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Abstract. Influence of combined size confinement effect and effect of local laser heating 
on the first-order Raman spectrum of silicon nanocrystals embedded into SiOx matrix has 
been studied. Increase of the local temperature of Si nanocrystals caused by laser 
illumination with the power density up to 10 mW/m2 was estimated from the ratio of 
the Stokes/anti-Stokes peak intensities. Almost linear dependence of nanocrystals local 
temperature on the power density of exciting radiation with a rate of 63.6 Km2/mW has 
been found. The phonon line shape at power densities, when no laser heating effect is 
registered, was shown to be described well within the correlation length model of phonon 
confinement of Si nanocrystals with the size L = 9.2 nm. Observed phonon softening and 
broadening with increase of the exciting power density is considered as temperature-
induced vibration anharmonicity with the decay of optical phonons through three- and 
four-phonon processes and corresponding anharmonic constants have been determined.
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1. Introduction

The low-dimensional Si nanostructures are considered as 
promising candidates for large area of photonic and 
electronic applications such as light-emitters [1, 2], 
photodetectors with tunable spectral range [3], and solar 
cells [4]. Due to electron confinement effect, properties 
of Si nanocrystals (nc - Si) can be modified by changing 
the crystallite size, shape and surrounding [5, 6]. 
Reducing the size of Si nanocrystals to values 
comparable with the Bohr exciton radius leads to band 
gap widening, conversion to pseudo-direct band gap 
semiconductor with a high quantum efficiency of 
emission and strong shift of nc - Si photoluminescence 
into the visible energy range [7].

Silicon nanocrystals are frequently characterized by 
means of Raman spectroscopy that provides very 
detailed information on their crystal structure [8-11]. For 
bulk Si, triply degenerate (T2g) first-order optical phonon 
at the Brillouin-zone centre is observed at 521 cm–1. 
Upon decreasing the crystallite size to nanoscale, the 
phonon confinement effect significantly modifies 

vibrational properties of Si nanocrystals. A phonon
confinement model for crystalline silicon thin films was 
first developed by Richter et al. [12] and later extended 
by Campbell et al. [13] to account for various material 
geometries. According to this model, the decrease of Si 
crystallite sizes less than ~10 nm results in breaking the 
wavevector Raman scattering selection rule (q = 0) and 
causes the softening and asymmetric broadening of the 
T2g phonon Raman peak as compared to that of bulk Si. 
On the other hand, anharmonicity, due to the local laser 
heating of the sample, can significantly contribute to the 
phonon softening and broadening, which leads to 
overestimation of the quantum confinement effect.

In micro-Raman experiments, a laser power of few 
milliwatts typically is focused to a spot of several 
micrometers in diameter, which leads to high power 
densities of excitation and results in high local 
temperatures [14]. Laser heating effect can be especially 
important if taking into account significantly reduced, as 
compared to bulk Si, heat dissipation in Si nanocrystals
embedded into insulating matrix [14, 15]. In this work, 
the influence of both effects (quantum confinement and 
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local heating) on the first-order Raman-active phonon 
peak in Si nanocrystals has been studied using micro-
Raman spectroscopy in a wide range of excitation power 
densities. Such study is important for clearer 
understanding the thermal stability of Si nanocrystals 
embedded into oxide matrix under impact of high 
temperatures and high densities of optical radiation.

2. Experimental

Investigated silicon nanocrystals (nc-Si) in SiOx matrix 
were obtained by magnetron co-sputtering from Si and 
SiO2 targets on silica substrates. The films were 
subsequently annealed at 1150 ºC in an inert atmosphere. 
Stokes and anti-Stokes micro-Raman spectra were 
measured in the backscattering geometry at room 
temperature in triple subtractive mode of T-64000 
Horiba Jobin-Yvon Raman spectrometer, equipped with 
electrically cooled CCD detector. The line 488 nm of 
Ar-Kr ion laser with a varied power was used for 
excitation. Exciting radiation with the power densities of 
0.0510 mW/μm2 was focused on the sample surface 
with the 100×/0.9 Olympus objective to the spot area 
about 1 μm2. For evaluation of Stokes and anti-Stokes 
components of Raman spectra, spectral sensitivity of the 
experimental setup was taken into account. Temperature 
of the investigated Si nanocrystals was estimated from 
the intensity ratio of their Stokes and anti-Stokes phonon 
components.

