
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2012. V. 15, N 4. P. 365-369.

© 2012, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

365

PACS 71.35.-y; 73.21.Fg, La

A theoretical model for exciton binding energies in rectangular
and parabolic spherical finite quantum dots

A. Taqi*, J. Diouri
Faculté des sciences. Département de Physique, Université Abdelmalek Essaadi, 
BP 2121, Tétouan, Morocco
*E-mail: abtaqi@yahoo.fr

Abstract. Using the variational method in real space and the effective-mass theory, we 
present quite an advanced semi-analytic approach susceptible for calculating the binding 
energy EB of Wannier excitons in semiconductor quantum dot structures with rectangular 
and parabolic shapes of the confining potential in the so-called strong-confinement 
regime. Illustration is given for CdS, ZnSe, CdSe, GaAs structures of crystallites for both 
rectangular and parabolic quantum dots, and it displays a very good agreement between 
the experimental and theoretical results reported in literature.

Keywords: exciton, binding energy, rectangular quantum dot, parabolic quantum dot.

Manuscript received 07.04.12; revised version received 19.09.12; accepted for 
publication 17.10.12; published online 12.12.12.

1. Introduction

Recently, excitons in quantum dots have attracted more 
and more interest and have become the centre of 
attention of many experimental and theoreticals studies 
[1], because their original properties allow many 
interesting applications, namely: producing artificial 
atoms and molecules, single-electron transistors, and 
quantum dot lasers (see [2] and references cited therein). 
In theory, as direct solving the Hamiltonian is rather 
complicated and practically impossible, several attempts 
have been made to solve specific related problems. To 
determine the binding energy EB, the variational method 
is commonly used with different formulations depending 
on the choice of a trial wave function. On the other hand, 
progress in experimental techniques has shown that the 
confinement in GaAs/GaAlAs quantum dots is 
approximately parabolic [3].

With regard to these important developments, we 
started looking for a simplified formulation, making 
possible a rapid and rather precise determination of 
exciton properties for rectangular and parabolic 
confining potential. Hence, we began with the usual 
approximation, e.g. the effective mass one, which 
enabled us to establish, in the framework of the 
variational method, general formulae for calculating the 

expected values of the exciton binding energy in terms 
of the characteristic parameters of the structure: dot 
radius R0, effective masses me and mh as well as potential 
profiles Ve (re) and Vh (rh) for electron and hole forming 
the exciton. To illustrate them, the formulae were 
applied to CdS, CdSe, ZnSe/ZnS and GaAs structures 
for rectangular and parabolic quantum dots (RQD and 
PQD) shapes and gave very good results. 

2. Theoretical model

1) Basic equations

Let us consider a heterostructure consisting of a single 
quantum dot of type I. The confining potential is of 
rectangular and parabolic shapes, say Ve (re) for electrons 
and Vh (rh) for holes. Then, the Hamiltonian of one 
electron-hole pair in the effective mass approximation 
[4] is as follows:

),()()(),( hechheeheex rrVrHrHrrH  , (1)

where He (re) and Hh (rh) are the single-particle 
contributions for the electron and hole, respectively, 
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constant. The single-particle Hamiltonian )( ii rH

(i = e, h) is defined as:
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where the first term is the kinetic energy for a particle 
with the effective mass mi, and Vi (ri) corresponds to the 
confining potential. 

The problem consists in finding the eigenfunction 
),( he rr


  and the eigenvalue E of exH  for the ground 

state. 
The binding energy EB is then related to E by:

EEEE heB  , (3)

where Ee and Eh are solutions of the one-particle 
problem with the ground state i (i = e, h): 

iiii EH  . (4)

The general method of solution is to apply the 
variational principle with a trial wave function of the 
following form:

  he . (5)

In the strong confinement regime, the confinement 
effect dominates; the well dissociates the electron-hole 
pair, and the spatial correlation between the electron and 
hole is little. Then, we can choose the ansatz   as: 
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2) Solution

