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Abstract. We study numerically the H-polarized wave scattering by finite flat gratings of
N silver nanostrips in free space in the context of co-existence of surface plasmon
resonances (SPR) and periodicity-induced grating resonances (GRs). The accurate
numerical analysis is carried out using the previously developed combination of two-side
generalized boundary conditions imposed on the strip median lines and Nystrom-type
discretization of the relevant singular and hyper-singular integral equations. Our
computations are focused on specific periodicity-caused coupling which leads to the
existence of the grating or lattice resonances near to A;=p/m, m=1, 2,... (at normal
incidence). These resonances result in large reflection, transmission, absorption, and
near-field enhancement. We also study the interplay of SPR and GR, if they approach
each other and the optical response dependence of the grating parameters, such as overall
dimension and number of strips.
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1. Introduction

Optical nanoantennas have unique ability of
concentrating the light within nanoscale domains thanks
to plasmon resonances (PRs), as revealed by measuring
or computing the scattering and absorption of light by
noble-metal scatterers. In this connection, noble-metal
nanosize strips and their finite ensembles are very
attractive as easily manufactured components of various
optical devices [1, 2]. The typical dimensions of metal
nanostrips are: the width from 100 to 1000 nm and the
thickness from 5 to 50 nm. Thereby, the thickness is
some 10 to 180 times smaller than the wavelength in the
visible band. PRs are the Fabry-Perot-like resonances,
formed by the reflections of the short-range surface
plasmon wave of the corresponding metal layer from the
strip edges [2]. Therefore, their wavelengths can be
easily tuned by changing the strip width and thickness.
In addition to PRs, multi-element finite gratings made of

sufficiently massive silver strips have attractive
properties  of  extraordinarily large  reflection,
transmission, absorption, and near-field enhancement
that are inherited from the light scattering by infinite
strip gratings. Namely, these phenomena are greatly
effected by the so-called grating resonances that appear
due to periodicity [3, 4]. It should be noted that, until
recently, these resonances have been commonly
explained via the Rayleigh anomalies [3], and it was
only in [4] that the true nature of these specific
resonances was explained.

Therefore, in this paper we focus our study on the
periodicity-induced resonance effects in the light
scattering by finite silver nanostrip gratings located in
free space. As a reliable instrument, we use the
developed earlier by us median-line integral equation
method based on the two-side generalized boundary
conditions (GBCs) [5] and Nystrom-type discretization
of the interpolation type [6, 7].
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2. Setting the problem and generalized boundary
conditions

Geometry of a flat strip grating made of finite number N
of identical silver strips is shown in Fig. 1. Assume that
the incident wave is an H-polarized plane wave coming
to the grating at the angle 3 from the upper half-space.
The total magnetic field is the sum of the incident
wave and the fields scattered by the finite strip grating

H. (F): g klxeosBrysing) H*(F), where 7= (x,y), k is

the free space wavenumber, and H(¥) is requested to
satisfy the Helmholtz equation off the strips contours.
Exploiting the small thickness of the strips, 7 <<, we
assume it to be zero, i.e. we shrink their cross-sections to
the corresponding median lines

S ={ten):xelanbly=o}.

neglect the internal fields in the strips and impose the
two-side GBCs at S = UszlSj (see [5, 6] for details),

This enables us to

OH, (F)+ H_ (r)]/on=-i2kR[H, (F)+H_(¥)], (1)

[H (F)+ H (7)] = ~i20k 'O H (7)+ H (7))/ 07 . (2)

Here, the coefficients R and Q are the so-called
relative electrical and magnetic resistivities,

R=icot(khye, /2)/(2\e, ),
0 =iyfs, cot(khys, /2)/2,

which contain the strip characteristics such as electric
thickness k4 and relative dielectric function ¢,; 7 is the
unit vector normal to the strip grating; and the
superscripts = denote the limit values of the field at the
top and bottom faces of the strip, respectively. These

GBCs are valid if kh<<1 and |e,|>>1 [5,6]. In

)

addition, H:*(F) must satisfy the Sommerfeld radiation
condition at infinity and condition of the local energy
finiteness. Such a scattering problem is uniquely
solvable.

3. Singular and hyper-singular IEs
and Nystrom-type discretization

To satisfy the Helmholtz equation and radiation
condition, we seek the scattered field as a sum,
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Fig. 1. Geometry of a finite grating of silver nanostrips having
the width d, thickness 4 and period p.

H ()= Z [v, 716 7+ [, ) P L)
Sj Sj
4)
where  G(7,7')=(i/4)H, (k|r—7’) is the Green

function. Note that the unknown functions v, ), w ; ()

are magnetic and electric currents, respectively, induced
on the strips of the grating.

