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1. Introduction

The intensive investigations of semiconductor quantum 
wires with radial heterostructure have been rapidly 
increased during the last decade. These nanostructures 
are the basic elements of light radiating diodes, 
detectors, transistors and light transformers of new 
generation.

On the one hand, the heterostructure perpendicular 
to the quantum wire axis can localize charge carriers 
inside the inner wire, decreasing the surface scattering 
[1]. On the other hand, it allows the guided variation of 
spectral characteristics inherent to quasi-particles 
(electrons, excitons, phonons) in nanostructure, 
depending on its geometrical parameters.

Using different semiconductor materials composing 
the radial heterostructure, the single (with one quantum 
well for the electron) [2, 3] and complicated (multi-well 
and multi-shell) [4, 5] hexagonal nanotubes are 
experimentally created. The single hexagonal nanotubes 
are already theoretically studied in details [6-8]. The 
authors developed the theory of exciton spectrum and 
exciton-phonon interaction, well explaining the 
experimental data qualitatively and quantitatively.

Recently, German scientists have been grown the 
complicated multi-shell hexagonal nanotubes by 
applying the method of molecular-beam epitaxy and 
using GaAs as well as AsGaAl x1x   semiconductors and 

investigated their luminescence spectra [4, 5]. As far as 
we know, the consistent theory of exciton spectrum for 
these structures is still absent. However, even within the 
general considerations, it is clear that the complicated 
character of redistribution of probability for electron and 
hole location in the space of complicated nanotube with 
several quantum wells causes interesting peculiarities of 
the exciton spectrum. In particular, one can expect 
oscillations in intensities of interband quantum 
transitions.

In this paper, we propose one of the possible 
theoretical approaches to investigate the exciton 
spectrum in multi-shell hexagonal semiconductor 
nanotube. The theory is developed in the frames of 
models of effective masses and rectangular potentials for 
the quasi-particles using the Bethe variational method. 
The dependences of exciton spectrum parameters on 
nanostructure geometry have been investigated. The 
calculated magnitudes of exciton energies have been 
compared with the position of luminescence peak 
observed experimentally [5].

2. Theory of electron and exciton spectra multi-shell 
hexagonal semiconductor nanotubes 

The experimentally grown nanostructure [5] – the multi-
shell hexagonal nanotube is theoretically studied. It 
consists of hexagonal semiconductor quantum wire 



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 156-161.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

157

(“0”), thin barrier-shell (“1”) and nanotube (“2”) 
embedded into the outer medium (“3”). The transversal 
cross-section of the nanostructure is shown in Fig. 1.

The small differences of lattice and dielectric 
constants of nanostructures composing parts allow us to 

use the approximations of effective masses ( ),( he ) and 

rectangular potentials ( ),( heU ) in order to calculate the 
electron and hole energy spectra. Their respective 
magnitudes are fixed as 
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So that, to study the exciton spectrum we, first of 
all, obtain the electron and hole energy spectra and wave 
functions solving the stationary Schroedinger equation
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with Hamiltonian of uncoupling quasi-particles in the 
cylindrical coordinate system
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Fig. 1. Transversal cross-section of the nanostructure and its 
energy scheme.

It is clear that the effective masses ( ),( he ) and 

potential energies ( ),( heU ) as functions of ,  variables 

have hexagonal symmetry in the plane perpendicular to 
the nanotube axis. Thus, the variables are not separated, 
and the equations (2) can not be solved exactly. The 
approximated solution is found within the Bethe 
variational method. In the Hamiltonian (3), the main 

term is introduced. In it, ),( he  and ),( heU  magnitudes 
are the functions of radial variable ( ). I.e., the 

hexagons are replaced by the circles of respective radii: 

0 ,  01 , h 02 . The differences 

between the respective masses: ),(),(  he  and 

)(),(  he , and potentials: ),(),( heU  and )(),( heU , 

arising as a result of approximation, are taken into 
account in the Hamiltonian as perturbation. Herein, the 
radius of the smallest circle ( 0 ) is considered as 

variational parameter according to the Bethe method.