The eigenvalue E of exH  for the ground state follows 

simply as the expectation value:
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Letting  D ,

the numerator N of Eq. (6) is given by
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where Ae,h and Ceh can be written as:
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In spherical harmonics, the term of electron-hole 
interaction can be expressed as (see for example, Marin 
et al. [5]):
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where )(  rr  is the smaller (greater) of re and rh .
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where )( he dd  denotes the solid angle for the 

electron (hole). 
As )(or he  does not depend on the angles 
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where a  and R are Bohr radius 
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The binding energy is obtained by maximising the 
expectation value
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with respect to  . 
Then, )(BE  can be simply written in the form: 
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where )()( iiiii rrrf   and  hehe mmmm /µ   is the 

reduced mass of the exciton.

3. Applications

For illustration and with the aim of testing the validity of 
this model, we have calculated the exciton ground state 
energy in rectangular and parabolic quantum dots and 
compared the results with available existing data [5-7]. 
The agreement was very good. 

1) Rectangular quantum dot

The confining potential that we assume as a spherical 
quantum well-like potential defined by 

iiii VRrrV )()( 0 , where   is the step function and 

Vi – barrier height.
The dependence of mi on ri arises from the fact that 

the particles have different effective masses depending 
on their location, inside or outside the dot. Then, the 
one-particle problem was solved by computing the 
solution of the following implicit eigenvalue equation 
for the spherical symmetry quantum dot energies [4]
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The associated wave functions are given by:
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The constants Ai and Bi are determined by 
normalization requirements and are equal to:
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where Rydberg units are used )1( 0  m .

To check the accuracy of our model in spherical 
rectangular quantum dots, we compare our results 
plotted in Fig. 1 and in Table with those of refs. [5] and 
[6], respectively. 

In Fig. 1, we display variation of the exciton 
ground state energy in CdS crystallites as a function of 
the dot radius R0. The dashed lines represent theoretical 
prediction made by [5] and based on the effective-mass 
approximation model in the single-band scheme and the 

variational method, the higher curve corresponds to 

V e= Vh = 2.5 eV and 1
in

ou

m

m
and the lower one to 

0.475 eV and 1
in

ou

m

m
. The solid lines represent our 

theoretical model, the higher curve corresponds to 

Ve = Vh = 2.5 eV and 1
in

ou

m

m
, while the lower one – to 

0.475 eV and 1
in

ou

m

m
. In both cases, the results were 

evaluated for CdS material parameters me = 0.18m0, 

mh = 0.53m0, 1
in

ou

m

m
and 5.5 , m0 – free-electron 

mass. 
From the analysis of this figure, we conclude the 

following.
- The results obtained using our method are found to 

be slightly higher and closer to the experimental 
values reported in ref. [5] and represented in Fig. 1 
by the symbols – circles and triangles. 

- A decrease of dot radius is accompanied by an 
increase of overlap integral of the electron and hole 
wave functions; which causes an increase in the 
exciton ground state energy. 

- The exciton ground state energy is found to reduce 
with decreasing the barrier height. This is due to 
increased penetration of the wave function into the 
barrier with a resulting lower Coulomb attraction. 
In Table, we present our results for the exciton 

binding energy EB in ZnSe/ZnS quantum dot to compare 
them with the theoretical results of Jia-Lin Zhu et al. [6]. 
In this work, the authors used the variational method 
with introduction of effective electron potentials. We 
used the same parameters therein (me = 0.16m0, 
mh = 0.61m0, Ve = 3279 meV, 7.8 for ZnSe and me =
0.27m0, mh = 0.96m0, Ve = 860 meV for ZnS). The 
agreement between this method and our results is quite 
good. 

Table. Binding energy EB of excitons in ZnSe/ZnS quantum 
dots as a function of the dot radius R0 with Ve = 3279 meV 
and Vh = 860 meV.

Binding energy EB (meV)
R0 (Å)

our results ref. [6]

22 115.665 114.7

25 103.565 103.9

34 78.821 81.21

42 65.016 66.89

56 49.762 51.99
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Fig. 1. Exciton ground state energy in CdS crystallites as a 
function of the dot radius R0: [5] (dots); this work (full curves).
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Fig. 2. Exciton binding energy in CdSe quantum dots as a 
function of the radius R0 for three different values of the 
effective-mass ratio inside and outside the cristallite.