3. Results and discussion

For better understanding the thermal stability of nc-Si in 
SiOx matrix, high-temperature Raman spectroscopy 
studies were carried out. Fig. 1 shows typical Stokes and 
anti-Stokes Raman spectra of the investigated Si 
nanocrystals measured at a varied excitation power 
density. The main feature of Si-nc  Raman spectra is the 
TO phonon mode, which is always down-shifted and 
broadened with respect to bulk Si [12]. Increase of the 
power density from 0.05 up to 10 mW/μm2 leads to a 
gradual low-frequency shift of the Si-nc  TO phonon 
mode from 518.6 down to 494.0 cm–1 and corresponding 
increase of its full-width (Γ) from 5.4 to 29.3 cm–1. Such 
drastic modifications of the Raman spectrum with the 
excitation power can be understood, if to assume 
significant local heating of Si nanocrystals occurred 
within the excitation area [14, 16].

Local temperature of Si nanocrystals within the 
excitation area can be estimated from the ratio of Stokes 
and anti-Stokes integrated intensities (IS/IAS) of TO 
phonon mode according to relation [17, 18]:
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where ωl, ωS and ωAS are frequencies of exciting photons, 
Stokes and anti-Stokes phonon components, 
correspondingly. 

Fig. 1. Normalized Stokes and anti-Stokes Raman spectra 
measured at varied power densities of exciting radiation (Pexc = 
0.0510 mW/μm2). λexc = 488 nm, T = 300 K. Аnti-Stokes 
Raman spectra are multiplied by factor 2 for convenience 
reason.

Fig. 2 shows the dependence of nc-Si local 
temperature on the power density of exciting radiation 
obtained from the analyses of their Stokes and anti-
Stokes Raman spectra according to Eq. (1). As can be 
seen, increase in the laser exciting power density from 
0.05 up to 10 mW/m2 leads to almost linear gradual 
increase in Si-nc  local temperature from about 300 K 
to almost 920 K. Such a high value of local temperature 
at a relatively low laser power can be related with low 
heat dissipation in the system of Si nanocrystals 
embedded into SiOx matrix, which is caused both by 
rather low thermal conductivity of SiOx matrix (thermal 

conductivity of SiO2 makes only 11KmW4.1   in 

contrast to 11KmW156   for bulk Si at 300 K [19]) and 

low thermal conductivity of the whole xSi/SiO-nc

system, which is limited by phonon scattering on grain 
boundaries, interfaces and structural defects [14, 15]. 
Also, it should be mentioned that at the lowest excitation 
power densities (P < 0.5 mW/m2) no laser heating of 
the investigated Si nanocrystals occurs. So, to exclude 
temperature effects for further analysis of the Si-nc  TO 
phonon line shape, Raman spectra measured at the 
lowest power density were used.

The detailed view of Raman spectra measured at 
the excitation power density 0.05 mW/μm2 is shown in 
Fig. 3. As can be seen, the TO phonon line observed at 
ω = 518.6 cm–1 is down-shifted and broadened (Γ = 
5.4 cm–1) as compared to bulk Si, and has significant 
asymmetry with low-frequency tailing, which is typical 
for Si nanocrystals. For spherical nanocrystals with the 

diameter L, phonon damping  222 16/exp  Lq  and 

neglecting the size dispersion of nanocrystals, the 
Raman intensity of the optical phonon line can be 
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expressed using the correlation length model of strong 
phonon confinement [12, 13]:
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where q is the phonon wavevector in 2π/a0 units (a0 = 
0.543 nm – silicon lattice parameter [20]), ω(q) –
dispersion relation for TO phonons in Si, which can be 

approximated by the relation    4/cos2 aqBAq  , 

with 25 cm10714.1 A  and 25 cm10000.1 B  [21], 

and Γ0 – natural line width (3.6 cm–1 for Si). From 
simulation of the experimental Raman spectrum (Fig. 3) 
by using Eq. (2), it was found that the average size of Si 
nanocrystals makes L = 9.2 nm. However, the frequency 
position of experimental phonon line appeared to be 
down-shifted to 1.1 cm–1 relatively to the simulated 
Raman line. The additional down-shift of the Si-nc
phonon band can be caused by presence of tensile 
strains, which can arise both on xSi/SiO-nc  and Si-nc

film/silica substrate interfaces due to difference in 
thermal expansion coefficients [22]. In the case of 
hydrostatic strains, the shift of Si phonon bands with the 
strain can be expressed as [23, 24]: 

Fig. 2. Dependence of Si nanocrystals local temperature on the 
power density of exciting radiation. λexc = 488 nm.