Now, the Hamiltonian ( ),( heH


) of uncoupling 
electron and hole is written as
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is the main part of the Hamiltonian describing the 

electron and hole with effective masses )(),(  he and 

potential energies )(),( heU  in the multi-shell 

cylindrical nanostructure.
The correction accounting the difference between 

the exact ( ),( heH


) and approximating ( ),(
0

heH


) 

Hamiltonians
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is further considered as perturbation.
The Schroedinger equation with Hamiltonian (5) is 

solved exactly. The electron and hole wave functions 
(indices e , h  are not temporarily used) are taken as:



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 156-161.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

158




 imikz
kmkm eeR

L
r )(

2

1
)(


(7)

with the radial functions
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Here,

22
00 2 kEk   , 22

011 )(2 kEUk   , (9)

k  is the axial quasi-momentum; ,...2,1,0 m -

magnetic quantum number; L – effective region for the 
electron movement along the nanostructure axis; Jm, Nm

– Bessel functions of the whole order, Im, Km – modified 
Bessel functions.

The conditions for wave functions and their 
densities of currents continuity at three nanostructure 
interfaces ( 210 ,,  )
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together with normalizing condition
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determine all the unknown coefficients: )(i
mA , )(i

mB  (і = 

0, 1, 2, 3) as well as analytical expressions for 
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Their solutions are numbered by the radial quantum 
number: ...2,1n  and define the electron (hole) energy 

spectrum ( ),( 0
)0( kE mn 


) as a function of 0  being the 

variational parameter in zeroth approximation of the 
perturbation method.

Further, according to the Bethe method, we 
calculate the corrections of the first order to the energies 
of both quasi-particles ),( he  as functions of 0
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We must note that, due to the evident analytical 
properties of the perturbation Hamiltonian (6), the 

integration over ,  variables in expression (12) is 

performed only over jS  regions, situated between the 

respective hexagons and approximating circles (toned 
regions in Fig. 1).

Now, the energy spectra of uncoupling electron and 
hole, as functions of variational parameter and axial 
quasi-momentum, are already known in the first 
approximation of perturbation method
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In order to study the exciton states in the multi-
shell hexagonal nanostructure, one has to solve the 
stationary Schroedinger equation. Its Hamiltonian, 
besides the energy gap of quantum wire and nanotube 
material, Hamiltonians of uncoupling electron and hole, 
contains the energy of their interaction 
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 ) has a complicated dependence on the 

spatial location of quasi-particles in nanostructure.
Such problem can be solved within the method 

developed in details in refs. [6-8]. But the exciton 
binding energy obtained in the cited papers has the order 
of 10 meV, which is hundreds times smaller than the 
electron and hole energy of size quantization. The shifts 
of exciton energies due to the interaction with phonons 
are approximately 10 meV [7] and do not essentially 
influence at the obtained results. Therefore, we do not 
take into account the electron-hole interaction and that of 
both quasi-particles with phonons.

Thus, the exciton energy spectrum (
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0, he kk , without considering the electron-hole and 

both quasi-particles interaction with phonons, is 
obtained from the condition of functional minimum
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realized at 00  . The same magnitude ( 0 ) 

determines the wave functions of exciton moving in the 
plane perpendicular to the nanostructure axis
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Using the obtained wave functions, we can evaluate 
the intensities of inter-band optical quantum transitions 
[9]
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Fig. 2. Dependences of electron energy e
nE 0

(a), exciton energy 
0

0

e

h

n

n
E 


(b), heavy hole energy h

nE 0
(c), and intensities of inter-

band quantum transitions 
0

0

e

h

n

n
I 


(d) on the inner wire diameter (d) at experimentally obtained magnitudes of barrier-shell width (  = 

4 nm) and nanotube width (h = 4 nm) [5].

The numeric calculation of exciton energies and
intensities of inter-band quantum transitions at 

0, he kk  is performed for AsGaGaAs/Al 0.60.4

hexagonal nanostructure experimentally grown in [5].

