
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2013. V. 16, N 1. P. 55-58.

© 2013, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

55

PACS 77.22.Ej

Singular beams with transverse electric 
and transverse magnetic fields

T.A. Fadeyeva
V.I. Vernadsky Taurida National University, Simferopol, Ukraine,
E-mail: tatyana.fadeyeva@gmail.com

Abstract. We have obtained the solutions of the paraxial wave equation in free space and 
homogeneous media in the form of transverse electric (TE) and transverse magnetic 
(TM) fields with Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) modulation 
functions. In contrast to the standard TE and TM beams we revealed that the axially 
symmetric field of LG mode beams have local elliptical polarization, while axial 
symmetry is totally broken down in the HG beams. The results obtained can be used for 
matching the fields inside the uniaxial crystal and free space.

Keywords: singular beam, ТЕ mode, ТМ mode, polarization, optical vortex.

Manuscript received 01.11.12; revised version received 17.12.12; accepted for 
publication 26.01.13; published online 28.02.13.

1. Introduction

As a rule, the transverse electric (TE) and transverse 
magnetic (TM) mode beams are strongly associated with 
the azimuthally and radially polarized beams, 
respectively. They have unique properties: 1) their fields 
are linearly polarized in each point of the cross-section; 
2) they are axially symmetric ones with a centered 
singular point where the directions of the linear 
polarizations are uncertain while their intensities vanish 
(see Fig. 1). 

The physical aspect of such a unique wave 
construction is conditioned by two points: 1) the space 
variant linear polarization is shaped in such a way that 
the field projections onto the longitudinal z-direction 
vanish, 2) destructive interference obliterates any z-
projections of the fields.  

In the case of the azimuthally and radially polarized 
mode beams, it is the space variant polarization 
symmetry that is responsible for disappearance of the z-
components, while the destructive interference does not 

play a part in the process. The physical reasons of it are 
related with the local structure of the medium where the
beam field is transmitted. For example, the field TE and 
TM structures in the metal and dielectric circular 
waveguides are restricted by the demands of the 
boundary conditions. The birefringent medium of the 
uniaxial crystal admits the presence of the ordinary and 
extraordinary rays, when the electric and magnetic 
vectors must be parallel or perpendicular to the plane 
formed by the optical axis and propagation direction of 
the ray. Thus, the beams propagating along the crystal 
optical axis are of the TE and TM modes.

However, there is a great number of other TE and 
TM field modifications in natural where both the space 
variant of polarization and destructive interference take 
place in vanishing the z-components of the wave field 
at each point of the field cross-section that can be non-
symmetric with the space variant of elliptic 
polarization.

The aim of this paper is to consider the wave 
structure of TE and TM paraxial light beams.
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Fig. 2. TE and TM modes in the Hermite-Gaussian beams.

  

TE, Ez = 0  TM, Hz = 0

Fig. 1. Azimuthally (TE) and radially (TM) polarized mode 
beams.

2. Basic points

It is well-known (see, e.g. [1]) that solutions of the 
Maxwell equations for monochromatic wave beams in a 
homogeneous medium can be reduced to the vector 
Helmholtz equation for the vector potential A under the 
condition of Lorentz gauge so that the electric E and 
magnetic H fields in free space are written as

 H A ,    /i k i k   E A A , (1)

where k is a wavenumber. In the paraxial approximation 
2 2
z k A A , the transverse components can be 

written as

  
 H A ,  i k E A (2)

and the additional condition

  0 E , (2a)

so that the longitudinal components of the electric and 
magnetic fields can be written out in terms of the 
transverse field components E , H as 

/ ,zE i k   E / ,zH i k   H (3)

where 
x x y y    e e , while the complex amplitude 

A  of the vector potential    , , expx y z ikzA A

obeys the vector paraxial equation 

 2 2 0zik    A . (4)

It is convenient to describe the vector potential for 
the TE and TM vortex-beams in the basis of circular 
polarizations [2]: x yA A iA   , x yA A iA    with 

the variables u x iy  , v x iy  , 

,u x y v x yi i          .

In the case of the TE mode beam  0, 0z zE A 
the equation (3) are fulfilled exactly so that:

0v uA A     , (5)

from whence

vA    ,   uA    , (6)

while the generatrix function   is defined by the 
paraxial wave equation

 2 2 0zik     . (7)

Moreover, the demand (6) can be reinforced by the 
conditions



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2013. V. 16, N 1. P. 55-58.