Fig. 3. Raman spectrum of Si nanocrystals measured at the 
excitation power density 0.05 mW/μm2. λexc = 488 nm, T = 
300 K.
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where ω0 is the LO-TO phonon frequency of strain-free 
silicon, S11 = 7.6810–12Pa–1, S12 = 2.1410–12Pa–1, 

2
043.1 p , 2

089.1 q  [24]. Estimation of 

deformation using Eq. (3) and obtained value 
1cm1.1   gives tensile strains in Si nanocrystals of 

0.24 GPa.
Fig. 4 shows temperature dependences of the 

Si-nc  optical phonon frequency (ω) and half-width (Γ), 
where the typically low-frequency shift and phonon 
mode broadening with temperature are observed [14, 
16, 25]. As the vibrational potential includes anharmonic 
terms, generated optical phonons can decay into low-
energy phonons. When the temperature increases, the 
decay processes intensify, resulting in an increased full-
width of the Raman peak. Moreover, increase of the 
lattice parameter results in weakening the bonds between 
atoms, which leads to the low-frequency shift of the 
phonon modes. Below the Debye temperature, decay of 
optical phonons occurs within the three-phonon process 
(anharmonicity with a cubic degree) on two acoustical 
phonons with opposite wave vectors [17, 26]. At 
temperatures higher than the Debye temperature (TD = 
645 K for bulk Si), when all the phonon modes are 
excited and temperature increase is accompanied with 
increase of vibrational amplitudes, also quartic 
anharmonicity should be taken into account and 
corresponding four-phonon process should be 
considered. In case of Si nanocrystals temperature 
dependence of phonon line width and frequency in a 
wide temperature range can be written as [18]: 
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where kThx 2/0 , kThy 3/0 ; A, B, C and D –

anharmonic constants, Γ1 is additional line broadening 
and Δω1 is the additional frequency shift due to the 
phonon confinement effect and elastic strains.

In our case, the temperature dependence of the 
phonon line width and frequency (Fig. 4) can be separated 
into two temperature regions. The first region (T < 800 K) 
is characterized by slow increase (decrease) of the line 
width (frequency) with temperature, which are well 
approximated by the equations (4) and (5) with the values 
of anharmonic constants A = 1.15, B = 0.25, C = 62.2
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and D = 19.0 , confirming the phonon decay mechanisms 
in three-phonon (cubic anharmonicity degree) and four-
phonon process (cubic and quartic anharmonicity). 

Fig. 4. Temperature dependence of the nc-Si TO phonon mode 
frequency and full-width. Dashed curves are shown as guide to 
the eye.

Fig. 5. Stokes and anti-Stokes Raman spectra of Si 
nanocrystals measured at the excitation power densities 1 and 
10 mW/μm2.

At high temperatures (T > 800 K), quite different 
behavior of temperature dependences with drastic 
increase (decrease) of phonon line width (frequency) is 
observed. At temperature increase to 920 K phonon line 

broadens up to 1cm29   and shifts down to 1cm494  . 

This significant modification of the phonon spectra at 
relatively low temperatures (for comparison, such 
temperature-induced line shift and broadening for bulk 
Si occur at temperatures about 1200 K [18]) is quite 
unusual and could be explained only if additional 
mechanisms of phonon decay and heat dissipation in Si 
nanocrystals are taken into account.

Significant modification of the phonon spectrum at 
high power of excitation, where intensive 2TA(X) peak 
is registered in anti-Stokes region (Fig. 5) with 
increasing the relative intensity (as compared to TO 
peak) with the excitation power (see inset in Fig. 5) 
could be an evidence of significant excitation of the 
phonon system as well as effective decay of optical 

phonons into low-frequency acoustical phonons at 
temperatures higher than the Debye one (the latter for 
nanocrystals is expected to be lower than that for bulk 
crystals [27]). In systems excited in such a manner, 
anharmonicity of phonon vibrations may additionally 
influence the scattering process. For example, it may 
lead to breakdown of selection rules and allows phonons 
with the non-zero wave vector contribute to Raman 
process resulting in additional phonon line asymmetric 
broadening and low-frequency shift. Another possible 
reason of unusual phonon line broadening could be a 
result of observed at high powers of excitation Fano 
interaction involving optical phonons and photoexcited 
electrons [28, 29]. Additional optical phonon decay 
channels can be also related with the anharmonicity of 
low-frequency acoustical phonons [11] or surface 
phonon modes [15]. The additional process of energy 
dissipation could be also through black body emission of 
heated Si nanoparticles [14]. More detailed analysis of 
the influence of mentioned above mechanisms on the 
phonon spectrum requires further investigations.