3. Discussion of results

Evolution of exciton spectrum as a function of 
nanostructure geometrical parameters is studied for 

AsGaGaAs/Al 0.60.4  multi-shell hexagonal nanotube 

with the following physical characteristics [4, 5, 10]: 
e
0 = 0.063 0m , e

1 = 0.096 0m , h
0 = 0.51 0m , 

h
1 = 0.61 0m , eU0 = 297 meV, hU0 = 224 meV, 

0gE = 1520 meV ( 0m  pure electron mass in 

vacuum); GaAsa = 5.65 Å – GaAs  lattice constant.

In Fig. 2, the energies of electron e
nE 0

 (a), exciton 

0

0

e

h
n

n
E 


(b), heavy hole h

nE 0
(c) and intensities of 

interband quantum transitions 
0

0

e

h
n

n
I 


(d) are shown as 

functions of inner wire ( GaAs ) diameter (d) for the 
experimentally obtained magnitudes of barrier-shell 
(  = 4 nm) and nanotube (h = 4 nm) widths [5].

In Figs. 2a and 2c, one can see a finite number of 
energy levels at 0d . These levels coincide with those 
for the hexagonal nanotube ( GaAs ) embedded into 

AsGaAl 0.60.4 , which is proven by physical 

considerations.
The new electron and hole energy levels arise when 

the quantum wire appears and its diameter (d) increases. 
The whole spectra shift into the region of smaller 
energies and the anti-crossings of energy levels are 
observed. The anti-crossing phenomenon is caused by 
the splitting of energy levels due to the tunnel effect 
present between the quantum wire (with the diameter d) 
and nanotube (with the width h) through the finite 
potential barrier (with the width  ). Both the electron 
and hole are located in the space of nanotube at that 



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 156-161.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

160

        a)    b)

