Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 91-116.

PACS 72.20.Jv, 73.40.Cg, 84.60.Jt, 85.30.De

Efficiency a-Si:H solar cell. Detailed theory

Yu.V. Kryuchenko, A.V. Sachenko, A.V. Bobyl, V.P. Kostylyov, P.N. Romanets,
1.O. Sokolovskyi, A.I. Shkrebtii, E.I. Terukov

V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine

41, prospect Nauky, 03028 Kyiv, Ukraine
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1. Introduction

Thin film hydrogenated amorphous silicon (a-Si:H) is
widely used for photovoltaic applications. Amorphous
silicon-based solar cells (SC) are very promising
because of low production cost, possibility of covering
large uneven areas, and sufficiently high efficiency. In
order to get the best possible performance of the a-Si:H
solar cells, it is important to (i) produce a high quality
amorphous films with p—i—n junction, and

(ii) optimize the films and solar cells in terms of their
parameters such as, for instance, p-, i- and n-layer
thicknesses, their doping levels, electron and hole
mobilities 1, and p, and their lifetime, resistance of p-, i-
and n-layers, contact grid geometry and parameters of
the transparent conducting and antireflecting layers. In
this paper, we propose a detailed theory of
photoconversion in the structures of a-Si:H , taking into
account the dependence of the efficiency of a
sufficiently large number of physical parameters.

2. Model of an active region in the a-Si:H solar cell

In the case when no external (irradiation) excitation of
electrons and holes in a system occurs and electron-hole
recombination channels are totally absent, the following
standard continuity equation for carriers in the system is
valid:

@+V-Ip:0,

- (1)
where p is the particle concentration and 1, — particle flux.

If processes of generation and recombination of
particles are taken into account, then Eq. (1) takes a
more complicated form of generation-recombination
balance equation, namely:

dp r—p 1o .
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for electrons, where g, and g, are the generation rates
(g, = g, = g for generation by external irradiation, when
each absorbed photon with an energy higher than band
gap energy creates simultaneously an electron in the
conduction band and a hole in the valence band), py and
ngy are the equilibrium hole and electron concentrations
in a system without external excitation, t, and 1, are the
hole and electron lifetimes, j, and j, are the densities

of hole and electron currents, which in turn can be
written as

J, =e(En,p—D,Vp) 4)
and
J, =e(Ep,n+D,Vn), (5)

where E is the electric field, p, are the hole (electron)

mobilities, D, are the corresponding diffusion

coefficients.  Accounting for Einstein  relation
kT . . .

D, =7 ., and expressing electric field E in the

system via potential ¢, E =-Vo, Egs. (4) and (5) take
up the following form:

ih

= _pVy -V 6

D pVy—Vp (6)
P

and

A Vy +V (7)
=-n n,

D y

n

where y =e@/kT is the dimensionless potential energy
of positive charge, i, =j, /e and i, =j, /e are the

fluxes of positive charges, corresponding to movement
of holes and electrons in the system. Substituting (6) and
(7) into (2) and (3), we obtain at steady-state conditions
(dp/dt = dn/dt = 0) in the case of one-dimensional system
(which is the subject of our subsequent consideration)
the following equations:

d’y

d’p_p=py dydp _g(2)

= ; (®)

dz* Lp dz dz P dz* D,

2 _ 2
dn_n-n dvdn_ dy_ g@) ©)
dz L, dz dz dz D,

where L, =./D,t, is the hole diffusion length,
LV[ = DnTn
coordinate in the direction normal to structure surface.
Further, by calculating short-circuit current in the
system, we consider the active region of a-Si:H solar
cell as being formed during its growth by two main
layers (see Fig. 1), namely: i) doped p'-layer (with the
layer thickness d,) adjacent to the front surface and
ii) more deep undoped (or slightly doped with donors)

is the electron diffusion length, z is the

i(n)-layer with the layer thickness d. Besides,
technological n" layer also is formed in practice at rear
surface to have good rear contact properties, but its
thickness d, is usually too small to influence the charge
generation and collection, so in the first approximation it
can be excluded from the consideration that concerns
short-circuit current formation. Considering physical
properties of the active a-Si:H region, it is convenient to
divide this region into three physically different parts:
I) p'-layer with the thickness d,—z,.ltis simply a part
of technologically formed p'-layer that lies outside the
SCR arising at p" —i(n) junction. In this region, excess

electrons contribute to short-circuit current. II) i(n)-layer
with the thickness d -z, . It is i(n)-part of a-Si:H that

lies outside SCR region. In this region, excess holes
form corresponding contribution into short-circuit
current. IIT) Third layer is the SCR itself in the vicinity
of z=d,. The thickness of SCR equals to z,+z, At
short-circuit current conditions, the band bending in
SCR becomes practically the same as in dark conditions
(i.e. when generation of mobile electrons and holes by
external irradiation is turned off). For this reason, in the
SCR rather high electric field exists, so the electrons and
holes generated in this region are quickly separated from
each other by the field, and in the first approximation
their movement can be considered neglecting their
recombination. Contrary, in layers I and II outside SCR
region, the electric field is enough low in these
conditions, so we can neglect it in the first
approximation.

It follows from the written above that a problem of
short-circuit current collection in a-Si:H can be solved
by separately considering the regions 0 <z < dp -z,

and d,+z,< z<d,+d with appropriate boundary
conditions.
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Fig. 1. Schematic view of a-Si:H solar cell structure.
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3. Short-circuit current collection from p'-region in
a-Si:H layer

In the region I, where excess minor carriers (electrons)
contribute to the short-circuit current, the equation (9) in
diffusion approximation (drift terms are small enough as
compared to the diffusion ones) takes up the following
form:

d2Anp(S) B Anp(S) _ gp(S)(Z)
dz* Li D

n

; (10)

where An”(z) =n"")(z)—n,. Superscripts p(s) in the
generation term g(z) and excess electron concentration
An(z) are introduced to account for two possible

independent polarizations of the incident light because in
the case of its oblique incidence, when the angle of light
incidence differs from zero, reflection and transmission
coefficients for the light polarized in the plane of
incidence (p-polarized portion of incident light) differ
from those for light polarized in parallel to SC surface
(s-polarized portion of incident light). In the generation
term g?“)(z), all the contributions from the total

spectrum of the incident light are present, so generally it
is not monochromatic. =~ However, in linear
approximation, the problem can be considered separately
for each constituting (monochromatic) part of the total
spectrum inherent to incident irradiation, and total
concentrations as well as short-circuit currents can be
found by summing the contributions from the
constituting parts of the spectrum. For this reason, we
consider further a particular case of monochromatic
irradiation with the wavelength X.

Uniform solution of Eq. (10), to which zero right-
hand part of the equation corresponds, can be expressed
as C/exp(-z/L,)+CI exp(z/ L,) . General solution

of Eq. (10) is a sum of the uniform solution and the
partial one, defined by the generation term in the right-
hand side of the equation. If possible multiple internal
reflections of the light transmitted into a-Si:H layer
from a-Si:H layer boundaries are taken into account,

then the generation term g (z,%) is expressed as

gp(S)(Z’ 7») — (1 _m) %, [é](S) (7‘) 7;1;(2) (k) <
1=RES() RO exp| 20, (d, +d +d,) ]

41 45

X {exp(—ocxz) +R V() exp[-2a, (d,+d+d,)] exp(ocxz)} ,
)

where o, is the absorption coefficient of a-Si:H
material at the wavelength &, m — relative metallization
of the front surface by finger electrodes (the part of the
front SC surface, which is covered by the electrodes,
produces corresponding shade in active region),
790 light intensity at the
wavelength A. For simplicity, we denote by indices / to

irradiating

5 all optically different media, which determine the
incident irradiation transmission and reflection (see

Fig. 1) in the SC, so that T.”)()) is the transmission

1—>4
coefficient for p(s)-polarized light incident from air
(medium /) onto SC front surface, which determines
corresponding irradiation transmission into active
a-Si:H region (medium 4) of SC with account of
multiple intermediate light reflections and transmissions
at the interfaces 1/2, 2/3 and 3/4, R’“) (L) is the

4—1
reflection coefficient for the light incident from a-Si:H
region (medium 4) onto 3/4 interface which accounts for
the analogous multiple light reflections and

transmissions at the interfaces 1/2, 2/3 and 3/4, R’%)())

45
is the reflection coefficient for the light incident from
a-Si:H region (medium 4) onto rear metallic contact
(medium 5).
In accordance with the explicit form of generation
term (11), general solution of Eq. (10) takes up the
following form:

A (2) |

[dAnx/dzJ B

=Cm exp(—z/L)[ ! J+C2“"’(” exp(z/L)[ ! j +
- -, ) /L,

1 1
J+ AP exp(at,2) [ J,
, o,

A

+4 ﬁ’n"(” exp(—o,z) [

(12)
where C}-"® and ;-7 are the coefficients, which has
to be determined from boundary conditions,

A= (1=m) o, 170 177 04)

X
YIRS RS0 exp| 20, (d, +d+d,)]
L?/D,
>< T 5 b
1-(o, L)’
ApPO= AT RIS exp| 2201, (d, +d +d,)] .

(13)

First boundary condition can be written in the form

of standard balance equation for excess electron fluxes

through front a-Si:H surface (interface) at z=0 (see
Fig. 1):

P, dan

s (14)

=S, AnP“(0),
z=0
where Sy is the surface recombination rate for electrons.

To obtain the second boundary conditionatz=d, -z,

we consider SCR region neglecting electron-hole
recombination. In this approximation, Eq. (3) takes up
the following form:

dir® !
L =g @),
¥4

(15)
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i, p(s)

where flux i is expressed by formula (7), which in

1D case can be rewritten as:

(s) i .p(s)
g LT (16)
dz dz D

n

when i =0,

solution of the latter equation is the well-known
equilibrium one:

In equilibrium conditions,

(17)

where n, is the electron concentration in i(n)-region

beyond SCR layer, where electrons are the majority
carriers. At irradiation, when " %0, solution of

Eq. (16) can be found in the form of
! (z) =B, (z)exp[y(2)] . (18)

Substituting (18) into Eq. (16), we obtain the
following equation for the coefficient B :

nxp(S) (2) =ny(2) = n, exp[y(2)],

dB A, p(s)

dz

=exp[-¥(2)]i;""(2)/ D, . (19)

General solution of this equation can be written as

: 1 ¢ ~
B"(2) = By +—= [ expl-p()]il " () d

n 2y

(20)

where B, and z, are two arbitrary constants. Substituting
(20) into (18), we obtain following expression for

n/"(z) in the SCR region:

n(2) =

=e><p[y(2)]{nn+DL [ exp[-¥(z)]i;""(2) dZ'},

n dy,+z,

2D
where explicit values of B,y and z, are chosen to provide
the right value n/(z)=n, at z=d,*z, (no
accumulation of excess electrons is supposed in a-Si:H
i(n)-region beyond SCR layer at short-circuit current
conditions, i.e. all electrons supplied by p-region in i(n)-
region and generated in i(n)-region pass away to rear
contact or recombine with holes, so that electron

concentration in this region remains practically
equilibrium one).
By substitution Eq.(11) into Eq. (15), the

following explicit expressions for the flux i**”*’ in SCR

can be written:
ig&p(é‘)(z) - ig&p(é‘)(dp — Zp)_
-4 PO expl-a, d,-z,)] {1 —exp[-a, (z—-d, +z, )]} +

+ 4 2P0 explot, d,-z,)] {1 —explo, (z—d, +z, )]} ,
(22)

where
(1=m) 17 ) T3 ()

1= RS0 RIS exp| 20, (d, +d +d,) ]
(23)

A hp(s)
A =

and
A dp(s) _
A, =

45

1=R55 () RES (1) exp[ 201, (d, +d+d,)]

(1=m) 190 T () R7S.0) exp[-200, (d, +d+d,)] .