Using GBC (1), (2) and the properties of the limit
values of potentials in (4), we obtain two independent
sets of N IEs of the second kind. One of them, for all
v,.(x), i=1,...,N, contains equations with logarithmic-
type singularities, and the other, for w,.(x), with hyper-
type singularities,

ikx{) cosP

N
40V, (xf) + kD v (O H D (k| x = x{ |) dx = die” ()
J=1
H k| x=xt )

|x—x0|

b:

N 7j ;

4R (x) + > [wj( ) — 4sinpe F0P
J=1 aj

(6)

Note that the integrals in (6) are understood in the
sense of finite part of Hadamard. Transforming to new

normalized variables 1,7, e[—l,l], introducing new

. ~ H¥ 172
unknown surface functions as wj(t)zw-(t)l—t

J
and following [6, 7], we isolate the singularities and

discretize the resulted sets of N IEs using the Nystrom-
type method with two different quadrature rules of
interpolation type. For IEs(5), we use the Gauss-
Legendre quadrature formulas of the n, -th order with

nodes in the nulls of Legendre polynomials P, (’C j): 0,
j=1..,n, . For IEs (6), the use of the Gauss-Chebyshev

quadrature formulas of the n, -th order (with the

weight (l—tz)l/z) is more efficient, with nodes in the
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Fig. 2. Normalized TSCS per one strip versus the
wavelength for the finite grating of N silver strips with the
width d= 300 nm, thickness # =50 nm, period p = 800 nm
and B = /2 (normal incidence).
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Fig. 3. Normalized near-field patterns for the plane H-wave (f = n/2) normally incident on the grating of N = 50 silver strips of

d =300 nm, # =50 nm and p = 800 nm at the wavelengths of

nulls of Chebyshev polynomials of the second kind,
{ =cos(nj/nw), j=Ll..,n,. In view of the limited

space, we omit the details and refer to [ 6-8]. Thereby,
applying the above mentioned quadrature formulas, we
arrive at two independent sets of matrix equations of the

orders N-n, and N-n,, respectively, for the values

vj(ti) and vT/j(tk). These matrix equations represent

discrete models of our IEs. On solving them we obtain
the surface currents as interpolations polynomials.

The chosen quadrature formulas ensure rapid
convergence of numerical solutions to the accurate ones
if n,, n, —oo. Conservative estimation gives the rates

of convergence as O(l/ nv,w)’ although the actual rate is

always higher [6, 7]. The empiric rule to achieve 4-digit
accuracy in the analysis of surface currents is to take
n, =kd-o g, +5 and n, =kd +5 where o, isthe

effective refractive index of short-range surface plasmon
wave of the corresponding metal layer [6,8]. For
instance, for a 20-nm thick and 2X-wide silver strip in
the whole visible range, one can take », = n,, = 50.

4. Numerical simulation: plasmon
and grating resonances

To study the plasmon and periodicity resonance effects
in the H-polarized light scattering by the finite silver
nanostrip  gratings, we have investigated the
wavelength dependences of the total scattering cross
section (TSCS), obtained via integration of the far-field
scattering pattern, and visualized the near-field patterns
at resonance wavelengths. To characterize the complex
dielectric permittivity of silver, we took the
experimental data of Johnson and Christy with spline
interpolation.

the grating resonances A = 799 nm (a) and 402 nm (b).

As one can see from Fig. 2, a stand-alone silver
strip with # = 50 nm has two PRs in the visible range at
the normal incidence (= n/2): at A= 354.1 nm and A=
680.5 nm. The TSCS of silver grating of N =50 strips
exhibits, after normalization by N, two types of
resonances: PRs and GRs (the latter resonances are
marked with asterisks).

Here, the first G-resonance wavelength is A=
402 nm that is slightly above p/2, and another one at
A =799 nm that is close to p. In fact, within the whole
range between 600 and 850 nm, a combined resonance
takes place; such merging leads to considerable
enhancement of scattering per a strip of the grating.

Presented in Fig. 3 are the total near-field patterns
at the corresponding wavelengths, A= 799 nm (a) and
A= 402 nm (b), together with their zooms around five
central periods.

One can see two different standing waves: one is
formed at y >0, because of enhanced reflection, and
another one stands along the x-axis, formed by the quasi-
Floquet harmonics of the grating. To deepen the
understanding of the resonance effects, in Fig. 4 we show
the reliefs of TSCS versus two parameters: wavelength
and grating period while d= 300 nm (a) and wavelength
and grating width while p = 800 nm (b) for the grating of
N =20 silver strips under the normal incidence.

In Fig. 4a, a pronounced sharp “ridge” stretching
along the line % =p is observed and a smaller one is
discernible along A =p/2. They correspond to the
mentioned above GRs and run across the broad “hill” of
the main PR of the given strip-width. For the finite strip
grating with a fixed period of 800 nm (Fig. 4b), under
the normal incidence, two PR “hills” are cut by two
pronounced GR “ridges” at almost fixed wavelengths
near L~ p/2 and L= p; these GRs are best visible in the
case of the strip width from 100 to 200 nm and from 300
to 500 nm, respectively.
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Fig. 4. Normalized per one strip reliefs of TSCS (in nm) versus
the wavelength and the period while d =300 nm (a) and versus
the wavelength and width while p = 800 nm (b) for the silver
strip grating of N =20 of thickness # = 50 nm under the normal
incidence (B = w/2).

5. Conclusions

Summarizing, we have studied the scattering and
absorption of the H-polarized electromagnetic wave by
free-standing finite silver nanostrip gratings, in the
visible range. The analysis has shown co-existence of
the localized surface-plasmon resonances of a stand-
alone silver strip and the grating resonances close to
A=p/m,m=1,2, ... caused by the effect of periodicity.
Here, the gratings of the larger numbers of strips have
more pronounced grating resonances. The effect of
enhanced scattering in the combined resonance has been
revealed.
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