75 80 85 90 95
1620

1630

1640

1650

1660

1670

7
10

7
9

6
9

8
6

E
EE

~
~~~E

ne=

nh=

E
exp.

)10
7(

)(

8
7

9
7

)(

10
6)(

9
6)(

)(
8

6nh
, 

m
e

V
ne 

d, nm

E

75 80 85 90 95
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

7
10

7
10)(

7
9

9
7)(

6
10

)(

6
9

)(6
97

8)(

)6
8(

6
8

II

I~

~ ~~I

d, nm

, 
a.

u.
ne

nh 
I

Fig. 3. Dependences of exciton energies 
e

h

n

n
E 


(a) and intensities of interband quantum transitions 

e

h

n

n
I 


 (b) on the 

plots of ),(
0
he

nE


 dependences on d, where the energies of 

quasi-particles are almost not changed. The plots where 
the energies of both quasi-particles decrease rapidly, 
correspond to the states in which the electron and hole 
are located in inner wire with the probability close to 
unity.

Evolution of exciton energies (
0

0

e

h
n

n
E 


) as functions 

of the inner wire diameter (d), Fig. 2b, is evidently 
caused by the peculiarities of electron and hole spectra. 
In particular, the anti-crossing of exciton energy levels is 
observed as manifestation of electron and hole energy 
levels anti-crossings.

Fig. 2d proves that the intensities of quantum 

transitions (
0

0

e

h
n

n
I 


) for all states non-monotonously 

depend on the inner wire diameter (d), approaching 

several minimal and maximal magnitudes. Such 
0

0

e

h
n

n
I 



behaviour is quite clear from the physical viewpoint. 
Really, when the electron and hole are in their ground 

states, the intensity of this transition ( 01
01I ) at 0d  is 

close to unity ( 9.001
01 I ). Then, both quasi-particles are 

located in the space of nanotube (with the width h = 
4 nm), and overlapping of their wave functions is 
essential. When the inner wire appears and its diameter 
increases, the intensity decreases because the wave 
function of electron as “light” quasi-particle, more and 
more worms into the inner wire, while the heavy hole 
does not change its location in the nanostructure. For 
some critical d magnitude, the heavy hole skip-like 
changes its location from nanotube into the inner wire. 
Herein, the intensity of transition first increases (see the 
insert in Fig. 2d) and then rapidly reduces. The minimal 

magnitude of intensity ( 35.001
01 I ) is obtained when 

the hole with the probability close to unity is located in 
the inner wire, and the electron with equal probability 
( 5.0~ ) is located in the inner wire and nanotube. The 
further intensity increase is observed when the electron 
and hole are located in the inner wire, and overlap of 
their wave functions increases for higher d magnitudes.

The non-monotonous characters of intensities of 
interband quantum transitions between arbitrary states 
are explained in the analogous manner due to the 
changed location of both quasi-particles in the space of 
quantum wire and nanotube.

In order to compare the theoretical and 

experimental data, the exciton energies (
e

h
n

n
E 


, Fig. 3a) 

and respective intensities of quantum transitions (
e

h
n

n
I 


, 

Fig. 3b) are presented as functions of the inner wire 
diameter ( d ) within the range: d = 85 10 nm. It 
corresponds to the sizes of nanotube, for which the 
luminescence peak (at expE 1645 meV) was 

experimentally observed [5]. The numeric calculations 
of exciton energies and intensities of quantum transitions 
are performed for magnetic quantum number equal to
zero, thus index “0” is not used in the figure for 
convenience.

Both figures prove that only four out of six exciton 

energy curves: 6
8E , 6

9E , 7
9E , 7

10E  can be characterized 

by intensities higher than 0.5. The exciton energies ( 6
8

~
E , 

6
9

~
E , 7

9

~
E , 7

10

~
E ), at which the luminescence peak must be 

experimentally observed, correspond to the intensity 

maxima ( I
~

). Thus, the luminescence peak, described in 
[5], can be produced by different exciton states with 
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weakly differing energies, depending on an exact 
experimental diameter (d) of the inner wire.

Finally, the calculations of probability density of 

electron and hole location  


2),( |)(| he
mnR  in 

nanostructure prove that both quasi-particles producing 

the exciton in the above mentioned states (
e

h
n

n
E 



~
) are 

localized in nanotube with the width h.

4. Conclusions

1. The theory of exciton spectra and intensities of 
quantum transitions for the multi-shell hexagonal 
nanostructure has been developed by applying the 
models of effective masses and rectangular 
potentials for the electron and hole by using the 
Bethe variational method.

2. It has been shown that the intensities of interband 
quantum transitions for all the states non-
monotonously depend on inner wire diameter (d) 
approaching several minimal and maximal mag-
nitudes. Evolution of intensities is quite explained 
by the complicated character of distribution of 
probability density of electron and hole location in 
the space of multi-shell nanostructure.

3. It has been established that the numeric results for 
exciton energy spectrum and intensities of quantum 
transitions, obtained within the developed theory, 
well correlate with the experimental data for the 
radiation spectrum of nanotubes grown using 

AsGaGaAs/Al x1x  semiconductors.
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Abstract. The theory of exciton spectrum and intensities of interband quantum transitions in multi-shell hexagonal semiconductor nanotube is developed within the effective masses and rectangular potentials approximations using Bethe variational method. The obtained theoretical results well explain the experimental position of luminescence peak for 
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1. Introduction 