4-1 45
(24)
As it follows from Eq. (21), at the SCR boundary
z=d

» " Zp

n(d, ~z,)~n, exp(-y,,) = An/(d, - z,) =

_exp(-,,) (29)

5 ) [ exp[-3(2)] i, (2) dz,

n »

where y, =|y(d,—z,)| is the absolute value of total
band bending in the SCR region in A7 units (y =0 in
i(n)-region of a-Si:H layer at z>d, +z,). Taking into
account that according to (7) the flux i*”* at the SCR
boundary z=d, -z, in the formula (22) can be

expressed as

Anl®
i#10(d -z )= D, A%
€ P P

. 26
s (26)

z:dpfzp

two boundary conditions (14) and (25) can be rewritten
in the form of the following two explicit algebraic

equations for the coefficients C/»”*’ and CJ7* :

CLPO (S, +V,)+Crr0 (S, =V,) =

= — A1 (o, D, +S,) + ALY (0, D, = S,) @D
I,n 2"n 0 2,n 2"n 0/>

i expl~d, ~z,)/ L1 (1=, )+
+Cy " expl(d, —z,)/ L1 (1+1 ) =

7 _ 2
:Axlzﬁ(s){exp[—(xx(dp—zp)]{ - —l}—l ©,L,) I;*}+

o, L, o, L,
S, [ ~ 1_(0(’ L )2 oy +
+A500 {—exp[ocx(dp _Z”)]LLYL +l}+ e
2 n 2 n
(28)
d,+z,
where V, =D, /L,, I, = [ exp[-y(z)-y,,1dz/ L, ,
d,~z,
d,+z,
I~ = [ exp[-y(z)—-y,, —oz]dz/L,,
d,-z,
d,+z,
I = [ exp[-¥(2)-y,, +ozldz/ L, .
dy=z,
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Thus, calculating the coefficients C/-”*’  and
C;:7) from the system of algebraic equations (27) and
(28), we completely determine the electron component

P hp(s) .

of the density of short-circuit current j,"’

i2ap(s) — i hep(s) —
.]e,SC :ele (dp _Zp) -

=l {-Cl: expl+d, —2,)/ L1+ C1I expl(d, ~2,)/ L, ]

—A}7 explot, (d, ~z, o, L, + A7 exploy, (d, —z, o, L, ).

(29)

4. Short-circuit current collection from i(n)-region of
a-Si:H layer

Analogous consideration can be made for i(n)-region of

a-Si:H layer (region III), where excess holes contribute

mainly to the short-circuit current. In diffusion

approximation, Eq. (8) takes the following form in this

region:

dzApp(s) App(S)
dz* Li -

B gP(S)(Z)
D 9

P

(30)

where Ap”"(z) = p’“)(z) - p, . Considering a particular
monochromatic component of incident irradiation, the
generation function for which is given by the formula
(11), a general solution of Eq. (30) analogously to (12) is
expressed as

Ap,(2) "

] -

= exp(—z/L){ : j-i—Cx"’(s) exp(z/L){ : J +
R ’ —l/Lp 2P ’ l/Lp

+4 ﬁ’;(” exp(—ocxz) [_(lx

1
+ A% exp(aL, z [ J,
j 2,p ( A ) o,

a

1)
where C""" and C;7" are the coefficients, which has
to be determined from the boundary conditions,

(L=m) o, 17" (W) T (M)

y ?,p(s): 1>4 >
T 1=RISO) R0 exp[ -2, (d, +d +d,) ]
2
LD,
2 b
1-(o,L,)
ALIO= A1 RIC() exp| 201, (d, +d+d,)] .

(32)
Like to that of electrons, first boundary condition
for excess holes can be written in the form of balance

equation for hole fluxes at rear a-Si:H surface
(interface) (see Fig. 1):

d Ap p(s) .
_D"T; :SdApf()(dp+d), (33)

z=d,+d

where S, is the surface recombination rate for holes. To
write the second boundary condition for excess holes at
z=d,tz,, we consider SCR region in the same
approximation we have used for electrons in the
paragraph 2, i.e. neglecting electron-hole recombination
in the SCR layer. In this approximation, Eq. (2) for holes
takes the following form:

di 2"1’(”
dz
i.e. the flux of excess holes can be written as

iy " N2)=i,""(d, +z,)+

+A 17 exp[-oa, d,+z,)] {1 —exp[-a, (z—-d, -z, )]} +

=g"(zn), (34

= A5 expla, (d, +2,)] {1 —expla, (z—d, —z,)]},
(35)
where coefficients A7) and A%"* are given by the

formulae (23) and (24), respectively. Relation between
the hole fluxi,;””*’ and the hole concentration is given
by Eq. (6), which in 1D case can be rewritten as:

d p(s) ! l”hﬂ(s)
by oL (36)
dz dz D

P
Similarly to the case of electrons, at equilibrium,

i hap(s) —

when i, 0, solution of the latter equation has the

following form:
p(2) = py(2)= p, exp[-¥(2) - y,,], (37)

where p, is the hole concentration in p ' -region beyond
the SCR layer, where holes are the majority carriers. In

the case of irradiation, when i h“’(s) # 0, the solution of

Eq. (36) can be found in the form

Pl (2)= B," (2) exp[-¥(2)], %)

where the pre-exponential function B"“(x) is a
solution of the following differential equation:

A.p(s)
dB!

dz

exp[y(2)]i;""(2)/D, . (39)

A general solution of this equation can be written
as

s 1 T ! . S ' !
B " (2) = B,y —— [exp[y(z)]i)" () dz' ,

p %

where B,y and x, are two arbitrary constants.

Substituting (40) into (38), we obtain following

expression for p,/*(z) in the SCR region:
P @)=

(40)

= exp[-y(2)] {p,, exp(—y,m)—Di [ exp[()] ;" (2) dz'},

(41)

P 9T
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where values of B, and z, are chosen to provide right
! (2)=p, value at z=d -z, (no accumulation of

excess holes is supposed in a-Si:H p'-region beyond the
SCR layer at short-circuit current conditions i.e. all the
holes supplied by i(n)-region to p'-region and generated
in p'-region pass away to the front surface contact or
recombine with electrons, so that the hole concentration
in this region remains practically equilibrium.

Thus, as it follows from Eq. (41),

Pl (d, +z,)=-p,exp(-y,,) = Ap/(d, +2,) =

d,+z, (42)
=—— [ exply(2)]i, " (2) dz.
DP 4,7z,
According to (6), the flux i " at the SCR

boundary z=d, +z, in Eq. (35) can be expressed as

dApp(s)

i, +z,) =D, L

; (43)

z=d,+z,

so that two boundary conditions (33) and (42) can be
rewritten in the form of the following two explicit

algebraic equations for the coefficients C/""® and

e

Clh'exp[~(d, +d)/ L,1(S,=V,)+
+C " expl(d, +d)/ L,1(S, +V,) =

= A7) expl-o, (d, +d)](V, o, L, =5,) =
—A%" explo (d, + d)(V, o, L, +S,),

(44)

Co exp[~(d, +2,)/ L] (1+1,,)+
1 expl(d, +2,)/ L] (1—1,,) =
1- (O(’ALP )2

ochp

1
= Ay S —expl-o, (d, +2,)] | ——+1 |+
’ o, L,

1 _((XAL,;)
o, L

»7p

[DL7L +

y+

AM?(S) d [y+ —11l=

A explos, (d, +2,)] :
ochp

(45)

d,+z,

[ exp[y(2)]dz/L,,

d -z

P “p

1

y+

where V=D /L,
P P P

dp+z"

[ exp[y(z)—oz]dz/L,,

dpfzp

1% =
y+
d,+z,

Iy = [ exp[y(z)+oz]dz/L,.

dpfzp

Calculating coefficients C* and C;”* from

the system of algebraic equations (44) and (45), we

completely determine the hole component of the density

of short-circuit current j," " :

]h 2 p(s) _ell:»p(é)(d 4z )_

—eV {cw@ exp[(d, +2,)/ L,1-C;7" expl(d, +2,)/ L, ]+

+A"" expl-oy, (d, +2,)] o, L, — Ay exploy, (d, +2,)] O%Lp}'
(46)

5. Calculation of DOS and position
of Fermi-level in a-Si:H

In the first approximation, the dependence y(x) in SCR at
short-circuit current conditions 1is close to the
equilibrium one, which is realized in dark, when no
excess carriers are produced by irradiation in the a-Si:H
layer. To calculate y(x) in SCR, first of all we have to
determine the energy position of Fermi levels in p'- and
i(n)-regions of a-Si:H layer beyond SCR (i.e. in regions
I and II). In amorphous silicon a large number of energy
levels in the band gap exists even without special doping
of material. These levels have different origin and
influence substantially the position of Fermi energy level
in intrinsic material. They are formed by three main
groups of states. The first group is presented by weak-
bond valence-band-tail states of the donor-like type. If
the valence band apex is taken as zero energy level, then
the energy distribution of the one-electron states in this
group can be approximately described by the following
formula:

N, (E,T)=N, ,exp(-E/E, ), (47)

where N, =(1..3)-10" cm” eV
although in the literature
N,,~7-10" cm™ eV
[4, 5]), the characteristic energy E,, is a function of
E,o(T) = \JEL(T*)— (kT*) +(KT)’ ,

is the equilibration temperature [1,2].

(see, [1-3]),
up to

also can be found (see, e.g.

e.g.

larger values

temperature,
T*=500 K
Depending on the quality of a-Si:H material, E,, can

vary from 0.04 up to 0.15eV at T= 300K. In our
calculations, the value E  (7*)= 0.056 ¢V has been
used as a parameter to which the value £ ,(300K)=
0.045 eV corresponds.

Another group of energy levels in the band gap of
a-Si:H material is formed by conduction-band-tail

acceptor-like states, energy distribution of which can be
approximately described by the analogous formula:

N, (E) = N exp[(E - Eg)/ EL‘O)] > (48)

where N, varies within the range from 10" to
102ecm> eV [1-5].