Fig. 2 illustrates behaviour of the ground state 
exciton binding energy in CdSe quantum dots as a 
function of the radius R0 for three values of the effective-

mass ratio 
in

ou

m

m
= 0.8, 1.0 and 1.2. The calculations were 

performed with the following parameters: me = 0.13m0, 
mh = 0.4m0, Ve = Vh = 1.3 eV and 6.10 [5]. 

For these three values of the effective mass ratio 

in

ou

m

m
considered in this work, we found that the exciton 

binding energy EB has a maximum at a critical dot 

radius: on increasing 
in

ou

m

m
, the critical dot radius is 

decreased, and the maximum binding energy is 
increased. For a certain value of R0, these three values 
become equal. We conclude that the exterior medium in 
which the crystallites are embedded considerably 
modifies behaviour of the exciton binding energy. On 
the other hand, we observe that the exciton binding 
energy increases as the radius decreases, reaching the 
maximum at the dot radius ≈10.5 Å, and then diminishes 
to a limited value corresponding to a particular radius of 

the well, for which it is possible to find the free electron 
and hole energy level [7]. Note that for narrower dots, 
only confinement influences the increase of the exciton 
binding energy. Furthermore, as R0 increases, the exciton 
binding energy approaches the energy of the unconfined 
two-dimensional exciton.

2) Parabolic quantum dot

In this work, we apply the model developed in Section 3 
to calculate the ground state energy of excitons in a single 
parabolic quantum dot. The studied structure consists in a 
type I heterostructure with parabolic potential profiles for 

electrons and holes described as 22

2

1
)( iiii rmrV   [8, 9], 

where 
2
0R




 [8], while R0 is the quantum dot radius, 

and µ – reduced mass of the exciton. Then, the ground 
state solutions of one-particle problem for the parabolic 

quantum dots are:  2exp)( iiii rr   with the energy 

 
2

3
iE , where 
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. 

We have applied our model to calculate the exciton 
ground state energy for GaAs/GaAlAs parabolic 
quantum dots. By way of comparison, we have referred
to the article of S. Jasiri et al. [8] and used the same 
parameters therein (me = 0.067m0, mh = 0.377m0, 
Eg= 1520 meV, and 1.13 , m0 is the free-electron 
mass). In this work, the authors used “perturbative-
variational calculations”. The results obtained by this 
method (full curve) are very close to ours (dots) for all 
the range of R0 values, as it is shown in Fig. 3. 

4. Conclusion

A new investigation of exciton properties in rectangular 
and parabolic quantum dots has been performed using
the advanced analytical calculations. Basic equations are 
derived in the framework of the commonly used 
approximations allowing a relatively rapid and rather 
precise determination of the exciton binding energy. The 
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Fig. 3. Exciton ground state energy in GaAs parabolic 
quantum dots as a function of the dot radius R0: [7] (full 
curve); this work (dots).
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formulation applied to quantum-dot systems for RQD 
and PQD gives good results and may be easily extended 
to any given material.
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1. Introduction 

Recently, excitons in quantum dots have attracted more and more interest and have become the centre of attention of many experimental and theoreticals studies [1], because their original properties allow many interesting applications, namely: producing artificial atoms and molecules, single-electron transistors, and quantum dot lasers (see [2] and references cited therein). In theory, as direct solving the Hamiltonian is rather complicated and practically impossible, several attempts have been made to solve specific related problems. To determine the binding energy EB, the variational method is commonly used with different formulations depending on the choice of a trial wave function. On the other hand, progress in experimental techniques has shown that the confinement in GaAs/GaAlAs quantum dots is approximately parabolic [3].