The intensive investigations of semiconductor quantum wires with radial heterostructure have been rapidly increased during the last decade. These nanostructures are the basic elements of light radiating diodes, detectors, transistors and light transformers of new generation.


On the one hand, the heterostructure perpendicular to the quantum wire axis can localize charge carriers inside the inner wire, decreasing the surface scattering [1]. On the other hand, it allows the guided variation of spectral characteristics inherent to quasi-particles (electrons, excitons, phonons) in nanostructure, depending on its geometrical parameters.


Using different semiconductor materials composing the radial heterostructure, the single (with one quantum well for the electron) [2, 3] and complicated (multi-well and multi-shell) [4, 5] hexagonal nanotubes are experimentally created. The single hexagonal nanotubes are already theoretically studied in details [6-8]. The authors developed the theory of exciton spectrum and exciton-phonon interaction, well explaining the experimental data qualitatively and quantitatively.


Recently, German scientists have been grown the complicated multi-shell hexagonal nanotubes by applying the method of molecular-beam epitaxy and using GaAs as well as 
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 semiconductors and investigated their luminescence spectra [4, 5]. As far as we know, the consistent theory of exciton spectrum for these structures is still absent. However, even within the general considerations, it is clear that the complicated character of redistribution of probability for electron and hole location in the space of complicated nanotube with several quantum wells causes interesting peculiarities of the exciton spectrum. In particular, one can expect oscillations in intensities of interband quantum transitions.

In this paper, we propose one of the possible theoretical approaches to investigate the exciton spectrum in multi-shell hexagonal semiconductor nanotube. The theory is developed in the frames of models of effective masses and rectangular potentials for the quasi-particles using the Bethe variational method. The dependences of exciton spectrum parameters on nanostructure geometry have been investigated. The calculated magnitudes of exciton energies have been compared with the position of luminescence peak observed experimentally [5].


2. Theory of electron and exciton spectra multi-shell hexagonal semiconductor nanotubes 


The experimentally grown nanostructure [5] – the multi-shell hexagonal nanotube is theoretically studied. It consists of hexagonal semiconductor quantum wire (“0”), thin barrier-shell (“1”) and nanotube (“2”) embedded into the outer medium (“3”). The transversal cross-section of the nanostructure is shown in Fig. 1.


The small differences of lattice and dielectric constants of nanostructures composing parts allow us to use the approximations of effective masses (
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So that, to study the exciton spectrum we, first of all, obtain the electron and hole energy spectra and wave functions solving the stationary Schroedinger equation
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with Hamiltonian of uncoupling quasi-particles in the cylindrical coordinate system
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Fig. 1. Transversal cross-section of the nanostructure and its energy scheme.


It is clear that the effective masses (
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 variables have hexagonal symmetry in the plane perpendicular to the nanotube axis. Thus, the variables are not separated, and the equations (2) can not be solved exactly. The approximated solution is found within the Bethe variational method. In the Hamiltonian (3), the main term is introduced. In it, 
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Now, the Hamiltonian (
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where
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is the main part of the Hamiltonian describing the electron and hole with effective masses 
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The correction accounting the difference between the exact (
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is further considered as perturbation.


The Schroedinger equation with Hamiltonian (5) is solved exactly. The electron and hole wave functions (indices 

[image: image32.wmf]e


, 

[image: image33.wmf]h


 are not temporarily used) are taken as:




[image: image34.wmf]j


r


p


=


Y


im


ikz


k


m


k


m


e


e


R


L


r


)


(


2


1


)


(


r





(7)


with the radial functions
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Here,
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 – effective region for the electron movement along the nanostructure axis; Jm, Nm – Bessel functions of the whole order, Im, Km – modified Bessel functions.


The conditions for wave functions and their densities of currents continuity at three nanostructure interfaces ([image: image42.wmf]2
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together with normalizing condition




[image: image44.wmf]1


)


(


0


2


=


r


r


r


ò


¥


d


R


k


m



(11)


determine all the unknown coefficients: 
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Further, according to the Bethe method, we calculate the corrections of the first order to the energies of both quasi-particles 
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We must note that, due to the evident analytical properties of the perturbation Hamiltonian (6), the integration over 