Besides, dangling bond defects exist in a-Si:H
material, which form deep defect states in the a-Si:H
band gap [1, 2]. The density of these states is dependent
on the position of the Fermi level in the band gap due to
specific microscopic reactions involving hydrogen [1, 2].
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These microscopic reactions lead to formation of deep
defect states from weak-bond band-tail states (47). As it
follows from the formulae (20) and (25) of the work [2],
the contribution dD,(E) into the density of deep defect

states at an energy E from the weak bond states (47)

with the energies within the range dF, in the vicinity of

E, can be expressed at temperatures 7> T* as

dD(E,E,,T)=

_ N, (E,)dE, P(E)
1+exp{[E+ (kT /2)In(Ngg, / Ny)—2E ]/ kT}

., (49)

SiSi

where Ngg; is approximately equal to 2-10% cm™ and
defines the total number of electrons in silicon bonding
states (four electrons per Si atom), Ny is the total
concentration of hydrogen in a-Si:H material (Vg is
close to 5-10*' cm™ at hydrogen content [H] = 10 at.%),
P(F) is the defect-pool function (normalized to the unity
energy distribution function of potential defect sites in
a-Si:H material, from which deep defect states can be
formed with the energy E), P(E) is usually taken as
Gaussian:

P(E)=(2n5") " exp[(E~E,)* / (257)], (50)
where ¢ is the pool width and E, is the most probable
potential defect energy. According to Powell and Deane
[1,2], o can be determined from the experimentally
measured energy separation A=0.44 eV between the
doubly occupied defect state and empty defect one;
o =[E,(T)-(A+U)]"?, where U=02..03¢V is the

defect electron correlation energy accounting for
electron interaction in negatively charged defects, when
the second electron is placed on the defect; £, = 1.27 eV
in material with the band gap E,= 1.9 eV. As the band
gap depends on the hydrogen content in a-Si:H , in our
calculations we have used the value

E,=(E,/19¢eV) -127eV. For E, ([H]) -dependence,

we have used the linear approximation FE,=
(1.58 +0.017 [H]) eV, which corresponds to the data of
the work [6]. In practice, the coefficient before the
hydrogen content [H] can vary from 0.012 up to 0.025
depending on a-Si:H material quality. The total density
of dangling bond states is thus expressed as

E,

DETD)= | N, (E,)dE, P(E)

1+exp{[E+(kT /2)In(Ngg, / N;,)—2E1/ kT}
(51)

This density of states includes contributions from
neutral, positively and negatively charged defects. If
charged defects are accounted in the law of mass action
equations, then, following [2], it is necessary to replace
the defect energy E in the integrand in the right-hand
side of Eq.(51) with the defect chemical potential

w, =E+kTIn[f°(E)/2], where f°(E) is the neutral

iSi

defect occupation function for amphoteric silicon

dangling bonds:
2expl(E, —E)/ kT

1+2exp[(E, — E)/ kT]+exp[(RE, —2E-U)/kT]
(52)
As a result, the density of dangling bond states
becomes dependent on the position of the Fermi energy
Er in a-Si:H material. Performing integration in (51),
the following expression for D(E,T) has been obtained

f(E)=

in [2] for this case:

> kT/2E,,
- o
D(EE..T)= P|E+ s 53
(551D YL‘"(EJ { 2EVJ 9
where
N KT/4E,, 2E> 1 5
Y=N,| —2 | exp E, - o1l
NSiSi 2E V0 —kT 2Ev0 4Ev0
(54)

All three types of defects can be donor-like,
characterized by one-electron transitions of the type
(+/0), and acceptor-like, characterized by one-electron
transitions of the type (—/0). In accordance with [2],
the density of one-electron acceptor-like states is
expressed as

g, (E,E..T)=D(E+kTn2,E,,T), (55)
while that of donor-like as
g,(E,E.,T)=D(E~U-kTIn2,E,,T). (56)

At temperatures 7 < T%*, the densities of defect
states do not depend on temperature. During cooling the
grown material below 7%, they leave “frozen-in”, i.e.
D(E,E,,T <T*)=D(E,E,,T*), where E, is the
Fermi energy calculated at equilibrium temperature 7*.
Remember that the valence-band-tail characteristic
energy E,, as pointed earlier, is also a function of
temperature, i.e. the value E o(7*)= 0.056 eV has to be
used at D(E,E -1 <T%*) calculations.

Due to participation of the valence band-tail states
in deep defect states formation, their density of states
becomes depleted, i.e. instead of N, (£) in formula

P(E)dE

(47), a depleted density of states
N, (E,T)=
s/ Ny)"? exp[(E-2E,)/ kT] }
(57)

E

_Nvt(Et’T){l_ f1+(N

has to be used in calculations at 7> 7* and
N,(E,T)=N,(E,T)-
P(E)dE
1+(Ngg / Ny exp[(E —2E,) | kT*]’
(58)

E,
_Nvt (Et s T*) ..
0
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if N,(E,T)>0 or N,(E,T)=0 and if the
expression in the right-hand side of the formula (58)
becomes lower than zero at T < T*.

In addition to above states always present in
intrinsic  a-Si:H, the donor and acceptor states
introduced by special doping a-Si:H material have to be
accounted. If doping of a-Si:H with donors is made
(e.g. by phosphorous), the density of donor states often
can be characterized by the normal Gaussian distribution
of the states on their energy:

N,(E,z) :NDO(z)#exp{

P

where N, is the concentration of donor states, G, is

_w} (59)
2c,

the energy width of the distribution, and E), is the donor
ionization energy in the maximum of the
distribution (59).

Analogous Gaussian distribution can be introduced
to describe acceptor density of states in the band gap
(e.g., when doping a-Si:H with boron atoms is made):

1 exp{_(E—EA)z

c 21 22
A

where N, is the concentration of acceptor states, o, —

N,(E,z)=N ,(2)

} ; (60)

energy width of the acceptor states distribution, and £, —
acceptor ionization energy in the maximum of the
distribution (60). N,, and N,, are constants in i(#)-
and p'-regions, respectively, and change to zero at
p—i(n)
junction, these changes have a step-like character, i.e.
N, and N, turn to zero exactly at z = d,. However, if

p' —i(n) junction. In the case of ideal

p' —i(n) junction is somewhat degraded (e.g., due to

diffusion of acceptors or/and donors after junction
formation, or due to pure technological reasons at

p' —i(n) junction growth) they become coordinate
dependent functions in a thin transition layer at z = d,,.
To account for possible p* —i(n) junction degradation,
we use the following coordinate dependent functions
N, and N,, in our subsequent calculations of band

bending:
PP S P e (61)
A0 5 G'A\/E >
and
n z—d
N, (z) ==2|1+erf L, 62
JREARESY o

where n, and np are the concentrations of acceptor and
donors far from degraded region in p'- and n- parts of
a-Si:H (if i-region is doped additionally by donors), &,
and o), are the width of degraded regions at p' —i(n)

junction for acceptors and donors, respectively, erf(z) is
the “error function”:

erf(z) = % [ exp(—*) dt . (63)

T
. ! !
Atdistances |z—d, [20), 5,

exp
6,N2n 26,
(64)
- E-E,)
N (E,2) = N (B) =—M_exp| ¢ ;) . (65)
o 27 20,
Fig 2 demonstrates introduced coordinate

dependences (61) and (62) of acceptor and donor

concentrations N, and N, in thin transition

technological layer at p* —i(n) junction.

Finally, to write the charge balance equation, from
which the Fermi energy Er can be found, we have to
connect correctly (i.e. smoothly and continuously)
conduction and valence band-tail densities of states with
the densities of free electron and hole states in
conduction and valence bands, respectively. Conduction
band density of states is expressed in a-Si:H as

N.(E)=N, (E-E,)", (66)
where
1 2m 3/2
N‘ = G =
c0 27_[2 ( h2 j
(67)

3/2
- 6.791-10 {ﬂj em™ eV 2,

my

Analogously, the valence band density of states is
expressed as

N,(E)=N,, (-E)"*, (68)

where N , like to N, , is expressed by the formula

(67) with the only difference that instead of electron
effective mass m, hole effective mass mj;, has to be
substituted to this formula, m is the free electron mass.

To connect densities of states in conduction and
valence bands (66) and (68) with band-tail densities of
states (48) and (47), we have to find energies, at which
smooth and continuous relation can be made. At these
energies

N.(E)= N, (B), (69)

N, _ Ny (70)
dE  dE

N(E)= N, (B), (1)
av, _ N, (72)
dE dE

Like to that in the work [4], from the system of the
equations (69) and (70) the corresponding energy
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E =E, +E,/2

coincides with the energy of conduction band bottom.

can be found, which practically

The energy E, =—FE /2, practically coinciding with
the valence band apex, is analogous to the energy in the
equations (71) and (72).

To satisfy Eqs. (69)-(72) for physically correct
values 10?'...102cm eV ™" of the band-tail densities of
states N, and N, , it turns out that larger effective
masses of electrons and holes has to be used, than m,
close to my and m, =05m, presented in many
publications on a-Si:H material. We have used in our
work the values m, =2.78m, and m, =2.34m, from
the recent publication [7]. It is these effective masses

that  the N, =2.1x10*"cm eV

N,, =2.2x10"ecm eV correspond to.

values and

In Fig. 3, the calculated densities of states in the
band gap are shown, which are continuously and
smoothly related with the densities of free charge states
in conduction and valence bands.

The concentration 7n. of free electrons in the
conduction band for the Fermi level lying inside the
band gap is expressed as

where v, is the effective density of states at the
conduction band bottom

E,-E,
kT

n(E.,T)=v, exp{ (73)

2 kT 3/2 3/2 T 3/2
R ~2510° | 2| | ——] om”.
i 2n m, 300K
(74)
As to free holes in the valence band, their

concentration is expressed by the analogous formula:

E
E..T)=v exp| ——L% |, 75
A - N
where
32 32 32
szi m, kT ~25.10°| M T cm™ .
w 2n m, 300K

(76)
Now it is possible to write the charge balance
equation:
E, ~
n B+ | N NE) & (B EpT)
o 1+2exp[(E-E,)/kT]
E 7 ~
f N(ET E E,E,.,T
:nV(EF’T)_"_" Nvt( B )+ND( )+gD( EL, )dE
1+2exp[(E, — E)/ kT]

0

>

(77)

where in the left hand side of the equation the negative
charge of free electrons in conduction band and of

electrons captured by acceptor and acceptor-like states
inside band gap is written, while in the right hand side —
the positive charge of free holes in the valence band and
holes captured by donor and donor-like states. The
degeneracy coefficient 2 at the exponents in the
denominators of integrand expression accounts for right
statistics of the localized band gap states.

To calculate Fermi levels in p - and i(n)-regions of
a-Si:H layer at 7= 300 K, it is necessary to determine
previously from Eq.(77) the Fermi levels at the
equilibrium temperature 7* = 500 K to find the “frozen-
in” densities of states of dangling bond defects
g,(E,E.,T*) and g,(E,E,,T*), and then again solve
Eq.(77) at T= 300K, but with g, (E,E,,T*) and
g,(E,E,.,T*) densities instead of g, (E,E,,T) and
g, (E,E.,T). The value of Fermi energy 1.05eV has

been found from Eq. (77) both at 7= 300 K and 7T*=
500 K in intrinsic a-Si:H, when no special doping is
made. In doped a-Si:H, the values of Fermi energy at
T= 300K and 7*= 500K can differ remarkably,
depending on the doping level n, (np).

6. Band bending in space charge region at p'-i(n)
junction in a-Si:H layer

After calculating the Fermi levels E; and E;” in
equilibrium conditions in p- and i(n)-regions of a-Si:H
layer, respectively, we can determine the total band
bending y,, (see Eq. 25) at p" —i(n) junction:

Vo = (E)" —E!)/ KT . (78)

To find the shape of band bending y(z) in SCR in
equilibrium conditions (when irradiation is absent) the
corresponding Poisson equation has to be solved for the
electrostatic potential. Rewritten in the form of equation
for y(x) this equation takes up the following form
(Gaussian CGS system of units is used):

d’y 4ne’
& ar

in) _ i(n)
F F

L &4 g _ _
e n} v, exp{ -

e -y(z, T)} +

dE},

(79)

X3V, exp{

N, (E)+N(E,2)+g,(E,E\" +kT y(z,T),T)
1+2exp[(E—E™)/ kT - y(z,T)]
N, (E,T)+N,(E,2)+g,(E,E" +kT y(z,T),T)
1+2exp[(EL" — E)/ kT + y(z,T)]

E,
+]
0

f
0

where ¢ is static dielectric permittivity of a-Si:H
material. A solution of this equation has to satisfy two
boundary conditions. At SCR boundary in i(n)-region of
a-Si:H, it has tend to zero, while at another SCR
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boundary in p'-region to ~Y,, - To solve numerically

Eq.(79) and to determine the position of SCR
boundaries, we consider p'- and i(n)-regions of a-Si:H
as being thick enough not to account for the influence of
other junctions. Then, by calculating y(z,7) it becomes
convenient to use new coordinate z' =z — d, . In the new
coordinate system starting points z" for Eq.(79)
numerical solution have to be located in the vicinity of
z'=0. These starting points can differ from z'=0 due
to account of possible p* —i(n) junction degradation
(see Fig. 2). By numerical solution of Eq. (79), it is
necessary to assign starting values to y and dy/dz' at
z'=z". Value y(z",T) is directly and unambiguously
determined from the right-hand side of Eq. (79):
y(z",T) is the value, at which right-hand side of
Eq. (79) (i.e. local charge) turns to zero. Concerning the
derivative dy/dz' at the starting point z" and the
starting point z' itself, they are considered as
parameters, allowing to satisfy above mentioned
boundary conditions at SCR boundaries. By change of
z", the starting value of the derivative (dy/dz’), at this

"

point for Eq.(79) numerical solution in i(n)-region
(z'>0), and starting value of the derivative (dy/dz')_
for Eq. (79) numerical solution in p"-region (z' <0), we
find such point z", for which not only both boundary
conditions at SCR boundary are satisfied, but the
difference (dy/dz"), —(dy/dz")_ tends to zero, too, i.e.
smooth and continuous band bending is achieved at
p’ —i(n) junction. The equality (dy/dz"), =(dy/dz')
at z'=z" expresses the condition of total neutrality of
SCR, i.e. that a positive charge in the SCR at z' > z" is
completely compensated by a negative charge at z' <z" .