© 2013, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

57

TE

TM

m = 1, n = 3 m = 4, n = 3 m = 10, n = 3

Fig. 3. TE and TM modes in the Laguerre-Gaussian beams.

1n m
v uA 

     ,   1n m
v uA 

     , (8) 

where m, n = 0, 1, 2, …. The vector-potential A obeys 
the wave equation (4) and the condition (2a). 

Similar to that, the TM mode beams are defined by 
the conditions

1n m
v uA 

     ,   1n m
v uA 

     . (9)

3. TE and TM modes in the standard paraxial beams

3.1. Hermite-Gaussian beams
In the Cartesian frames and the linearly polarized basis, 
the condition (8) can be rewritten in the form

1n m
x y xA     ,  1n m

y y xA     (10)

for the TE beams and in the form
1n m

x y xA     ,  1n m
y y xA     (11)

for the TM beams.
If the generatrix function  is chosen in the form 

of the Gaussian beam

2

2
0

1
exp

r

w 
 

   
 

, (12)

where 01 /i z z   , 2
0 0 / 2z kw , 

0w  stands for the 

radius of the beam waist, the conditions (2) and (10) 
give for the TE beams

  11 /2
0 0

1
x m nm n

x y
E H H

w w   

   
       

   
,

  11 /2
0 0

1
y m nm n

x y
E H H

w w   

   
        

   
,(13)

where  mH x  is the Hermite polynomials. For the TM 

beams, we obtain

  11 /2
0 0

1
x m nm n

x y
E H H

w w   

   
       

   
,

  11 /2
0 0

1
y m nm n

x y
E H H

w w   

   
       

   
, (14)

where we made use of the definition

    2 2

1
m

m x x
m m

d
H x e e

d x
   . (15)

Fig. 2 illustrates the distributions of the electric 
field in the high order TE and TM modes beams on the 
background of the intensity distribution at the z = 0 
initial plane. The axial symmetry inherent to the lowest 
order mode beams gives place to the plane symmetry 
with the space variant of linear polarization. The 
azimuthally polarized areas occur only near the array of 
singular points with the zero intensity.

3.2. Laguerre-Gaussian beams

In the polar coordinates, the operators u  and v  take 

the form

,
2 2

i i

u r v r

e i e i

r r

 

 

                
   

. (16)

The equation (8) is reduced to the TE modes in the 
circularly polarized basis:
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Fig. 4. Degenerated C-point.
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
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2
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. (17)

For the TM mode we obtain

   
1 2

1 1

2
0 0

,

m

i m m
n

r r
E e L

w w


 


 


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   

   
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2
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,
m
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E e L

w w


 


 



   
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   

(18)

where we made use of the definition of the associated 
Laguerre polynomials:

.)()()( xmn
n

n
xmm

n ex
dx

d
exxL  (19)

Fig. 3 illustrates the structure of TE and TM modes 
in the Laguerre-Gaussian beams. Although the axial 
symmetry of the intensity and polarization distributions 
are conserved, there is light elliptically polarized in each 
space point. It comes to the front of the patterns of the 
TE and TM modes with m = 1. There is not the intensity 
zero at the center. Instead of it, we observe the 

degenerated C-point shown in Fig. 4. The zero value of 
the z-components in the electric and magnetic fields at 
each point the beam cross-section is the result of the 
destructive interference.

4. Conclusions

The transverse electric TE and transverse magnetic TM 
mode beams have the azimuthally and radially polarized 
distributions only for the lowest order modes. In the rest 
cases, the axial symmetry is broken down although the 
transverse properties of the modes are conserved. The 
TE and TM modes of the higher orders in the Hermite-
Gaussian beams have plane symmetry with the linear 
polarization over all the beam cross-section. 
Azimuthally and radially polarized distributions are 
observed only near singular points. The TE and TM 
modes in the Laguerre-Gaussian beams have the axially 
symmetric distributions of the intensity and polarization 
states. However, there is the space variant of elliptical 
polarizations.
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1. Introduction 

As a rule, the transverse electric (TE) and transverse magnetic (TM) mode beams are strongly associated with the azimuthally and radially polarized beams, respectively. They have unique properties: 1) their fields are linearly polarized in each point of the cross-section; 2) they are axially symmetric ones with a centered singular point where the directions of the linear polarizations are uncertain while their intensities vanish (see Fig. 1). 