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 regions, situated between the respective hexagons and approximating circles (toned regions in Fig. 1).


Now, the energy spectra of uncoupling electron and hole, as functions of variational parameter and axial quasi-momentum, are already known in the first approximation of perturbation method
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In order to study the exciton states in the multi-shell hexagonal nanostructure, one has to solve the stationary Schroedinger equation. Its Hamiltonian, besides the energy gap of quantum wire and nanotube material, Hamiltonians of uncoupling electron and hole, contains the energy of their interaction (
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Such problem can be solved within the method developed in details in refs. [6-8]. But the exciton binding energy obtained in the cited papers has the order of 10 meV, which is hundreds times smaller than the electron and hole energy of size quantization. The shifts of exciton energies due to the interaction with phonons are approximately 10 meV [7] and do not essentially influence at the obtained results. Therefore, we do not take into account the electron-hole interaction and that of both quasi-particles with phonons.


Thus, the exciton energy spectrum (
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, without considering the electron-hole and both quasi-particles interaction with phonons, is obtained from the condition of functional minimum
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realized at 

[image: image62.wmf]0


0


r


=


r


. The same magnitude (

[image: image63.wmf]0


r


) determines the wave functions of exciton moving in the plane perpendicular to the nanostructure axis




[image: image64.wmf](


)


(


)


(


)


.


;


;


,


,


,


;


|


0


0


0


h


m


n


e


m


n


h


h


e


e


m


n


m


n


m


n


m


n


h


h


e


e


e


e


h


h


e


e


h


h


r


r


Y


r


r


Y


=


=


j


r


j


r


r


Y


>=


r


r


r


r


r


r


r


r



(15)


Using the obtained wave functions, we can evaluate the intensities of inter-band optical quantum transitions [9]
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The numeric calculation of exciton energies and intensities of inter-band quantum transitions at 
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3. Discussion of results


Evolution of exciton spectrum as a function of nanostructure geometrical parameters is studied for 
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 multi-shell hexagonal nanotube with the following physical characteristics [4, 5, 10]: 
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In Fig. 2, the energies of electron 
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 (b), heavy hole 
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 (c) and intensities of interband quantum transitions 
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 (d) are shown as functions of inner wire (
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) diameter (d) for the experimentally obtained magnitudes of barrier-shell (
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 = 4 nm) and nanotube (h = 4 nm) widths [5].


In Figs. 2a and 2c, one can see a finite number of energy levels at 
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, which is proven by physical considerations.


The new electron and hole energy levels arise when the quantum wire appears and its diameter (d) increases. The whole spectra shift into the region of smaller energies and the anti-crossings of energy levels are observed. The anti-crossing phenomenon is caused by the splitting of energy levels due to the tunnel effect present between the quantum wire (with the diameter d) and nanotube (with the width h) through the finite potential barrier (with the width 
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 dependences on d, where the energies of quasi-particles are almost not changed. The plots where the energies of both quasi-particles decrease rapidly, correspond to the states in which the electron and hole are located in inner wire with the probability close to unity.
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Evolution of exciton energies (
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) as functions of the inner wire diameter (d), Fig. 2b, is evidently caused by the peculiarities of electron and hole spectra. In particular, the anti-crossing of exciton energy levels is observed as manifestation of electron and hole energy levels anti-crossings.


Fig. 2d proves that the intensities of quantum transitions (
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) for all states non-monotonously depend on the inner wire diameter (d), approaching several minimal and maximal magnitudes. Such 
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 behaviour is quite clear from the physical viewpoint. Really, when the electron and hole are in their ground states, the intensity of this transition (
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). Then, both quasi-particles are located in the space of nanotube (with the width h = 4 nm), and overlapping of their wave functions is essential. When the inner wire appears and its diameter increases, the intensity decreases because the wave function of electron as “light” quasi-particle, more and more worms into the inner wire, while the heavy hole does not change its location in the nanostructure. For some critical d magnitude, the heavy hole skip-like changes its location from nanotube into the inner wire. Herein, the intensity of transition first increases (see the insert in Fig. 2d) and then rapidly reduces. The minimal magnitude of intensity (