Cutting off the tail of the calculated y(z)-
dependence in i(n)-region, which is smaller by its
absolute value than unity (i.e. cutting off the physically
unresonable potential energies |ep | <kT ), we find thus

the physical thickness z, of the SCR in i(n)-part of
a-Si:H . Analogously, cutting off the physically
unresonable tail of the calculated y(z)-dependence in p'-
region, which differs from -y, by the value less than

unity, we find the physical thickness z, of the SCR in p-
part of a-Si:H .

Analogously to the Fermi energy calculation, to
obtain the band bending y(z',7) at T<T* it is

necessary first to calculate band bending y(z',T*) by
solving the differential equation (79) at the equilibrium
temperature 7" = 500K . Thus, the local distributions of

dangling bond defects g, (E,E\"" +kT" y(z',T"),T")
and g, (E,E"" +kT" y(z,T"),T") for every local
E" kT y(z',T")

relatively to the valence band apex can be determined at

position of the Fermi Ievel

every point z' of SCR. These “frozen-in” distributions
have to be substituted into Eq.(79) instead of
g (E,E'” +kT y(z',T),T)
g, (E,E}" +kT y(z',T),T) by subsequent calculation
of band bending y(z',T) at T< T*.

Fig. 4 demonstrates the calculated band bending in
a-Si:H for several types of doping.

Figs. 5 and 6 demonstrate the calculated bending of
conduction band (upper curves) and valence band (lower
curves) at p" —i(n) junction in a-Si:H for material with
the band gap E,= 1.75 eV (10% hydrogen content).

With the found band bending shape y(z) and
determined thicknesses z, of SCR in i(n)-region and z, in
p-region, all the integrals in Egs. (28) and (45) can be
easily calculated.

and

10 - _— T 1.0
08 - —\ {08
| \ Q
\ <
& 06 \ 106 =
~ i \ o
~ \ =]
& 04 | 104
~ - \
=
02 - {02
s / .\\,J .
-1.0 -0.5 0.0 0.5 1.0

(z-d,) (c/N2)
Fig. 2. Used model of degraded p*-i(n) junction in a-Si:H.
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Fig. 3. Density of states in a-Si:H for various positions of the
Fermi level in the case of a-Si:H material with the band gap
1.9 eV. Common parameters for all the curves: £,y = 45 meV,
Nyo= 2x 10" cm~eV™!. Dashed vertical lines mark the
valence band apex (left line) and the conduction band bottom
(right line). Vertical arrows at energies 0.8, 1.05 and 1.3 eV
mark three different positions of the Fermi level, for which
calculations have been fulfilled. Dots show the density of states
in the band gap, which has been calculated in [2] for the Fermi
energy position at 1.3 eV. Parameters of the curve /:
Ex=0.8 ¢V, E.0=30meV, N,o= 3 x 102 cm~eV™'; curve 2:
Er=1.05¢eV, E.o=25meV, N.o=2 x 10 cm>eV™'; curve 3:
Er=13¢eV, E0=30meV, N,= 3 x 102 cm~eV™'; curve 4:
Er=13¢eV, E,o=25meV, No=2x 10 cm>eV™.
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Fig. 4. Calculated shapes of band bending at 7= 300 K at
p"—i(n) junction in a-Si:H. Parameters of acceptor and donor
distributions: E,= 0.2eV, o,= 0.1eV, ¢',=05nm, Ep=

03eV, op=0.1¢V, o, =0.5nm. Curve I: n,= 107cm,

1 — 1 —
np=0; curve 2: ny= 10 8 em 3, np=0; curve 3: ny= 10 % cm 3,

1 — 1 —
np=0; curve 4: ny= 10 % cm 3, np=10 Tem,

2.5
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Fig. 5. Calculated conduction (C) and valence (V) band
bending at p" —i(n) junction in a-Si:H at T=300K and 7=
500 K. Parameters of acceptor distribution in p-region: E,=
02eV,0,=0.1¢V, 6, =0.5nm, ny= 107 ¢cm™. No doping

of i-region is made, np=0.
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Fig. 6. Same as in Fig. 5, but for doping level of p-region
ny= 10" em>.

7. Light transmission and reflection in the SC
structure

As known from -electrodynamics, for electric and
magnetic field strengths E, and H; in the

monochromatic electromagnetic waves, spreading in the
material with the index j (j=1..5, see Fig. 1), the

following wave equations can be written:

2

o
VE, +56, (), =0, (80)
0)2
2 —
ViH 4 (), =0 (81)
where € (0)=¢\(®)+ig(®) is the dielectric

permittivity of the j-material, €' (®) and £’ (®) are real
and imaginary parts of the permittivity, ¢ is the light
velocity in vacuum, © is the frequency, ® =2nc/A,
where A is the wavelength. For the incident onto SC
irradiation is a package of monochromatic plane waves,
the solutions of Eqgs. (80) and (81) inside SC can be
represented as plane waves, too:

E, =E, exp(ik[r)+ E, exp(ik;r),
H, = H, exp(ik;r)+ H, exp(ik;r),

(82)
(83)

where k77 are the wave vectors, squares of which are

expressed as
2
+(— [ ! .
[kj( )]2 = C_Z[Sj ((D) +18j (0))] . (84)

As it follows from the boundary conditions at front
surface and interfaces inside the structure, in a general
case of oblique incidence of monochromatic
electromagnetic plane waves onto the front surface of
SC, the x-component of the wave vectors (in the plane of
incidence) for all electromagnetic waves in all SC layers
has to be the same as that in vacuum (air), i.e.
ki =k, =(o/c)sin®, where 0 is the angle of

incidence (angle between directions of SC growth and
electromagnetic wave propagation in vacuum). Thus, for
z-components of electromagnetic waves in the structure
the following expression is valid:

K =%k, (85)

where

®
kz,.f _\/ c

o .
;[”z (@,0)+ix_; (03,9)},

2
n, ;(0,0)=

|

2 2

|:8; (0) +ig’ (0)):| —(D—zsin2 0=
' ' ¢ (86)

JEe) @) —sin” 0] +&7 (@) +[¢ (@) ~sin’6] 87
2 b
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K. (0),6) =

_ &' (o)
2 {\/ [e) (o) - sin®0]% + 8’;2 (w) +[¢" (o) - sin’ 9]} '
(8%)

Two methods exist to calculate light reflection and
transmission in the structure. Both give the same result
in the case of ideal homogeneous surfaces and interfaces
in the structure. In the first method, multiple reflections
of the light at surfaces (interfaces) aren’t considered
explicitly; i.e. amplitudes of all reflected and transmitted
waves are supposed to be already included in the
amplitudes at the exponents in Egs. (82) and (83). In the
second method, multiple light reflection and
transmission at each surface (interface) in the structure
are considered explicitly and total reflection
(transmission) of the light is calculated as a result of

summation of all the components of reflected
(transmitted) light.
To calculate transmission and reflection

coefficients, entering Eq. (11) for generation function, it
is convenient to shift coordinate origin z = 0 to the front
surface of SC, i.e. to surface air/SiO, (see Fig. ).
Reflection and transmission for two independent
polarizations of incident light are calculated below. In s-
polarization, the electric field in electromagnetic waves
is parallel to the SC surface (i.e. only y-components of
the electric field are present in s-polarized
electromagnetic waves), while in p-polarization the
magnetic field is parallel to the SC surface (i.e. only y-
components of the magnetic field are present in p-
polarized electromagnetic waves).

7.1. First method for calculation of light reflection
(transmission) coefficients

The first method is the well-known Mueller matrix
method. The following general expressions for the
electric and magnetic fields £, and H, can be written in
this case in accordance with the formulae (82), (83) and
Maxwell equation VxE =—(1/c)dH /dt (Gaussian

CGS system of wunits is used) for s-polarized
electromagnetic waves in materials 1 to 4 (see Fig. 1):

E , =E’ explik x +ik, z—iot]+

»l .1 W1 (89)
+Ey”l explik x— ikz’lz —iot],
E , =E], explik x+ik, ,z—iot]+

.2 .2 2 (90)
+Ey”2 explik x— ikz’zz —iot],
Ey’3 = E;3 explik x + ikz’3 (z—d,)—int]+ o)
+E explik x —ik_;(z—d,) - iot],
E , = E;A explik x +ik,,(z—d, —d,)—iot], (92)
H_,=-N_E explik x+ik, z—iot]+

W1 z,17y1 W1 (93)

+N_,E,, explik x —ik_,z —iot],

H ,=-N_,E, explik x+ik_,z—iot]+
+N_,E , explik x—ik_,z-iot],
HX,3 = _NZ,SE;S exp[ikxx + ik:,_’, (Z - dz) - Z(Dt] +

(95)
+N_,E , explik x —ik_,(z~d,) —iot],

H ,=-N_,E , explikx+ik_,(z—d,~d,)~iot], (96)

where d, =dg_,

N. =0k /c.

We didn’t account for the light propagating in
negative z-direction in expressions (92) and (96),
because multiple internal reflections from rear contact
are already accounted in the generation function (11)
inside a-Si:H layer. Actually, electromagnetic field
presentation in the form of (89)-(96) allows to find the
intensity  /; (%) 11, ,(2)

vacuum into infinitely thick a-Si:H material (/;(A) is

d, =d, (see Fig. 1),

of light transmitted from

the intensity of incident s-polarized light). In the case of
finite thickness of a-Si:H layer, I;(%)7°,,(A) can be
considered as the “first-order” light component
generating a series of higher order light components in
a-Si:H due to multiple internal light reflections at
a-Si:H boundaries. Sum of all these components gives
the total intensity of the light in a-Si:H layer in the
expression (11) for the generation function.
From the system of boundary conditions

E| =E| ,H| =H,| (97)

for tangential components of electric and magnetic
fields at each surface (interface) in the SC structure
(signs + and — are introduced here to denote two sides of
the same interface) the following relation between

amplitudes E'

'1» E,, invacuumand E], in a-Si:H can

be written:
=g M (98)
0 E
where the coefficient 4, is expressed as
As+ =1/ (t4S3 tssz tzsl) (99)
and matrix M’" as
]ﬁﬁ :|:]\/[13i+ M1;+:|:
My MY
[exp@ikady) ri] [expikody) i [ 1 n
1 oy 1] 1]
(100)

The reflection and transmission amplitudes 7’ (r;;)

and 7; (¢;) relate the amplitudes of reflected £, ( E’)
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and transmitted Eyfj(Eyj,.) waves with the amplitude

E’ (E, ;) of the incident s-polarized wave in a
hypothetic case of wave incidence from semi-infinite
i(j)-material onto the interface with semi-infinite j(i)-
material, but for the waves written in the form used in
the formulae (89)—(92). In other words, the following
explicit expressions for the waves in 1 to 4 materials are
used by calculating 7, (r;) and ¢/ (¢;) coefficients
(Fig. 7):

E\, = E exp(ik x +ik_z—iot),

, (101)

E' =E , exp(ik x ik, z —iot);
E;. =E, explik x+ik_,z—iot),

o - (102)
E; =E , exp(ik x ik ,z—iot);
E; =E] explik x +ik_,(z—d,)—iot],

3 .3 3 2 (103)
E; =E ;explik x—ik  (z—d,)—iot];
E; =E, explik x+ik_,(z—d,—d,)—iot],

4' v.4 z,4 2 3 (104)
E; =E ,explik x—ik_,(z—d,-d,)-iot];
H' =-N_,E’ explik x+ik,  z—iot],

1 B A .1 (105)
H;' =N_E  explik x ik, z~iot];
H; =-N_,E , exp(ik x+ik_,z—iot),

2 27,2 2 (106)
H; =N_,E , exp(ik x —ik, ,z —iot);
H, =-N_,E  explik x+ik_,(z—d,)—iot],

3' 373 3 2 (107)
H; =N_,E ;explik.x ik ,(z~d,)~iot];
H; =-N_,E , explik x+ik_,(z—d, —d,)—iot],

4 A4 y4 4 2 3 (108)

H} =N_,E ,explik x—ik_,(z—d,-d,)-iot].