4. Conclusions

In this work, micro-Raman spectra of Si nanocrystals 
produced by the magnetron sputtering technique, 
measured at varied excitation power densities have been 
analyzed in details. The dependence of Si nanocrystals 
local temperature on the power density of exciting 
radiation is found to be linear with the rate 
63.6 K·m2/mW. The phonon line shape at the lowest 
power density, when no laser heating effect is registered,
was shown to be described well within the correlation 
length model of phonon confinement. Observed large 
phonon softening and broadening with exciting power 
density are due to the laser heating effect. The 
temperature dependence of the Si nanocrystal optical 
phonon mode in the temperature range T < 800 K is 
shown to be dominated by the anharmonic effects 
through the three- and four-phonon decay processes, 
while confinement plays a secondary role. However, for 
higher temperatures, where drastic phonon softening and 
broadening are observed, additional phonon decay and 
energy dissipation mechanisms should be considered.
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1. Introduction 

The low-dimensional Si nanostructures are considered as promising candidates for large area of photonic and electronic applications such as light-emitters [1, 2], photodetectors with tunable spectral range [3], and solar cells [4]. Due to electron confinement effect, properties of Si nanocrystals (nc - Si) can be modified by changing the crystallite size, shape and surrounding [5, 6]. Reducing the size of Si nanocrystals to values comparable with the Bohr exciton radius leads to band gap widening, conversion to pseudo-direct band gap semiconductor with a high quantum efficiency of emission and strong shift of nc - Si photoluminescence into the visible energy range [7].


Silicon nanocrystals are frequently characterized by means of Raman spectroscopy that provides very detailed information on their crystal structure [8-11]. For bulk Si, triply degenerate (T2g) first-order optical phonon at the Brillouin-zone centre is observed at 521 cm–1. Upon decreasing the crystallite size to nanoscale, the phonon confinement effect significantly modifies vibrational properties of Si nanocrystals. A phonon confinement model for crystalline silicon thin films was first developed by Richter et al. [12] and later extended by Campbell et al. [13] to account for various material geometries. According to this model, the decrease of Si crystallite sizes less than ~10 nm results in breaking the wavevector Raman scattering selection rule (q = 0) and causes the softening and asymmetric broadening of the T2g phonon Raman peak as compared to that of bulk Si. On the other hand, anharmonicity, due to the local laser heating of the sample, can significantly contribute to the phonon softening and broadening, which leads to overestimation of the quantum confinement effect.


In micro-Raman experiments, a laser power of few milliwatts typically is focused to a spot of several micrometers in diameter, which leads to high power densities of excitation and results in high local temperatures [14]. Laser heating effect can be especially important if taking into account significantly reduced, as compared to bulk Si, heat dissipation in Si nanocrystals embedded into insulating matrix [14, 15]. In this work, the influence of both effects (quantum confinement and local heating) on the first-order Raman-active phonon peak in Si nanocrystals has been studied using micro-Raman spectroscopy in a wide range of excitation power densities. Such study is important for clearer understanding the thermal stability of Si nanocrystals embedded into oxide matrix under impact of high temperatures and high densities of optical radiation.


2. Experimental


Investigated silicon nanocrystals (nc-Si) in SiOx matrix were obtained by magnetron co-sputtering from Si and SiO2 targets on silica substrates. The films were subsequently annealed at 1150 ºC in an inert atmosphere. Stokes and anti-Stokes micro-Raman spectra were measured in the backscattering geometry at room temperature in triple subtractive mode of T-64000 Horiba Jobin-Yvon Raman spectrometer, equipped with electrically cooled CCD detector. The line 488 nm of Ar-Kr ion laser with a varied power was used for excitation. Exciting radiation with the power densities of 0.05(10 mW/μm2 was focused on the sample surface with the 100×/0.9 Olympus objective to the spot area about 1 μm2. For evaluation of Stokes and anti-Stokes components of Raman spectra, spectral sensitivity of the experimental setup was taken into account. Temperature of the investigated Si nanocrystals was estimated from the intensity ratio of their Stokes and anti-Stokes phonon components.