The physical aspect of such a unique wave construction is conditioned by two points: 1) the space variant linear polarization is shaped in such a way that the field projections onto the longitudinal z-direction vanish, 2) destructive interference obliterates any z-projections of the fields.  


In the case of the azimuthally and radially polarized mode beams, it is the space variant polarization symmetry that is responsible for disappearance of the z-components, while the destructive interference does not play a part in the process. The physical reasons of it are related with the local structure of the medium where the beam field is transmitted. For example, the field TE and TM structures in the metal and dielectric circular waveguides are restricted by the demands of the boundary conditions. The birefringent medium of the uniaxial crystal admits the presence of the ordinary and extraordinary rays, when the electric and magnetic vectors must be parallel or perpendicular to the plane formed by the optical axis and propagation direction of the ray. Thus, the beams propagating along the crystal optical axis are of the TE and TM modes.


However, there is a great number of other TE and TM field modifications in natural where both the space variant of polarization and destructive interference take place in vanishing the z-components of the wave field at each point of the field cross-section that can be non-symmetric with the space variant of elliptic polarization.


The aim of this paper is to consider the wave structure of TE and TM paraxial light beams.
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Fig. 1. Azimuthally (TE) and radially (TM) polarized mode beams.


2. Basic points


It is well-known (see, e.g. [1]) that solutions of the Maxwell equations for monochromatic wave beams in a homogeneous medium can be reduced to the vector Helmholtz equation for the vector potential A under the condition of Lorentz gauge so that the electric E and magnetic H fields in free space are written as
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where k is a wavenumber. In the paraxial approximation 
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and the additional condition
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It is convenient to describe the vector potential for the TE and TM vortex-beams in the basis of circular polarizations [2]: 
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In the case of the TE mode beam 
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while the generatrix function 
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Moreover, the demand (6) can be reinforced by the conditions
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where m, n = 0, 1, 2, …. The vector-potential A obeys the wave equation (4) and the condition (2a). 


Similar to that, the TM mode beams are defined by the conditions
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3. TE and TM modes in the standard paraxial beams


3.1. Hermite-Gaussian beams


In the Cartesian frames and the linearly polarized basis, the condition (8) can be rewritten in the form
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for the TE beams and in the form
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for the TM beams.


If the generatrix function 
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 stands for the radius of the beam waist, the conditions (2) and (10) give for the TE beams
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where 
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where we made use of the definition
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Fig. 2 illustrates the distributions of the electric field in the high order TE and TM modes beams on the background of the intensity distribution at the z = 0 initial plane. The axial symmetry inherent to the lowest order mode beams gives place to the plane symmetry with the space variant of linear polarization. The azimuthally polarized areas occur only near the array of singular points with the zero intensity.


3.2. Laguerre-Gaussian beams


In the polar coordinates, the operators 
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The equation (8) is reduced to the TE modes in the circularly polarized basis:
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Fig. 4. Degenerated C-point.
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For the TM mode we obtain
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where we made use of the definition of the associated Laguerre polynomials:
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Fig. 3 illustrates the structure of TE and TM modes in the Laguerre-Gaussian beams. Although the axial symmetry of the intensity and polarization distributions are conserved, there is light elliptically polarized in each space point. It comes to the front of the patterns of the TE and TM modes with m = 1. There is not the intensity zero at the center. Instead of it, we observe the 




degenerated C-point shown in Fig. 4. The zero value of the z-components in the electric and magnetic fields at each point the beam cross-section is the result of the destructive interference.


4. Conclusions


The transverse electric TE and transverse magnetic TM mode beams have the azimuthally and radially polarized distributions only for the lowest order modes. In the rest cases, the axial symmetry is broken down although the transverse properties of the modes are conserved. The TE and TM modes of the higher orders in the Hermite-Gaussian beams have plane symmetry with the linear polarization over all the beam cross-section. Azimuthally and radially polarized distributions are observed only near singular points. The TE and TM modes in the Laguerre-Gaussian beams have the axially symmetric distributions of the intensity and polarization states. However, there is the space variant of elliptical polarizations. 
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Fig. 3. TE and TM modes in the Laguerre-Gaussian beams.
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Fig. 2. TE and TM modes in the Hermite-Gaussian beams.
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