From (101)-(108) and boundary conditions at the
interfaces (97), the following explicit expressions for the

reflection and transmission amplitudes 7’ (r;) and

t; (1) can be obtained:

E), H E! H
i-material
j-material
X 1
5 5 5 5
E H; E,H},

4

Fig. 7. Scheme of electromagnetic wave reflection and
transmission by calculating the amplitude coefficients r; (r;i)

and £;(t};) .

rs :@: Nz,l _NZ,Z
. Ey+l Nzl +N22 ’
: S (109)
rs :&: Nz,2 _Nz,l .
“ EytZ Nz,l + Nz,2
ts :E‘LJTZ :&
. Ey+l Nzl +Nz 2 ’
: e (110)
E, 2N,
ly=——= - >
Ey,2 Nz,l + Nz,2
E, N_,-N.
ryy =2t =223 exp(2ik_,d,),
E’, N_,+N._, -
Y, Z, Zs
” (111)
rs _ Ey,3 _ Nz,3 _Nz,2 .
32 7 - b
Ey,3 Nz,2 +Nz,3
E}' 2N
=22 =22 _exp(ik. ,d,),
23 E;z NN, p( 22 )
’ 2o (112)
té EyTZ 2N23 (k d )
n = oo = ¢&Xplik, ,4a,);
Ey,3 Nz,2 +Nz,3
E. N._,-N
o=t 2 D T ik d),
Ey3 Nz_’, +Nz4 '
: S (113)
rs — Ey,4 — Nz,4 _Nz,3 .
® Eyt4 Nz,_’, +Nz,4
E' 2N
=2 = T2 exp(ik. . d,),
Y E, N,+N_, (k)
’ ’ ’ (114)
ts Eyj_’, 2Nz4 (k d )
=—==—""—exp(ik_,d,);
® Ey,4 Nz,_’, +Nz,4 >

With the formally introduced virtual thickness
d; =0, the expressions (109)-(114) can be rewritten in
the following more compact form:

! E ~ N..—-N_.
P =t = ————exp(2ik. d,),
TE NN )
+" h N (115)
= E _ Nejn = Ney |
.A+l’.A - >
A Ey,_m N zj +N, 2.+
E" 2N_ .
18 =2 2L exp(ik. d.),
Joj+l E;; sz+Nz . p( z,J _/)
N N h (116)
(o = =k d,)
Ey,_f+1 N zj +N, z.j+1
With the calculated matrix elements

M5 M, M and M of the matrix M °* in (98), it
is easy to determine the transmission coefficient 7,°,,
in the generation function (11):
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: S’y
I, =Re| - |=
z,1

e : (17
As+ M11 M22 _'{‘412 le Re Nz,4 )
M;; v

*

where S, =c[E, xH,

"1, /8n=E],-(H') ¢/8n is
z-component of the energy flux (Poynting vector) in the
transmitted s-polarized electromagnetic wave in a-Si:H
material at the interface (z = dytds),
S:=E -(H/) c/8n is z-component of the energy
flux in the incident s-polarized electromagnetic wave in
vacuum (air). We use here and in the following

expressions  like to  Re(S_,/S. ;) instead of
Re(S.,)/Re(S. ;)

Re(S_,/S. ;) turns out to be more adequate in the case

written in handbooks, because

of absorbing materials. It becomes especially clear if
wave transmission and reflection for the wave incidence
from absorbing material onto the interface with other
material (even non-absorbing) is considered. The energy
conservation equality R+7 =1 (where R is the wave
reflection coefficient and 7 1is the transmission
coefficient) is not fulfilled in this case, if expressions

like to Re(S.;)/Re(S, ;) are used, while no such

problems arise with expressions like to Re(S_; /S_ ;).

Analogous consideration can be made for p-
polarized waves and the following connection similar to

(98) can be written for the amplitudes H,, H,, in

vacuum and H, in a-Si:H :

H;A -4 MNP H;l )
0 " Hytl

Expressions for the coefficient 4, , matrix M,

(118)

reflection and transmission amplitudes 7" (r;”) and

i
50,
analogous to those written above for the s-polarized
wave, with the only difference that the Maxwell
equation Vx H =(g/c)dE / dt has to be used to express

coefficient 7%

transmission =

and , are

E.-components of the electric field in p-polarized waves
via H,-components of magnetic field, and thus,

N,’j =—N, /¢, has to be substituted everywhere in the

formulae (109)-(117) instead of N_, .

To calculate in this approach the reflection

. s
coefficient R, ,, ,

the electromagnetic field in vacuum
should be written in a form that corresponds to a
transmitted wave, while in a-Si:H material in the form
of incident and reflected waves, i.e. instead of (89) and
(93) the following expressions have to be used:

E , =E  explikx-ik,  z—-iot], (119)

Vs

H , =N_,E  explik x—ik,,z—iot], (120)

while instead of (92) and (96)

E,,=E explikx+ik. (z-d,—d,)—iot]+ 121
+E, explik x—ik_,(z-d, —d;)—iot]

and
H ,=-N_, E, explik x +ik.,(z~d, —d;,)—iot]+
+N_, E  explik x—ik ,(z—d, - d,)—iot],

(122)

correspondingly. Then the following equation relating
amplitudes of electric fields in vacuum and in a-Si:H
can be obtained:

E’ | E,
M= ML (123)
0 E,
where the coefficient A _ is expressed as

A =1/t 015) (124)

and the matrix M’ as

ﬁs:|:Mlb{ M1;:|:|:
My | |-

M,
| expQikdy) ) |1
-1, exp(ik_,dy) 1 - 1

43

exp(Zikz,zdz) -7 «
1 exp(2ik_,d,) 1

(125)
The reflection coefficient R, can be expressed
as:
Ss+ s—|?
R, =R«{ HM— , (126)
Sia) My

*

where S, =c[E, xH,

L1, /8m=E, -(H ) c/8n is
z-component of the energy flux (Poynting vector) in the
reflected s-polarized electromagnetic wave in a-Si:H
material at the interface (z = dytd;),
S, =dE;,_xH] /8n=E ,-(H ) c/8n is z
component of the energy flux in the incident s-polarized
electromagnetic wave in a-Si:H material at z = d)+d;.
An analogous expression can be obtained for the

reflection coefficient R/

+,; in the case of p-polarized

electromagnetic waves by using Nz’j =-N,, /¢,
instead of N_, in (125), (126) and other related
formulae.

The reflection coefficients R ;) in (11) for the

electromagnetic wave reflection from rear contact (j = 5)
can be expressed as

2
s(p) — |,.5(p)
RyDs =|rs >

(127)

where
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s Nz,4 - NZ,S
Tas =
Nz,4 + NZ,S

P = (N.,/e,)—(N.5/€5)
PN, e )+ (N ey

>

(128)

7.2. Second method for calculation of R}”) and T,*%’

41

coefficients

Multiple light reflection and transmission at each surface
(interface) in the structure are considered explicitly in
this approach, and total reflection (transmission) of light
is calculated as a result of summation performed for all
the components of reflected (transmitted) light. In
approximation of homogeneous front surface of solar

cells, the reflection and transmission coefficients R

41
and T°®

4 calculated by this method coincide with
those obtained by the Mueller matrix method. In the case
of non-homogeneous surface, the second method (or,
equivalently, “multiple light reflection method”)
becomes more preferable. For oblique irradiation
incidence (0>0), the method allows to account for
partial metallization of front surface by finger electrodes
more exactly, than it is made by introduction of simple
shadowing coefficient (1-m) in the generation

function (11). To calculate R;” and T'% by the

41
multiple light reflection method, let us first simplify the
physical picture of light reflection and transmission in
the “vacuum — SiO, layer — ITO” system (see Fig. 8).

Denote by 737, r”, 57" 37 the amplitudes

3 > 31
of reflection and transmission in the “vacuum — top SiO,
layer — ITO” structure considering ITO as semi-infinite
medium. These coefficients relate the amplitudes of
electric fields (in s-polarized waves) and magnetic fields
(in p-polarized waves) in reflected and transmitted
waves with the corresponding amplitudes in the incident
waves as shown in Fig. 8. It is easy to obtain from
consideration similar to described in the section 6.1 (or
by summing the amplitudes of multiple reflected and
transmitted waves) the following explicit expressions for
these amplitude coefficients:

r t-
Jj=1 A B A Vacuum
; Vv
j=2 d, SiO,
i3 731 "3m
j=3 d ITO
j=4

Fig. 8. Scheme of light reflection and transmission in the
“vacuum — SiO, layer — ITO” structure for determining the

effective amplitudes 1% 7, #3, #3; used in our subsequent
“multiple light reflection method” calculations.

s(p) s(p)
ATRE P

s(p)
ry = ; ;
1_1_,,132(17) _r;S(p) ?
(129)
t s(p) | t s(p)
PR 12 23 .
13 - ¢ ¢
1_,’_’,132(17) _r;S(p) ’
s(p) s(p) ;
5 Iy Iy exp(ZZkz,zdz)
31 - . -
1+ rlsz(p) _rsz(p) ?
(130)
tS(p) ‘IS(p)
s(p) _ 21 32 .
3 s(p) ,.s(p) °
1+r3" 1)
where amplitude coefficients
FiysFas st sloy Vo s Fay sty 515, are expressed by the

formulae (115), (116), the coefficients r;’, 7 can be
obtained

N

2

from R by

Y i
-N. i /€, instead of N

z,j (i)

substituting

in (115), (116).

After finding the coefficients )", ", ;"

£51”, the equivalent scheme for calculations by using

the “multiple light reflections method” in the “vacuum-—
a-Si:H ” structure can be reduced to that shown in Fig. 9
(polarization indices s and p are omitted in the figure and
some following formulae to make them more compact).
Let L, be the width of finger electrodes at front

surface of solar cell (see Fig. 10). Then the distance
between edges of adjacent finger electrodes in front
surface of SC can be expressed as L=L.(1-m)/m,

where m is the degree of the surface metallization by
finger electrodes. In the case of oblique incidence of
irradiation onto SC with finger electrodes on the front
surface, the light transmission 7;_, into active a-Si:H

1—>4
region becomes dependent not only on the angle of
incidence O (see Fig. 9), but on the angle y between the
direction along fingers and the projection of light
incidence direction onto the surface (dashed line in
Fig. 10), too.