3. Results and discussion


For better understanding the thermal stability of nc-Si in SiOx matrix, high-temperature Raman spectroscopy studies were carried out. Fig. 1 shows typical Stokes and anti-Stokes Raman spectra of the investigated Si nanocrystals measured at a varied excitation power density. The main feature of [image: image1.wmf]Si
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 Raman spectra is the TO phonon mode, which is always down-shifted and broadened with respect to bulk Si [12]. Increase of the power density from 0.05 up to 10 mW/μm2 leads to a gradual low-frequency shift of the [image: image2.wmf]Si


-


nc


 TO phonon mode from 518.6 down to 494.0 cm–1 and corresponding increase of its full-width (Γ) from 5.4 to 29.3 cm–1. Such drastic modifications of the Raman spectrum with the excitation power can be understood, if to assume significant local heating of Si nanocrystals occurred within the excitation area [14, 16].


Local temperature of Si nanocrystals within the excitation area can be estimated from the ratio of Stokes and anti-Stokes integrated intensities (IS/IAS) of TO phonon mode according to relation [17, 18]:
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where ωl, ωS and ωAS are frequencies of exciting photons, Stokes and anti-Stokes phonon components, correspondingly. 
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Fig. 1. Normalized Stokes and anti-Stokes Raman spectra measured at varied power densities of exciting radiation (Pexc = 0.05(10 mW/μm2). λexc = 488 nm, T = 300 K. Аnti-Stokes Raman spectra are multiplied by factor 2 for convenience reason.

Fig. 2 shows the dependence of nc-Si local temperature on the power density of exciting radiation obtained from the analyses of their Stokes and anti-Stokes Raman spectra according to Eq. (1). As can be seen, increase in the laser exciting power density from 0.05 up to 10 mW/(m2 leads to almost linear gradual increase in [image: image5.wmf]Si
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 local temperature from about 300 K to almost 920 K. Such a high value of local temperature at a relatively low laser power can be related with low heat dissipation in the system of Si nanocrystals embedded into SiOx matrix, which is caused both by rather low thermal conductivity of SiOx matrix (thermal conductivity of SiO2 makes only 
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 for bulk Si at 300 K [19]) and low thermal conductivity of the whole 
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 system, which is limited by phonon scattering on grain boundaries, interfaces and structural defects [14, 15]. Also, it should be mentioned that at the lowest excitation power densities (P < 0.5 mW/(m2) no laser heating of the investigated Si nanocrystals occurs. So, to exclude temperature effects for further analysis of the [image: image9.wmf]Si
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 TO phonon line shape, Raman spectra measured at the lowest power density were used.

The detailed view of Raman spectra measured at the excitation power density 0.05 mW/μm2 is shown in Fig. 3. As can be seen, the TO phonon line observed at ω = 518.6 cm–1 is down-shifted and broadened (Γ = 5.4 cm–1) as compared to bulk Si, and has significant asymmetry with low-frequency tailing, which is typical for Si nanocrystals. For spherical nanocrystals with the diameter L, phonon damping [image: image10.wmf](
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 and neglecting the size dispersion of nanocrystals, the Raman intensity of the optical phonon line can be expressed using the correlation length model of strong phonon confinement [12, 13]:
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where q is the phonon wavevector in 2π/a0 units (a0 = 0.543 nm – silicon lattice parameter 20[]
), ω(q) – dispersion relation for TO phonons in Si, which can be approximated by the relation 
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 [21], and Γ0 – natural line width (3.6 cm–1 for Si). From simulation of the experimental Raman spectrum (Fig. 3) by using Eq. (2), it was found that the average size of Si nanocrystals makes L = 9.2 nm. However, the frequency position of experimental phonon line appeared to be down-shifted to 1.1 cm–1 relatively to the simulated Raman line. The additional down-shift of the [image: image15.wmf]Si
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 phonon band can be caused by presence of tensile strains, which can arise both on 
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 film/silica substrate interfaces due to difference in thermal expansion coefficients [22]. In the case of hydrostatic strains, the shift of Si phonon bands with the strain can be expressed as [23, 24]: 
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Fig. 2. Dependence of Si nanocrystals local temperature on the power density of exciting radiation. λexc = 488 nm.
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Fig. 3. Raman spectrum of Si nanocrystals measured at the excitation power density 0.05 mW/μm2. λexc = 488 nm, T = 300 K.
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where ω0 is the LO-TO phonon frequency of strain-free silicon, S11 = 7.68(10–12Pa–1, S12 = (2.14(10–12Pa–1, 
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 [24]. Estimation of deformation using Eq. (3) and obtained value 
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Fig. 4 shows temperature dependences of the [image: image24.wmf]Si
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 optical phonon frequency (ω) and half-width (Γ), where the typically low-frequency shift and phonon mode broadening with temperature are observed [14, 16, 25]. As the vibrational potential includes anharmonic terms, generated optical phonons can decay into low-energy phonons. When the temperature increases, the decay processes intensify, resulting in an increased full-width of the Raman peak. Moreover, increase of the lattice parameter results in weakening the bonds between atoms, which leads to the low-frequency shift of the phonon modes. Below the Debye temperature, decay of optical phonons occurs within the three-phonon process (anharmonicity with a cubic degree) on two acoustical phonons with opposite wave vectors [17, 26]. At temperatures higher than the Debye temperature (TD = 645 K for bulk Si), when all the phonon modes are excited and temperature increase is accompanied with increase of vibrational amplitudes, also quartic anharmonicity should be taken into account and corresponding four-phonon process should be considered. In case of Si nanocrystals temperature dependence of phonon line width and frequency in a wide temperature range can be written as [18]: 
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where 
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; A, B, C and D – anharmonic constants, Γ1 is additional line broadening and Δω1 is the additional frequency shift due to the phonon confinement effect and elastic strains.


