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I nfluence of electron-electron drag on piezoresistance of n-Si
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Abstract. Piezoresistance of n-Si is considered with due regard for inter-valley drag. It
has been shown that inter-valley drag gains the piezocoefficient and diminishes the
mobility. In the region of nondegenerate carriers, the effect of drag increases when the
carrier concentration rises and temperature falls.
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1. Introduction

In crystals with one and only simple band, the electron-
electron scattering does not change the total momentum
of carriers and therefore does not give a direct,
independent contribution to the conductivity. Quite
another situation we have for crystals with a composite
band structure. There the conductivity of crystal can be
essentially influenced by mutual drag of carriers that
belong to different partial bands or valleys (see Refs.
[1,2]). In particular, the inter-valley drag can
sufficiently diminish the electron mobility of »-Si and n-
Ge at low temperatures. The reason of that is a principal
difference between scattering of band electrons from
some valley on fixed charged impurities or equilibrium
phonons and scattering on nonequilibrium €lectrons
from another valley, where divergence of equilibrium
differs. Now, we have some right to hope that the inter-
valey drag in multy-valley semiconductors can
noticeably influence not only conductivity but
piezoresistance as well. In this article, we again will pay
the main attention to the region of low temperatures
where Coulomb scattering is not damped by collisions of
electrons with phonons. We restrict here our calculations
by charged impurities and acoustic phonons as an
external scattering system.

2. Balance equations

In Refs [1, 2], the set of balance equations obtained as a
first momentum of quantum Kkinetic equations was
presented:
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is related to interaction of band carriers with charged
impurities located uniformly in space; (9¢)),, ; and

((p(zph))w’ ; are Fourier components of the correlator of

impurity and phonon scattering potentials.
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relates to interaction between drifting carriers from a-
and b-valleys.
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Here, 7@ and ag’) are the concentration and

dispersion law for e€lectrons from gq-valey. For
undeformed crystal of #-Si, we have (see Fig. 1):
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The screening dielectric function for quasi-elastic
collisions possesses the form
e(®,q)=¢; +Ae,(0=0,q),
where ¢; is the dielectric constant of crystal lattice and
Ag,(w,q) is the contribution of band electrons to the

total dielectric function. For convenience, we will use
the following form:

Ae,(0,§) =,95(d)! q°.

Then,
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Here, n, is the concentration of charged

—

impurities; 2, =2, +(1/2)Z,, where Z, and X,
are dilation and shear deformation potential constants
(see, for example, Refs. [6] and [7]). The form (7)
corresponds to the approximation of quasi-elastic
collisions.

The screening plays a significant, even appointing
role in the area of small transferred vectors ¢; therefore,
instead of qg(cy) , we can use the following approximate
expression (see Ref. [1]):
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Fig. 1. Band structure of n-silicon.

12¢®mi}'? \[2k T

2 2/ _
90(q) > q5(0) = haL\/;gL Fq12(m) - (7)
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L=mIm, Iisthegammafunction, n=gp /kpT is

the dimensionless Fermi-energy. The form (7) is valid
for deformed crystal, if one uses linear approximation
over deformation. For nondegenerate carriers
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To calculate drift velocities %) of dectrons from a-
group, we accept the model of non-equilibrium distribution
functions as Fermi functions with the argument containing

shift of velocity v (k) =h‘1(aafg” 10k) by the
correspondent velocity z () :
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Here, @ E@ (k) = £, () is the equilibrium
distribution function for a-carriers. Drift velocities &(®
are proportional to partial densities of currents ](“):
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Here, n“) is the concentration of electrons in the a-
valley. The density of total current:
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Using the forms (10) and carrying out
linearization of forces in Egs. (2) and (3) over drift
velocities, we obtain:
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Here, components of tensors E(“) and E(“'b) are
(see[2, 3] and Egs. (6) and (7)):
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In Egs. (15)-(17), the indices u,v=x,y,z and the
imaginary part of dielectric function

e2

nq

(@ (®q) |mA8(b)(€0 q)

ImAe 0y (@ ,§) = ——5x

9y ho).

x [d*kLfole £ = fole {18 1)~

For quasi-elastic collisions, we have the form
(see[1])
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In what follows, we assume n; =n :Zn(“) .
a=1
From Egs. (1) and (13), one obtains the system of
equations for partial drift velocities:
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In this system of equations, kinetic coefficients

B and £“") have amatrix form with matrices & (%)

responding for inter-valley drag. The value (ﬁ(”))’lls
the mobility tensor for a-carriers, if one neglects inter-
valey drag (£(“?) —0).