As it follows from Fig. 10, the distance between the
edges of adjacent electrodes along the in-plane
projection of the direction of light incidence (dashed

line) is L = L/sin(y) and the width of shadowed finger

this ZF =L, /sin(y),
respectively. The scheme in Fig. 9 corresponds to a
cross-section of the SC structure by the plane of light
incidence. Thus, the distances between the edges of the
shadowed finger regions in Fig. 9 and the width of these

regions in direction is

regions are just L and ZF , respectively. x-component of
ITO-layer (j=3) is
k., =k, =(o/c)sin® , while real part of z-component

the wave vector in

of the wave vector is k_, =(o/c)n_;(®,0), where
n.,(e,0) is expressed by the formula (87). Thus, for a

tangent of wave propagation angle 0, in ITO-layer (see
Fig. 9) the following formula is valid:
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sin(0)
n,(»,0)
The optical path x, along front surface between two
subsequent reflections from this surface of the ray
reflected from “a-Si:H —ITO” interface (see Fig. 9) can
be expressed as

x, =2d, tan(0,) .

(131)

kx 3
tan(0,) = ¢ =
z,3

(132)

Thus, within the distance ZF the multiply reflected
(from a-Si:H -ITO interface) ray undergoes

N, =integer(ZF/xd)+l (133)

or N, -1 internal reflections from a metallic finger
(depending on the position of ray incidence on SC
surface). Let J; be a number of x intervals within the

distance L between fingers:

J, =integer(i/xd). (134)

Let also x =0 be set at the left edge of the right
metallic finger in Fig. 9. Then, rays incident from
vacuum onto the SC surface within intervals

—jx, <x<-—jx,+A, (135)

0

| ! X
j=1 Vacuum Vr,_? E 13 E / 3 z

j=4 a-Si:H

Fig. 9. Equivalent scheme of multiple light reflections and
transmissions in the “vacuum- a-Si:H” structure for
determining the transmission amplitude ¢,_,4, and transmission
coefficient 7_,4.

LLF

Fig. 10. Schematic view of front surface with finger electrodes
(shadowed areas). By dashed line the intersection of the plane
of light incidence with front surface is shown.

and

where  j=1,2,..J, A=L,-(N,

undergo N, internal reflections from the right metallic

- x, <x,

finger in Fig. 9 and N, or N, -1 internal reflections

from each subsequent finger. However, for the higher
order reflections from subsequent fingers really give
small contributions to the partial transmission amplitude

t,,.(j,1) of the rays incident in the intervals (135), we
consider such rays as being reflected N, times from

each subsequent finger in the structure to facilitate
analytical calculations. Then, partial transmission

amplitudes ¢, ,,(j,1) can be written explicitly (see

Fig. 9) in the following form:

hoa (s =ty {1+rz431 (3431) +..+(n ’31)’j71+

O34 [t O, Y 4 (3an,) ™ ]+
(1) (13, ) Y [ty + (i ot G, ) ]+
) ) [t (5, ot (5, ) ]+

+(’34’31) (z4zm) |:z431+(z431) +.. +( ;1)’j:|+~~}:

tl 3 t%4

(34 31) (34 Zm)NF

1-

{ ) e ()
l=r,n,

t.t (rur,)™ 1-(r,n,)""
_ 13734 {1_1_ 34 31 T 3473 ’%4(7%,,,_7‘;1) .
Clengy |-G ()Y 1ons,
(136)
Rays incident in the intervals
—jx, +A <x<-(j-Dx,, (137)

undergo N, —1 internal reflections from the right
internal

reflections from each subsequent finger, so that
analogous approximate formula can be written for partial

metallic finger in Fig. 9 and N, -1 or N,

transmission amplitudes ¢, ,,(/,2) of such rays:

hu(, D)~

Rty { Lr,n +(
(55 [ B
055 3, ) [ty + O ot G Y
) ) [+, ) o ()

+(r, 31)11(’"’” ) l)|: 1y + (5 31) +oH(r, 31):| }:

B et )+

+(5,) + 4,

_ laby
1=(3) (,)
1 (}" 7 ) 1—(}" rm)NF i
{ 1- S (ry 31)] : (ryrs 3m)¢ — () l(’fw’@m)NF :
) 1=r,p,

(138)
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The transmission amplitude ¢, ,, can be expressed

as the average of the partial amplitudes (136) and (138)
over the distance J, x, :

% |:t1»4 DA+, 2) (x, — A):|

j=1
fo, = =
1—>4
J.x,
_ il LTI 1=(rr,)"" oty 1 y
l=rn 1 I=ryn, 1-nm J,

e (3431)
§ _ 139
{,211—( 5 Gsaran) } =

Np-1
B 1 {NF—L jt13t34(34 ) LX

Xa 1=ryn, Ji

y & (3431) 1-(n, 31)j
{721 1-(r, 31)'(343 ) 1= (ryry,)’ (34 3m)NFl}

In the case of homogeneous front surface
(7, =1, ), we have from expression (139)
o _ "5
15 R (140)
—hy Tl

which coincides with the result of Mueller matrix
method. For computer calculations, the formula (139)
can be directly used. However, it is possible to obtain an

analytical expression for transmission amplitude ¢

14
that gives practically the same result under numerical
calculations. To do this, only lowest order multiple
internal reflections of the ray from finger electrodes
(actually, reflections from the first finger electrode
adjacent to the considered interval of light incidence
—-J,x, <x<0) are accounted. After the first electrode,

all the
considered as those with the reflection amplitude #,

internal reflections from front surface are
only. In this approximation, we have instead of (136)
and (138) the following expressions:

t,( )=

ztl3t34{l+r34 r, +(r, 31) +.ot (s, )

)™ [, + 0, et () ]

() () [rar + () +.] =

1- (3431) -1 1- (343m)
1=ryn, + )™ i) 1-nyn,
NG 7)) ()

1=ryn,

(141)
and

{2~
St Lm0, et () +
Hryr) [@@m +(ryh - m)NF—lJ +
4 3‘) (34 3m) |:34’31+(’§47§1)2 +...:|:

1—(r,n, )4 1-(r, rm)NF
431 +(3431)/l(343m) 2 -
1-r,r,

34731 34"3m
- t13t34 4

_( 31) (343m)NF+

respectively.

Calculating the sum in (139) with partial
amplitudes (141) and (142), the following analytical
expression can be obtained for the transmission

)t (T (142)

amplitude ¢

1>4 :
¢ ~ t13 t34 +
1-4 ~ 1

YT

-1 1—(r, 3m) {Ll_(’"ﬂ’ﬁl)'}_

+ 56, 15,(

1=ryn, J, 1=nyn,
Ji
_ b Th {N _L jtl3t34(34 3m) {Ll_(’aﬂgl) }
F )
B Xa 1=r,r, Joo 1=nr,

143
which also transforms into the result of Mueller nEatri)z
method for homogeneous front surface (7, =7, ).
coefficients for

and T”

1—>4

Transmission electromagnetic

energy fluxes 7° which enter into the

1—>4
expression (11) for the generation function, are
expressed using the above described method of multiple
light reflections as

. N, N
I, =Re E 194’ and T; 1»4 Re ‘t

where ]Vm =-N_,/¢;.

Similar consideration for the -electromagnetic
waves incident from a-Si:H material onto “vacuum-
ITO” structure allows to obtain the following expression

for the reflection amplitudes 7.

, (144)

(analog of the

expression (139) for the transmission amplitudes %) ):

1—-4 /7
- Ly Tl
Ty Ry 1 +
LT
v, =1y 1=, ) ta Tty 1
+3m 3 34"3m 43 731734
T3 I=ryr,  1=rr J,

o ( 31)j
< _ 145
{?1 (343»(343,”)“} )

-r L\t 1yt (rars, )V 1
_M£NF_ Fju 31534 (475 1.

Xa l_’"34’”31 Jy

1-(nyn)’ }
31) (34 Sm)NF :

Je o)
{7211 (3431)(343m)N 1- (
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s(p)

The approximate analytical expression for r,/’,

numerical values of which practically coincide with
those of the more exact expression (145), looks like

t, iyt
- 43 D1 l34
Vy) Rl +1 +
LYY

il 1y by 1y (1, — 1))

1- (’34’3m)NF {i 1- (”34’”31)J’ } _

l-nyn, J, 1-nyn,

1-r,r

r 34731

3 X4 J, l=nyn,
(146)
This expression is analogous to the expression

(143) for the transmission amplitude ¢, , .
Reflection coefficients for electromagnetic energy
fluxes R, which enter the expression (11) for the
generation function, are expressed in the method
described above for multiple light reflections as

R =| 0 [ (147)

41 4—1

In an extraordinary case of extremely oblique light
incidence (when J, probably can turn to zero), latter
J, -containing terms in the formulae (139), (143), (145),
(146) should be omitted. Thus, in this case reflection and
transmission become “homogeneous” (i.e. coinciding
with that of Mueller matrix method) like to that in the
cases of normal ray incidence or incidence along fingers.
The reason is that only rare high order 7, -terms can
possibly enter the total reflection and transmission sums
in this case, which practically cannot distort
“homogeneous” reflection and transmission, described
by first terms in the above formulae.

The reflection coefficients R;”) in (11) are given

45
by the formula (127).

7. Calculation of the angle 0 of sun rays incidence onto
SC and the angle y between the direction along fingers
and projection of the light incidence direction onto SC
surface as functions of time and SC local orientation

In a local coordinate system with z-axis directed along
the line from Earth center (i.e. perpendicularly to
horizontal Earth surface at the site, where SC is
mounted), x-axis directed strongly to west and y-axis to
south (Northern hemisphere is considered) orientation of
a unit vector e_ directed to Sun can be characterized by
the zenith angle O (altitude or elevation angle B ) and
azimuth angle ¢_, see Fig. 11. Time dependence of the
zenith angle O_ (or elevation angle J3,) can be expressed
by the following formula (see [8, 9]):

cos(0,) =sin(B,) =

= cos (o) cos(e) cos {?—n(t —%ﬂ +sin(a) sine), (148)

e

_ Ba T {N _ij Iy ’31’34(’34”3»«)NF {il_(’"ﬂr_ﬂy’ }
F .

where T, =24 hours is the nominal solar day duration, ¢
is the local daytime starting at midnight (0<7<T)), o is
latitude of a site where SC is mounted (0 < <90°), €
is the Earth’s declination angle, which, in its turn, is the

function of the day number 7(D) in a year
(1£T(D)<365),

2345° . T
g= T |sin| — 2n |=
[180" j [365 j
=0.40928-Sin(0.0172142-T):

= —0.40928-cos[ 0.0172142-(D+10) ].

In the formula (149), T is the day number starting
from March 22, while D is the day number starting from
January 1.

For each day in a year, sunrise and sunset times #
and #, can be determined from the condition cos(6,)=0:

(149)

T arccos|—tan(a) tan(e
L avccos|tan(@)tanGs) |
’ 2 27
Thus, maximal possible period Az of SC operation
in the day is determined by the difference ¢, —¢,:

(150)

. arccos[— tan(o) tan(e) |

e

At = (151)

T
If 0,T) is found from (148),
dependence of the azimuth angle ¢ (#,7) can be

the time

determined using the following formula [8, 9]:

cos(e)sin| 2n(1—1,/2)/T, |

sin(0,) (152)

cos(9,) = -

Let n, be unit vector characterizing SC orientation
in local coordinate system shown in Fig. 11 (n, is
directed along the normal to SC surface). For the
following calculations, we introduce new coordinate
system{X, ,Y ,Z }, connected with the solar cell and

characterized by unit vectors e_ (directed along the

X

highway in the site of SC mounting), e, (lying in the

SC plane and perpendicular to e, ) and e, =n, (see
Fig. 12).