In our case, the temperature dependence of the phonon line width and frequency (Fig. 4) can be separated into two temperature regions. The first region (T < 800 K) is characterized by slow increase (decrease) of the line width (frequency) with temperature, which are well approximated by the equations (4) and (5) with the values of anharmonic constants A = 1.15, B = 0.25, C =
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, confirming the phonon decay mechanisms in three-phonon (cubic anharmonicity degree) and four-phonon process (cubic and quartic anharmonicity). 
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Fig. 4. Temperature dependence of the nc-Si TO phonon mode frequency and full-width. Dashed curves are shown as guide to the eye.
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Fig. 5. Stokes and anti-Stokes Raman spectra of Si nanocrystals measured at the excitation power densities 1 and 10 mW/μm2.


At high temperatures (T > 800 K), quite different behavior of temperature dependences with drastic increase (decrease) of phonon line width (frequency) is observed. At temperature increase to 920 K phonon line broadens up to 
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. This significant modification of the phonon spectra at relatively low temperatures (for comparison, such temperature-induced line shift and broadening for bulk Si occur at temperatures about 1200 K [18]) is quite unusual and could be explained only if additional mechanisms of phonon decay and heat dissipation in Si nanocrystals are taken into account.


Significant modification of the phonon spectrum at high power of excitation, where intensive 2TA(X) peak is registered in anti-Stokes region (Fig. 5) with increasing the relative intensity (as compared to TO peak) with the excitation power (see inset in Fig. 5) could be an evidence of significant excitation of the phonon system as well as effective decay of optical phonons into low-frequency acoustical phonons at temperatures higher than the Debye one (the latter for nanocrystals is expected to be lower than that for bulk crystals [27]). In systems excited in such a manner, anharmonicity of phonon vibrations may additionally influence the scattering process. For example, it may lead to breakdown of selection rules and allows phonons with the non-zero wave vector contribute to Raman process resulting in additional phonon line asymmetric broadening and low-frequency shift. Another possible reason of unusual phonon line broadening could be a result of observed at high powers of excitation Fano interaction involving optical phonons and photoexcited electrons [28, 29]. Additional optical phonon decay channels can be also related with the anharmonicity of low-frequency acoustical phonons [11] or surface phonon modes [15]. The additional process of energy dissipation could be also through black body emission of heated Si nanoparticles [14]. More detailed analysis of the influence of mentioned above mechanisms on the phonon spectrum requires further investigations.


4. Conclusions


In this work, micro-Raman spectra of Si nanocrystals produced by the magnetron sputtering technique, measured at varied excitation power densities have been analyzed in details. The dependence of Si nanocrystals local temperature on the power density of exciting radiation is found to be linear with the rate 63.6 K·(m2/mW. The phonon line shape at the lowest power density, when no laser heating effect is registered, was shown to be described well within the correlation length model of phonon confinement. Observed large phonon softening and broadening with exciting power density are due to the laser heating effect. The temperature dependence of the Si nanocrystal optical phonon mode in the temperature range T < 800 K is shown to be dominated by the anharmonic effects through the three- and four-phonon decay processes, while confinement plays a secondary role. However, for higher temperatures, where drastic phonon softening and broadening are observed, additional phonon decay and energy dissipation mechanisms should be considered.
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