3. Populations of valleysin deformed crystal

Let a silicon crystal is mechanically compressed along
the axis [001] (see Fig. 1), then the components of stress
tensor are

Xop =—04p0,:X (here X >0). (25)

For this situation, the dispersion law for different
valleys can be written in the following form (see
Ref. [4]):

ag’) (X)= ag’) (X =0)+Ac@(x)= gg') +Ae9 ()
@=1,2,...,6), (26)
where
260 () = 469 (X) =~ 22, (50 - s22)X
AP (X) = 4¢P (X) = 2eP (x) =
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E, isthe shear deformation potential, s,, and s,, are

the elastic constants.
The density of carriersin the a-valey is
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For nondegenerate carriers
nD(X) = (nl6)[1- Ae'D (X) 1 kpT]. (29)
As it follows from conservation of the total
number of carriers (see Eq. (8)),
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Fio(m).

4. Kinetic coefficientsfor deformed silicon crystal

Consider the case when the electric field is applied along
some fourfold /-axis, that is
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E=Eé (I=x,y,2). (31)

Then, only /-components of drift velocities u (@)

and diagona components of the tensors E(“) and E(”'b)

are distinct of zero (in the coordinate system related to
fourfold axes), and then one can write the system of
equations corresponding to the system (24) in the form
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Here, the expressions for [35,“)(X) and Ej,”’b) (X)
have the forms (14), (18)-(21) where the dimensionless
Fermi energy m, in the formulae (18) is shifted in the
following manner:
A9 (X)

kT

Below we assume the deformation to be small and
linearize all the expressions over the stress .X.

In this paper, we consider only nondegenerate gas
(see Fig.2; there the solid line corresponds to the
relation e, (n, T)=0). Then, it follows from symmetry

of the considered system for carriers:
nD(X)=(n16) C,(X); Ca(X)=Cu(X);
C3(X) = C5(X) = Cg(X) = C(X),
where (see Egs. (29), (30))
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Notethat C;(X)+2C,(X)=3.
Also it follows:
By (X) =B (X =0) ;
gl () =gl (X =0) ¢y (X) . (36)

Consider now the case when the dectric field is
applied along z-axis, that is
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Fig. 2. Areas of degenerate and nondegenerate electron gas.

Then, only z-components of drift velocities i@

and zz-components of the tensors B(“) and g(a,b) are
distinct of zero, and one can write Egs. (32) in the form
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Here, B, =B (X =0); £ =gl (x =0).
It is evident that
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and so on. Solving the system (38) and using the
relations (39), we obtain (042 - ¢)
P21+68
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One can write the resulting expression for total
conductivity of deformed crystal in the following form:
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Let us define the piezoresistance coefficient
7.5 (€) by using the expression (see Refs. [5, 6])
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If we direct the electrica field £ aong x- and y-
axes, for the case (25) we will obtain the relation

Mz (g) = _anx (a) = _znyy (a) . (44)

To investigate the dependence of conductivity and
piezoresistance coefficient on the parameter of inter-
valley drag, we use the following formulae obtained
from the Egs. (35), (42), (43):

0.(0:8) _n(E) _ B1B2 (B2 + 2B, +185) .
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(45)
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(48)
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Fig. 3. Dependence of relative piezocoefficient n,, on temperature.

5. Results of numerical calculations

These results are shown in Figs 3 to 5. Here, Figs 3(a,
b,c) show the absolute value of piezoresistance
coefficients. In calculations, we use the following data

(see  Refs. [5, 6]): mo =9.1066-10 %8¢,
m;=834210%g; M=6, L=48 ¢ =12;
ON6
1.0 _
S \\
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Fig. 4. Dependence of relative mobility on carrier
concentration. /— 7= 20K; 2-40; 3-70;, 4-120;
5 -150.
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Fig. 5. Dependence of relative piezocoefficient on carrier
concentration. /- 7= 20K; 2-40; 3-70; 4-100;
5-150.

(m/my) = 0.916; s11 — 5o =9.82:10 2pat,
E, =86¢eV; e, =12, (m, 1 my) =092,

ps?=166-10"Pa, =, =2, +(1/2=, =-4.2¢eV. In
Figs (a), (b), (c), solid lines represent the piezoresistance
coefficient for crystal where band carriers are involved
in drag. The dashed lines correspond to the calculations
when inter-valley drag isignored.

Figs 4 and 5 represent relative values. One can see
that inter-valley drag gains the piezocoefficient and
diminishes the mobility. Within the region of
nondegenerate carriers, the drag effect becomes more
pronounced when the carrier concentration grows and
temperature falls.
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