Components of these unit vectors in the local
coordinate system shown in Fig. 10 are given by the
following formulae:

e, = {-sing,,, cos9,,0}, (153)
e, = {-cos6, cos¢p,,—cos6, sing, ,sinb,} (154)
e = { sin®, cosg,,sinb, singp,,,cosb, }. (155)

The unit vector e, in the local coordinate system

{X,Y,Z} shown in Fig. 10 has the components

e, ={sinB cosq,,sin6 sing ,cosd }. (156)
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Fig. 11. Local coordinate system and angles characterizing sun
and solar cell orientations in the local coordinate system.

Fig. 12. SC-based coordinate system formed by three unit
vectors e e

X 2 Y and ezm )

Using (155) and (156), we can find now the time
dependence 6(¢,7) of the angle of incidence of (direct)
solar rays onto SC surface at local geographical site and
for local SC orientation (reflection and transmission
coefficients, calculated in Sec. 6, depend just on this
angle):

Zn

e. -e =le ||e |cosb=cosO=
=sin0,, cosp, sinO_cosp, + (157)

+sin0  sin¢g, sinO_sing, +cosO, cosO_.

The daytime ¢ (¢, <¢; <t¢,) at which irradiation of
SC front surface by direct solar rays starts and the
daytime 7, (#; <t, <t,) at which the direct irradiation
falls to zero (and, respectively, period ¢, —# of SC

functioning in this day) can be found from the condition
cos9=0.

Let & be the angle characterizing orientation of
finger electrodes on SC front surface relatively to e,

direction (see Fig. 12). To determine the angle between
X, -axis and the plane of light incidence (or, in other

words, between X -axis and projection of light

propagation direction onto the SC surface), we consider
the vector product

v=[e xe]=|e |[e |sinb, e, =sin0 e (158)

Vi vm 2

where 6, is the angle between unit vectors e, and
e . Itis evident that both e, and e, vectors lie in the

plane of light incidence. For this reason, the vector v
and unit vector e, =v/v lie in the SC plane that is

normal to the plane of light incidence. Using
decomposition (155) of the unit vector e_ over the unit

vectors i,j,k (see Fig. 11) and analogous decomposition

(156) for the unit vector e, we have from (158)

v=vi+v j+vk=

=(sin®,, singp, cosO —cosO, sinO sin¢g )i+

+(cosO,, sin®_cosq, —sin0, cosep, cosO, ) j+

+(sin0,, cos¢,, sin0 singp, —sin0,, sing,, sin0, cosp, )k .
(159)

Thus,

. o 2 2 2
sind, =v=/v,+v, +Vv_ ,

where explicit expressions for the components v, v,

(160)

and v_ are written in the formula (159). Analogously,

for the unit vector e, =v/v the following formula is

valid

e,=e, ite, jt+e, k=

=(sin®,, singp,, cosO, —cosO, sinO, sine, )/sin0_ i +

+HcosO, sin®, cosp, —sinO, cosp,, cosO,)/sin0,, j +

+Hsin®,, cos,, sin0, sing, —sin®,, sin¢,, sind, cos,)/sin6,, k.

(161)

The angle ¢,, between e, and e, vectors lying

in the SC plane can be easily found from the well-known
formula for the scalar product of vectors:

e,-e =e,lle, |cos(p, )=cos(p, ). (162)
Using (153) and (161), we find that

cos((pvxm) =-sing, e, +cosQ, Cy s (163)

where explicit expressions for the components e and

vm,x

e, are written in the formula (161). As the vector e,

is perpendicular to the plane of light incidence, the angle
.. between the X -axis and projection of light
incidence direction onto the SC surface is expressed as
follows:

W :n/2—(pvxm . (164)
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The angle  between the direction along fingers
and the light incidence direction projection onto the SC
surface is expressed, respectively, as

ERT S (165)

The reflection and transmission coefficients
calculated in Sec. 6.2 by using the “multiple reflection
method” depend just on this angle.

9. Optical constants of materials in SC structure

Optical constants of materials in the structure can be
presented in the form of complex dielectric permittivity
e, (0)=¢ (o) +ie’ (o), or complex refractive index

Nj(oa):‘lsj(oa):nj(oa)+i1<j(o>). It is evident that
£)(0),e}(0) n;(©), k;(©)

relationse’ =n} —«; and &’ =2n x, exist. So, if we

between and values,

have data describing n,(®) and x;(®) dependences,
we can easily find €’ (©) and €’(®) dependences and

vice versa. In the cases, when the wavelength A is
argument of the optical constants instead of the
frequency o, the dependences ¢ ,(®) and N,(®) can be

easily obtained using the relationship o =2nc/A
between the photon frequency and wavelength or,
equivalently, %o =2mnhc/A between the photon energy
Ao and wavelength. The latter relationship can be
rewritten in the well-known numerical form
Ao =1.239842 /). =1.24 /% for the case of energy %o
expressed in electronvolts and the wavelength A
expressed in micrometers.

9.1. Dielectric permittivity of the top SiO, layer

We have used for fused SiO, material permittivity
Sellmeier analytic function from the work [10]:

0.61497 1.*

S0, (1) =1.4923 45— o

~0.01059 2.2,  (166)

where the wavelength X is expressed in micrometers. As
noted in [10], this analytical formula gives very precise
values of the SiO, permittivity in the energy range below

5.8eV, practically coinciding with  tabulated
experimental values in Palic’s handbook [11].

9.2. Refraction index of the indium tin oxide (ITO) layer

Data of the work [12] for real (n) and imaginary (k) parts
of ITO refraction index have been used. Wavelength
dependences of n and k in ITO in the actual wavelength
range are shown in Fig. 13. Points represent data of the
work [12], solid curves are splines constructed and used
in our program.

9.3. Permittivity of the a-Si:H layer

Data of the work [13] for real and imaginary parts of
a-Si:H material permittivity have been used. Energy

dependences of ¢ and €” in the actual energy range
(plotted on the base of these data) are shown in Fig. 14
(for comparison, filled squares for &' (E) -dependence at
[H] =0 are the data of the work [13]). As it clear from
the figure, permittivity in this case depends on the
hydrogen content [H], too. For this reason, in our
program two-dimensional splines (i.e. on energy and
hydrogen content) based on the data of the work [13]
have been constructed and used for numerical
calculations. The absorption coefficient o, of a-Si:H
material in the generation function (11) is expressed as
a, =2x_,(0,0)®/c, where x_,(©,0) is given by the
formula (88) (j=4 in this formula corresponds to
a-Si:H layer in our notation, see Fig.1). In band
bending calculations (see Eq. (79)), we have used the
value €=165-0.3-[H] for static permittivity of
a-Si:H, where [H]
a-Si:H . This €([H]) -dependence corresponds to data of
the work [14].

is hydrogen content (in %) in

9.4. Dielectric permittivity of metal contact electrodes
on SC surfaces

Aluminum was considered as a metal, from which
contact electrodes on back and front surface of SC are
formed. In our calculations, we have used the
wavelength dependences of real and imaginary parts of
the permittivity for pure aluminum presented in [11, 15],
see Fig. 15.
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Fig. 13. Real (n) and imaginary (k) parts of the complex
refractive index of indium tin oxide (ITO).

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

110



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 2. P. 91-116.

L 30r 30
8 "
251 425
201 420
15+ 415
10+ 410
St 45
OF 40
>t 0% o 170

L
710 T T T T T 710

3 4 5
Energy, eV
Fig. 14. Real and imaginary parts of the complex dielectric
permittivity of hydrogenated amorphous silicon. Hydrogen
content in % is marked for each curve.
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Fig. 15. Real and imaginary parts of the complex dielectric
permittivity of pure aluminum.

10. Solar radiation spectra

In our calculations, we have used standard solar
radiation spectra AMO corresponding to space conditions
outside Earth atmosphere and standard (ASTM G-173)
reference solar radiation spectra of sunlight at the Earth
surface AM1.5D and AM1.5G (at AM1.5 conditions
length of the path of light through the atmosphere is
1.5 times that of the shorter path when the sun is directly
overhead) [16]. The spectrum AMI1.5D corresponds to
direct radiation from Sun and AM1.5G to “global”
radiation, which includes both direct and diffuse
radiation. These spectra are shown in Fig. 16.

11. Solar cell efficiency and other related parameters

To calculate the efficiency and other parameters of
a-Si:H solar cells in different time moments, to which
different light incidence angles 6 and “finger-plane of
incidence” angles \ correspond (see Figs 9 and 10), or
to calculate SC parameters averaged over different time
intervals (daytime, year, etc.), we have to know solar

spectra for arbitrary positions of Sun, i.e. for arbitrary
atmosphere masses AM. In principle, it can be done
using the data of the work by Christian Gueymard [17].
In the applied FORTRAN program, SC efficiencies and
other parameters can be calculated only for the case of
normal light incidence onto SC surface for irradiation
conditions AMO and AM1.5. Nevertheless, the general
formulae are written below, accounting for possible s-
and p-polarized parts of incident light in the case of
oblique incidence.

The total density of short-circuit current, as pointed
earlier, can be calculated by summing the contributions
from all vanishingly small (i.e. practically
monochromatic) parts of solar spectra /(A) shown in

Fig. 16:

X
Jse = %j SO (1250 + iz )+ (i + i) | . (167)
where A, is the shortest wavelength in solar spectrum, at
which light penetration into active region of SC still
occurs (%,,=0.31 pm value corresponding to the energy
4.0 eV has been used in the calculations, for sign
conversion of the real part of a-Si:H permittivity at the
energy close to 4.0 eV, see Fig. 14), %, is the wavelength
corresponding to the a-Si:H bandgap energy E, (or,
more exactly, to mobility edge energy E,,, which can be
somewhat lower than E, due to possible electron and
hole transport via conduction and valence band tail
states), 3(A)=1(L)/ho =I(L)L/(2rkc) is the spectral

i hs(p)

Jesc and

density of photons, incident onto unit area,

+h, s(p)
Jn, sc

and hole contributions into the short-circuit current from
monochromatic light with the wavelength A. Unit light
intensities /7*’(%) in the formulae (11), (13) and (32)
have to be used by calculating the current densities

Jred and o for the integrand expression in (167).

Instead of /7“’(%) in (11), (13) and (32) the intensity
J(M)dh/2 for s-polarized part of light and the same
J(M)dh /2 intensity for p-polarized part of the light
appears in (167).

The photocurrent density under SC circuit loading
can be expressed as a sum of the irradiation-induced
short-circuit current density j,. and the density of

are the considered in Sections 2 and 3 electron

exponential diode current flowing in the opposite
direction:

Jm V)= jso = j,[exp(eV /rkT)-1],

where V is the voltage drop across the load, saturation
current density j, and non-ideality factor » are the diode

(168)

characteristics of p—i(n) junction in a-Si:H. Values

jo= 10"A/cm and »=1.5 have been used in our
calculations [18].
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Fig. 16. Standard solar radiation spectra /() in the actual range
of wavelengths.

The open-circuit voltage V,. can be found from
(168) by using the condition j,,(V,.)=0:

]

e
11.1. SC parameters in an ideal case of zero internal
resistance

Jse g
Js

V.

oc

(169)

In a hypothetic case of ideal SC possessing zero internal

resistivity, the power generated by the unit area of solar

cell is expressed as

W=Vj,V)=Vjlexp(eV, /rkT)—exp(eV /rkT)].