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) is obtained when the hole with the probability close to unity is located in the inner wire, and the electron with equal probability (
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) is located in the inner wire and nanotube. The further intensity increase is observed when the electron and hole are located in the inner wire, and overlap of their wave functions increases for higher d magnitudes.


The non-monotonous characters of intensities of interband quantum transitions between arbitrary states are explained in the analogous manner due to the changed location of both quasi-particles in the space of quantum wire and nanotube.


In order to compare the theoretical and experimental data, the exciton energies (
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, Fig. 3a) and respective intensities of quantum transitions (
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, Fig. 3b) are presented as functions of the inner wire diameter (
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10 nm. It corresponds to the sizes of nanotube, for which the luminescence peak (at 
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1645 meV) was experimentally observed [5]. The numeric calculations of exciton energies and intensities of quantum transitions are performed for magnetic quantum number equal to zero, thus index “0” is not used in the figure for convenience.


Both figures prove that only four out of six exciton energy curves: 
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 can be characterized by intensities higher than 0.5. The exciton energies (
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). Thus, the luminescence peak, described in [5], can be produced by different exciton states with weakly differing energies, depending on an exact experimental diameter (d) of the inner wire.


Finally, the calculations of probability density of electron and hole location  
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 in nanostructure prove that both quasi-particles producing the exciton in the above mentioned states (
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) are localized in nanotube with the width h.


4. Conclusions


1. The theory of exciton spectra and intensities of quantum transitions for the multi-shell hexagonal nanostructure has been developed by applying the models of effective masses and rectangular potentials for the electron and hole by using the Bethe variational method.


2.
It has been shown that the intensities of interband quantum transitions for all the states non-monotonously depend on inner wire diameter (d) approaching several minimal and maximal mag​nitudes. Evolution of intensities is quite explained by the complicated character of distribution of probability density of electron and hole location in the space of multi-shell nanostructure.


3.
It has been established that the numeric results for exciton energy spectrum and intensities of quantum transitions, obtained within the developed theory, well correlate with the experimental data for the radiation spectrum of nanotubes grown using 
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 semiconductors.

References

1.
A.I. Persson, M.W. Larsson, S. Stenstro, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth // Nat. Mater. 3(10), p. 677-681 (2004).



2.
P. Mohan, J. Motohisa, T. Fukui, Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires // Appl.Phys. Lett. 88(1), 013110 (2006).


3.
P. Mohan, J. Motohisa, T. Fukui, Fabrication of InP/InAs/InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy // Appl. Phys. Lett. 88(13), 133105 (2006).


4.
M. Heigoldt, J. Arbiol, D Spirkoska, J.M. Rebled S. Conesa-Boj, G. Abstreiter, F. Peiro, J. R. Morantece, A. Fontcuberta i Morral, Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires // J. Mater. Chem. 19(7), p. 840-848 (2009).


5.
A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol, M. Heigoldt, J. R. Morante, G. Abstreiter, Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires // Small, 4(7), p. 899-903 (2008).


6.
N. Tkach, A. Makhanets, N. Dovganiuk, Theory of the exciton spectrum of an array of widely spaced hexagonal nanotube // Physics of the Solid State, 51(12),  pp. 2529-2536 (2009).


7.
M. Tkach, O. Makhanets, M. Dovganiuk, O. Voitsekhivska, Exciton spectrum in hexagon nanotube accounting exciton–phonon interaction // Physica E, 41(8), p.  1469-1474 (2009).

8.
M. Tkach, O. Makhanets, A. Gryschyk, R. Fartushynsky, Exciton in quantum tube with hexagon cross // Rom. J. Phys., 54(1-2), p. 37-45 (2009).


9.
J.H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, New York, p. 438 (1998).


10.
G.Q. Hai, F.M. Peeters, J.T. Devreese, Electron optical-phonon coupling in 

[image: image119.wmf]As


Ga


GaAs/Al


x


1


x


-


 quantum wells due to interface, slab, and half-space modes // Phys. Rev. B., 48(7), p. 4666-4668 (1993).

























































        a)						   b)



��



Fig. 3. Dependences of exciton energies � EMBED Equation.3  ��� (a) and intensities of interband quantum transitions � EMBED Equation.3  ��� (b) on the inner wire diameter (d) within the range d = 85� EMBED Equation.3  ���10 nm.
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Fig. 2. Dependences of electron energy � EMBED Equation.3  ��� (a), exciton energy � EMBED Equation.3  ��� (b), heavy hole energy � EMBED Equation.3  ��� (c), and intensities of inter-band quantum transitions � EMBED Equation.3  ��� (d) on the inner wire diameter (d) at experimentally obtained magnitudes of barrier-shell width (� EMBED Equation.3  ���= 4 nm) and nanotube width (h = 4 nm) [5].
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