0 . ’x’—h
y==I

© 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

442



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 4. P. 439-443.

~—— I'_\
9

2h

%
=N

._\:—_/y
[N

Fig. Thermosensitive strip with rectangular inclusion.
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Being based on numerical analysis, it has been
determined that it is enough to select the partition
number 7 of the intervals ]—l;l[, ]— h;O[ and ]O;h[ that
equals seven and the partition number m of the interval
]O; x*[ that equals eleven. Numerical calculations have

been performed for the following materials: strip
material — ceramics VK-94-1, the inclusion material —

tungsten, which show that the consideration of
dependency of the thermal conductivity coefficients on
temperature leads to reduction of the temperature field
compared with non-thermosensitive system (thermal-
and-physical  parameters are independent on
temperature) by 3.8% for selected materials.

7. Conclusions

The original nonlinear heat conductivity equation (1) has
been partially linearized using the relation (3) that
describes a new input function 9. The proposed
piecewise linear approximation of temperature on the

boundaries L;, L, of an inclusion and at the edges K,

of the strip with the expressions (7) that allowed to
totally linearize the nonlinear boundary problem of
thermal conductivity (5), (6) for a thermosensitive
system with the foreign inclusion. An analytical solution
to the input function & has been produced as a
formula (3), which enabled to construct new algorithms
and developed software to evaluate the temperature
gradients in the area of foreign inclusion and to forecast
the operation mode of electronic devices with increased
thermal resistance and prolonged operating period.
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1. Introduction 

In the design process of individual junctions and structural components for microelectronic devices, there appears the necessity to mathematically model thermal processes in thermosensitive structures with foreign inclusions that are one of the important parts in modern engineering researches. The construction and study of mathematical models for thermoconductivity processes in thermosensitive structures with foreign inclusions requires the development of new efficient methods to solve boundary mathematical physics problems of both theoretical and practical significance. 


The thermal process is nonlinear, and the presence of foreign inclusions complicates these mathematical models but increases the research accuracy, which is topical as to their heat resistance. This requires new algorithms for construction and appropriate software development for the temperature condition analysis of individual junctions and structural elements of electronic devices. 


In the process of solving the boundary thermal conductivity problems, it is important to consider the dependence of thermal-and-physical characteristics on temperature, which allows describing the distribution of temperature fields and their gradients in the systems under consideration to be more accurate and precise. 


The approximate analytical solution for half-space with a small foreign heat dissipating cylindrical inclusion was obtained in the paper [1]. The analytical solution for the isotropic strip with the rectangular inclusion of an arbitrary size is produced in the paper [2]. General thermal conductivity equations for the thermosensitive piecewise homogeneous solids are presented in the works [3, 4].  

2. Problem statement


Due to the complex structure of separate junctions and construction elements in modern electronic devices the necessity in modeling of thermosensitive systems with foreign inclusions has arisen. Therefore we consider the isotropic thermosensitive strip with rectangular inclusion with square 
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 with its origin in the center of inclusion (Figure). At the coupling intervals 
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, the conditions of ideal thermal contact are fulfilled. At the strip edges 
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, the conditions of convective heat exchange with the constant environment temperature 
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 are given. In the inclusion area 
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 with uniformly distributed internal heat sources, the power is q0.


3. Partially linearized initial boundary problem 


The distribution of steady state temperature field 
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 in the thermosensitive strip is obtained by solving the nonlinear thermal conductivity equation [3, 4] 
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taking into account the following boundary conditions: 
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 is the thermal conductivity coefficient of the heterogeneous strip; 
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Input the function [5] 
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and obtain by differentiating with respect to х and у:  
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Considering the expressions (4) and equation (1), we can write: 
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Here, 
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 is the Laplace operator.
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Hence, the nonlinear boundary equations (1), (2) with application of the input function (3) can be reduced to a partially linearized problem (5), (6). 


4. Fully linearized boundary problem
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Substituting expressions (7) in the equation (5) and boundary conditions (6) at the edges of strip 
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 is the asymmetric Dirac delta function .


5. Construction of analytical solution to the linear boundary problem (8), (9)

Applying the Fourier integral transform by the x coordinate for the boundary problem (8), (9), we obtain the ordinary differential equations with constant coefficients:
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(10)


and the following boundary conditions: 
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The general solution to the equation (10) is:
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Here C1 and C2 are integrating constants. 


Having applied the boundary conditions (11), a partial solution to the problem (10), (11) is obtained 
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(12)


Applying the inverse Fourier transform to the relation (12), the following expression for the function 
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 could be found:
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Substituting the specific subjection coefficients of  inclusion materials and strip thermal conduction in the relation (3), (13) and equalizing the expressions of 
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 is obtained. 


The desired temperature field for the nonlinear boundary heat conduction problem (1), (2) is determined from the nonlinear algebraic equation obtained after the application of relations (3), (13) and substitution of the specific expressions for coefficient dependences of thermal conductivity inherent to inclusion and strip materials. 


6. Partial examples and analysis of the results


There is such a dependency between the coefficient of thermal conductivity and temperature in many practical cases [6, 7]: 
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Then, applying expressions (3), (13), the formula to determine the temperature t in areas is obtained
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Fig.  Thermosensitive strip with rectangular inclusion. 
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Being based on numerical analysis, it has been determined that it is enough to select the partition number n of the intervals 
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 that equals seven and the partition number m of the interval 
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 that equals eleven. Numerical calculations have been performed for the following materials: strip material – ceramics VK-94-1, the inclusion material –




tungsten, which show that the consideration of dependency of the thermal conductivity coefficients on temperature leads to reduction of the temperature field compared with non-thermosensitive system (thermal-and-physical parameters are independent on temperature) by 3.8% for selected materials.

7. Conclusions


The original nonlinear heat conductivity equation (1) has been partially linearized using the relation (3) that describes a new input function 
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. The proposed piecewise linear approximation of temperature on the boundaries 
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 of an inclusion and at the edges 
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 of the strip with the expressions (7) that allowed to totally linearize the nonlinear boundary problem of thermal conductivity (5), (6) for a thermosensitive system with the foreign inclusion. An analytical solution to the input function 
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 has been produced as a formula (3), which enabled to construct new algorithms and developed software to evaluate the temperature gradients in the area of foreign inclusion and to forecast the operation mode of electronic devices with increased thermal resistance and prolonged operating period.
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