(170)

The consumed power achieves maximal value W,

at an optimal load, when condition

aw

- =0
av

(171)

V=7,

is fulfilled. As it follows from (170) and (171), the
voltage V,, in the optimal regime can be found from the

equation

The optimal density of photocurrent in this case is
expressed as

and the optimal power generated by the unit area of SC

: )

ev,
kT

kT

+1}—1_0. (172)

m m

v (eV
exp

rkT rkT

I =Ty (173)

2
m

14 (eVm
exp

rkT rkT

Wy =Voin=J (174)

The product of optimal load resistance R, on SC
area S is expressed, respectively, as

)

We characterize SC by three types of its efficiency.
The efficiency n, is the relation of power W,, collected
from the unit SC area in an optimal regime (174) to the
power absorbed inside active a-Si:H layer of the SC ¥,
(this absorbed power is only a part of the total solar
irradiation power incident on SC due to above described
limitations of the spectral range as well as due to partial
reflection of light and its absorption in metallic contacts
and non-active layers of the SC structure):

v

_m

T

m

eV
p| -

kT

kT
=——eX

g

R S=

m

(175)

n,=—. (176)

w

a

The absorbed power can be easily calculated by
integrating the sum of generation functions (11)
g'(z, )+ g"(z,2) (with I(W)dr/2 instead of I (L)
and /; (1)) over the thickness of active a-Si:H layer and
over the spectral range A,...%, like to that in (167).

The efficiency m,, is the relation of the power W,
collected from the unit SC area in an optimal regime to
the incident irradiation power W, within the spectral
interval 2, .., (due to this limitation of the spectral

range, W), is only a part of total solar irradiation power
incident on SC):

177)

By its definition, the power W, by the can be
calculated as

W, = xf 100 d |

2,

'm

(178)

Finally, the efficiency m is the relation of power W,
collected from the unit SC area in an optimal regime to
the incident irradiation power W within the whole
spectral range of solar irradiation:

(179)

where the power W can be calculated analogously
to W,
W ={I(.) d.

0

(180)

In practice, 2,=0.28 um can be used instead of
zero as the lower edge of solar spectrum in the integral
(180) and X,=4 pum as the upper edge, because
electromagnetic waves outside this spectral region
practically do not contribute to the total power W.
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Once more parameter, characterizing SC, is the
filling factor F defined as
w
F=—"—. (181)
Ve Jsc

11.2. SC parameters with an account of SC series
photoresistance and ohmic power losses at the contact
finger grid on the front SC surface

Consider active a-Si:H region of SC as a series of
vanishingly small parts with a length dz. Each of such
parts can be characterized by the resistance dR

dz

dR = @S’ (182)

where S is the solar cell area, c(z) is the conductivity

depending on the free carrier concentrations p(z) and
n(z) in valence and conduction bands, respectively:

o(2) = e[n(z)K, (2) + p(2)1,(2)]

where p

(183)
a(p are the hole (electron) mobilities. In our
approach, the mobilities are considered as parameters of
the model. They are supposed to be constants across p-
or i(n)- region of a-Si:H (but probably having different
values in these regions). I.e., we characterize p-region by

(P) and H(11)

. . as well as

the electron and hole mobilities
i(n)

n

i(n)
P

i(n)-region by pn"" and p"" , respectively.

For the i(n)-part of a-Si:H layer beyond space
charge region, we can write

n(z) =An(z)+n,, p(z)=p,, (184)
where 7, is an equilibrium concentration of major
carriers (electrons) in i(z)-region, which in accordance

with (73) and (74) is expressed as

E ~E

MJ (185)

n,=v, exp{ T

i(n)
F

The energy E."™ in (185) is the Fermi level energy

counted from the valence band edge in i(n)-region in the
absence of irradiation. This energy has been determined
earlier under band bending calculations (as well as the
Fermi level energy E; in p-region of a-Si:H layer), see
and 5. The An(z) of

photoelectrons in i(n)-region can be expressed as a sum
of all contributions from vanishingly small
monochromatic parts of the incident irradiation spectra:
o 2 g (z,)+g" (2,
An(z):,c;(n) " g (Za )2g (Za )3(7\.) d?\,,
A'ln

is the lifetime of photoelectrons in this

Sections 4 concentration

(186)

i(n)

n

where T
region, g'” are the generation functions (11) with the
unit intensities 7;'”’ (%) (actually, in the formula (186)

the intensity J(A)dA/2 appears instead of the

monochromatic intensities /(%) and /j(h) in the
formula (11)). This expression for the concentration of
excess major carriers in i(n)-region is a consequence of
the generation-recombination balance equation

A’ (z,0)
T i(n) -

n

g (z,n). (187)

As compared with the analogous balance equation
(10) for photoelectrons in p-region, the diffusion term is
absent in (187) because electrons generated in i(n)-
region don’t contribute to the diffusion photocurrent
(they cannot overcome p—i(n) junction barrier and are

left i(n)-region, thus increasing the conductivity of this
region). Non-equilibrium excess holes in this region
form corresponding part of the diffusion photocurrent
(see Sec. 3). Actually, they serve as an external source of
current (in addition to non-equilibrium excess electrons
in p-region) and for this reason should be excluded from
the system of carriers responsible for ohmic losses in
this region. Thus, according to (75) and (76) we can
write the following expression for equilibrium part of the
hole concentration in i(n)-region contributing to the
conductivity in z-direction in this region:

Ei(n)
F
kT )
Analogously, for the p-part of a-Si:H layer beyond
space charge region we can write

p(2)=p, =V, exp £— (188)

nz)=n,, p(z)=p,+Aap(), (189)

where p, is the equilibrium concentration of major
carriers (holes) in p-region, which in accordance with
(75) and (76) is expressed as

=V _€eX —EI{]
P, =v,exp| —— |.

The energy E in (190) is the Fermi level energy

(190)

counted from the valence band edge in p-region in
absence of irradiation. The concentration Ap(z) of
excess photoholes in p-region can be expressed like to
(186) as

Xy oS V4
Ap(Z) — T;P) " g (Zak)—;g (Zak) S(}\.) dr ,
A'li’l

(191)

(p)

where T,

is the lifetime of excess photoholes in this

region. According to (73) and (74), we can write the
following expression for the electron concentration that
contributes to the conductivity in p-region:

S
n(z)y=n,=v exp| ———=|. (192)

kT

As to the space charge region at p—i(n) junction,
we somewhat simplify our consideration and evaluate its
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contribution into the internal SC series resistance using
equilibrium values of carrier concentrations (i.e.
corresponding to the case when irradiation is absent and
no voltage drops at an external load) instead of the total
carrier concentrations that can be obtained using the
formulae (21) and (41):

n(z)=n,expy(2)] , p(z)=p,exp[-¥(2)-y,], (193)
where concentrations 7, and p, are expressed by the

formulae (185) and (190). Thus, we overestimate the
contribution of SCR to the total internal resistance,
because under irradiation and an external load the SCR
thickness will be less than z,+z, (thickness in the

equilibrium case) and the carrier concentrations in SCR
will be higher. However, due to relatively small
contribution of SCR into the total series resistance in
many practical cases (because of smallness of the SCR
thickness as compared with the total a-Si:H thickness)
this overestimation would not be too critical. Thus, SC
efficiencies would be somewhat larger than those
calculated within this approximation.

Substituting (184), (189) or (193) into (183) and
integrating (182) over a-Si:H thickness, we obtain thus
the following internal series resistance (photoresistance)
of the a-Si:H layer of SC:

dpfzp dp+z,, dp+d
R:i '. dz N ‘. dz o dz '
S 0 G(Z) d,~z, G(Z) d,+z, G(Z)

Besides a-Si:H layer, the ITO layer with the contact
grid also should contribute to the ohmic losses.
According to the results of works [19, 20], the ITO-
contact grid resistance can be expressed in the following
form:

2L
R = Lo |12l L],
f SJse L 2L,

where L= L,(1-m)/m is the distance between fingers

(194)

(195)

in the contact grid (see Fig. 10), Lr — width of finger
electrodes, m — degree of front surface metallization by
electrodes, L. — characteristic effective length of hole
collection by electrodes:

L = (eu b n;I;TO dio Voo ! Jsc )”2 :

¢ P

(196)

In the formula (196), u;m is the hole mobility in
ITO, n,'” —hole concentration in ITO (as high values as

9.61-10" cm™ are reported for the hole concentration in
ITO [21)), d,;, =d, —ITO layer thickness (see Fig. 1).

Thus, the total internal series resistance of solar cell
Rgc can be expressed as

R =R+R,. (197)

With an account of internal ohmic losses, the
expression (168) for the photocurrent takes up the
following form:

eV+ei ,(V)SRy.
i MN=j.,. —jlexp| ——L——"—|-1;=
I V) = Jse Jb{ p{ T

P eV, e eV+ejph(V)SRSC
e exp kT P kT ’

where V is the a voltage drop at an external load.
For the net power consumed by the external load,
we have now the following expression instead of (170):

w=Vj,V)=
) { {eV} {eV+ejh(V)SRSC} (199)
=Vj qexp| —= |-exp| ——F— |}

(198)

rkT rkT

The net power achieves its maximal value at a
voltage V,, which can be found from the evident
condition

av
av

djph —

:jph(V)+V % =

0. (200)

v=V/V

oc ?

w=W/(,V,.)=v-iv),

oc

u=eV /rkT,

oc

Going to dimensionless quantities
1= Jo! Jos
p=ej Ry S/ (rkT)
Jo = J.expleV, /(rkT)], we can rewrite formulae (198)

oc

and where

and (200) in the form of the following system of two
transcendental equations for the dimensionless current
density i and voltage v dropping at optimal external load:

S1G,v) =explpi+u(v-1]+i-1=0, (201)
. dw . di
fz(z,v)zgzz(v)+v$20. (202)
It follows from (201) that
dﬁzd—ﬁdi+%dv=0, (203)
i dv
ie.
ﬂ:_dfl/d\.}:_ uexp[Pz+u(v—l)] ' (204)
dv df, / di pexp[pi+u(v-1)]+1
Substituting (204) into (202), we obtain
A =i0)+v 5=
v (205)

(pi—uv)explpi+u(v—-1]+i 0
pexp[pi+u(v-1)]+1
For exp[pi+u(v—1)]> 0, we can divide both parts

of Eq. (201) by this exponential function. Analogously,
as both the photocurrent density i and denominator
pexp[pi+u(v—-1)]+1 in (205) differ from zero, we can
divide both parts of Eq. (205) by these values, too. Thus,
the following two equations can be used to determine the

optimal photocurrent and net voltage instead of (201)
and (205):
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Fig. 17. Schematic graphical solution of Eqs.(206) and
(207).

~ i—1

ﬁ(i,V)=1+m=O, (206)

(uv—

7wy = =PD i u(v=1)]=1=0. (207)
1

Finding the intersection point of the solution
v, (i) of (206) with the solution v,(i) of (207) (see

Fig. 17), we determine the dimensionless optimal

photocurrent density i, and dimensionless net
voltage v,,.

Knowing the optimal photocurrent density
J. =Joi, and optimal net voltage V =V v , we can

calculate all the parameters characterizing SC (using the
formulae (174)-(181)) with account for internal series
photoresistance and contact grid resistance.

12. Conclusions

In this paper, we presented a detailed theory of
photoconversion in structures based on a-Si:H . Its use
helps to illustrate the dependence of the photoconversion
efficiency on the key physical parameters and to
optimize the value of photovoltaic parameters. This
allows to obtain high values of the efficiency of the
discussed solar cells.
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