With regard to these important developments, we started looking for a simplified formulation, making possible a rapid and rather precise determination of exciton properties for rectangular and parabolic confining potential. Hence, we began with the usual approximation, e.g. the effective mass one, which enabled us to establish, in the framework of the variational method, general formulae for calculating the expected values of the exciton binding energy in terms of the characteristic parameters of the structure: dot radius R0, effective masses me and mh as well as potential profiles Ve (re) and Vh (rh) for electron and hole forming the exciton. To illustrate them, the formulae were applied to CdS, CdSe, ZnSe/ZnS and GaAs structures for rectangular and parabolic quantum dots (RQD and PQD) shapes and gave very good results. 


2. Theoretical model


1) Basic equations

Let us consider a heterostructure consisting of a single quantum dot of type I. The confining potential is of rectangular and parabolic shapes, say Ve (re) for electrons and Vh (rh) for holes. Then, the Hamiltonian of one electron-hole pair in the effective mass approximation [4] is as follows:
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where He (re) and Hh (rh) are the single-particle contributions for the electron and hole, respectively, 
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where the first term is the kinetic energy for a particle with the effective mass mi, and Vi (ri) corresponds to the confining potential. 


The problem consists in finding the eigenfunction 
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The binding energy EB is then related to E by:
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where Ee and Eh are solutions of the one-particle problem with the ground state 
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The general method of solution is to apply the variational principle with a trial wave function of the following form:
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In the strong confinement regime, the confinement effect dominates; the well dissociates the electron-hole pair, and the spatial correlation between the electron and hole is little. Then, we can choose the ansatz 
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2) Solution


The eigenvalue E of 
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Letting 
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the numerator N of Eq. (6) is given by
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where Ae,h and Ceh can be written as: 
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In spherical harmonics, the term of electron-hole interaction can be expressed as (see for example, Marin et al. [5]):
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and
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Thus, for the 1s state:
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(10)


where 
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The binding energy is obtained by maximising the expectation value




[image: image38.wmf]l


l


l


l


y


y


y


y


-


+


=


l


ex


h


e


B


H


E


E


E


)


(



(11)


with respect to 
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Then, 
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with 
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where
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 is the reduced mass of the exciton.


3. Applications


For illustration and with the aim of testing the validity of this model, we have calculated the exciton ground state energy in rectangular and parabolic quantum dots and compared the results with available existing data [5-7]. The agreement was very good. 


1) Rectangular quantum dot


The confining potential that we assume as a spherical quantum well-like potential defined by 
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 is the step function and Vi – barrier height.


The dependence of mi on ri arises from the fact that the particles have different effective masses depending on their location, inside or outside the dot. Then, the one-particle problem was solved by computing the solution of the following implicit eigenvalue equation for the spherical symmetry quantum dot energies [4]
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The associated wave functions are given by:
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with 
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The constants Ai and Bi are determined by normalization requirements and are equal to:
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where Rydberg units are used 
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To check the accuracy of our model in spherical rectangular quantum dots, we compare our results plotted in Fig. 1 and in Table with those of refs. [5] and [6], respectively. 


In Fig. 1, we display variation of the exciton ground state energy in CdS crystallites as a function of the dot radius R0. The dashed lines represent theoretical prediction made by [5] and based on the effective-mass approximation model in the single-band scheme and the variational method, the higher curve corresponds to V e= Vh = 2.5 eV and 
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. The solid lines represent our theoretical model, the higher curve corresponds to Ve = Vh = 2.5 eV and 
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, while the lower one – to 0.475 eV and 

[image: image57.wmf]1


=


in


ou


m


m


. In both cases, the results were evaluated for CdS material parameters me = 0.18m0, mh = 0.53m0, 
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, m0 – free-electron mass. 


From the analysis of this figure, we conclude the following.


· The results obtained using our method are found to be slightly higher and closer to the experimental values reported in ref. [5] and represented in Fig. 1 by the symbols – circles and triangles. 


· A decrease of dot radius is accompanied by an increase of overlap integral of the electron and hole wave functions; which causes an increase in the exciton ground state energy. 


· The exciton ground state energy is found to reduce with decreasing the barrier height. This is due to increased penetration of the wave function into the barrier with a resulting lower Coulomb attraction. 


In Table, we present our results for the exciton binding energy EB in ZnSe/ZnS quantum dot to compare them with the theoretical results of Jia-Lin Zhu et al. [6]. In this work, the authors used the variational method with introduction of effective electron potentials. We used the same parameters therein (me = 0.16m0, mh = 0.61m0, Ve = 3279 meV, 
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 for ZnSe and me = 0.27m0, mh = 0.96m0, Ve = 860 meV for ZnS). The agreement between this method and our results is quite good. 

Table. Binding energy EB of excitons in ZnSe/ZnS quantum dots as a function of the dot radius R0 with Ve = 3279 meV and Vh = 860 meV. 


		R0 (Å)

		Binding energy EB (meV)



		

		our results

		ref. [6]



		22

		115.665

		114.7



		25

		103.565

		103.9



		34

		78.821

		81.21



		42

		65.016

		66.89



		56

		49.762

		51.99
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Fig. 1. Exciton ground state energy in CdS crystallites as a function of the dot radius R0: [5] (dots); this work (full curves).

[image: image62.emf]Radius (A)  


 


0


50


100


150


5 10 15 20 25 30


0.8   


1.0


1.2


m


ou


/m


in  


=


Binding energy (meV)  


 




Fig. 2. Exciton binding energy in CdSe quantum dots as a function of the radius R0 for three different values of the effective-mass ratio inside and outside the cristallite. 


Fig. 2 illustrates behaviour of the ground state exciton binding energy in CdSe quantum dots as a function of the radius R0 for three values of the effective-mass ratio 
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= 0.8, 1.0 and 1.2. The calculations were performed with the following parameters: me = 0.13m0, mh = 0.4m0, Ve = Vh = 1.3 eV and 
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[5]. 


For these three values of the effective mass ratio 
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 considered in this work, we found that the exciton binding energy EB has a maximum at a critical dot radius: on increasing 
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, the critical dot radius is decreased, and the maximum binding energy is increased. For a certain value of R0, these three values become equal. We conclude that the exterior medium in which the crystallites are embedded considerably modifies behaviour of the exciton binding energy. On the other hand, we observe that the exciton binding energy increases as the radius decreases, reaching the maximum at the dot radius ≈10.5 Å, and then diminishes to a limited value corresponding to a particular radius of the well, for which it is possible to find the free electron and hole energy level [7]. Note that for narrower dots, only confinement influences the increase of the exciton binding energy. Furthermore, as R0 increases, the exciton binding energy approaches the energy of the unconfined two-dimensional exciton.

2) Parabolic quantum dot


In this work, we apply the model developed in Section 3 to calculate the ground state energy of excitons in a single parabolic quantum dot. The studied structure consists in a type I heterostructure with parabolic potential profiles for electrons and holes described as 
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 [8, 9], where 
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 [8], while R0 is the quantum dot radius, and µ – reduced mass of the exciton. Then, the ground state solutions of one-particle problem for the parabolic quantum dots are: 
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We have applied our model to calculate the exciton ground state energy for GaAs/GaAlAs parabolic quantum dots. By way of comparison, we have referred to the article of S. Jasiri et al. [8] and used the same parameters therein (me = 0.067m0, mh = 0.377m0, Eg= 1520 meV, and 
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, m0 is the free-electron mass). In this work, the authors used “perturbative-variational calculations”. The results obtained by this method (full curve) are very close to ours (dots) for all the range of R0 values, as it is shown in Fig. 3. 


4. Conclusion

A new investigation of exciton properties in rectangular and parabolic quantum dots has been performed using the advanced analytical calculations. Basic equations are derived in the framework of the commonly used approximations allowing a relatively rapid and rather precise determination of the exciton binding energy. The formulation applied to quantum-dot systems for RQD and PQD gives good results and may be easily extended to any given material. 
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Fig. 3. Exciton ground state energy in GaAs parabolic quantum dots as a function of the dot radius R0: [7] (full curve); this work (dots).
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