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1. Introduction

Development of microelectronics involves production of 
novel devices as well as modernization of the existing ones. 
The semiconductor materials used in both processes 
involve, in particular, such wide-gap semiconductors as 
GaN, SiC, AlN etc. that enable one to make high-power 
devices operating at high frequencies. Use of advantages of 
the above semiconductor materials requires development 
and application of reliable heat-resistant ohmic contacts. 
One should also take into account the physical properties of 
contacts and features of current flow in them.

It is known that such mechanisms of current flow 
as thermionic and thermofield emissions are 
characteristic of ohmic contacts. Contact resistivity ρс
decreases exponentially with temperature T at 
thermionic emission, while remaining independent of T
at thermofield emission [1, 2]. However, in some papers 
[3-7] non-typical (growing with temperature) 
dependences ρс(Т) were detected in ohmic contacts. The 

authors of [3] assumed that these dependences ρс(Т) 
were related with current flow via metal shunts formed 
when metal atoms segregate at dislocations, and made 
qualitative estimation of this process.

In [5, 6], a model of current flow via metal shunts, 
with current limitation by diffusion supply of electrons, 
was proposed. This model took into account the density 
of the so-called conducting dislocations (oriented along 
the normal to the semiconductor surface) and scattering 
dislocations (oriented at an angle to that normal). It was 
found that the dislocation density calculated from the 
dependence ρс(Т) agrees with that obtained 
experimentally from the etch pit density [8] and X-ray 
diffraction studies [6]. The model [7] can also describe 
ρс(Т) curves decreasing with temperature.

In this work, the above model is applied to
investigate the temperature dependence of contact 
resistivity inherent to Au-TiBx-Al-Ti-GaN ohmic 
contacts, both before and after treatment of the samples 
with microwave irradiation.
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Fig. 1. Temperature dependence of the contact resistivity c before (a) and after microwave treatment for 800 (b) and 
1000 s (c), and after aging for 270 days (d) at room temperature.

2. Samples and methods of investigation

The subjects for investigation were ohmic contacts to 
heteroepitaxial gallium nitride structures. The latter were 
VPE-grown from a metal-organic source on an Al2O3

substrate (with the thickness of 400 m) at the CC 
“Elma-Malachite” (Zelenograd, Russia). The formed 
structure involved a buffer n+-layer with the thickness 
close to 3 m and donor concentration Nd = 1018 cm–3 

(non-degenerate semiconductor), an n-layer (thickness of 
1.5 m) with Nd = 1017 cm–3 and a doped cap layer 
(thickness of 0.8 m) with Nd = 1018 cm–3. Doping with 
Si was made in the course of growing.

The ohmic contacts were deposited by magnetron 
sputtering of successive metallization layers Ti (50 nm)-
Al (20 nm)-TiBx (100 nm)-Au (200 nm) in the argon 
atmosphere onto a gallium nitride surface subjected to 
photon cleaning (power P = 5 kW, time t = 30 s) and 
heated to 300 С. After deposition of Ti-Al layers, the 
samples were subjected to rapid thermal annealing 
(RTA) in the nitrogen atmosphere at Т = 900 °С for 30 s.

The ρс value was determined using the transmission 
line method (TLM) with radial geometry of contact pads 
[9, 10]. The contacts were formed using 
photolithography; the diameters of inner contact pads 
were 20, 40, 60, 80 and 100 m, and the ratio between 

the outer and inner radii was 7.4. The structures under 
investigation were subjected to microwave treatment 
(radiation frequency of 2.45 GHz, emittance of 
1.5 W/cm2, exposure time lied within 1 to 3 s). The 
microwave irradiation of structures was performed in 
open space at room temperature.

3. Results and discussion

The Au-TiB2-Al-Ti-n-GaN contact structure to be studied 
was subjected to RTA at Т = 900 °С for 30 s. Their IV
curves were linear and symmetric. It indicated a formed 
ohmic contact. When measuring ρс(Т) dependences in the 
100 to 380 K temperature range, it was found that the 
contact resistivity ρс grew with temperature starting from 
Т  250 K (Fig. 1a). It was noted in [3, 4] that such 
behavior may be caused by conduction via metal shunts 
(formed by segregation of metal atoms on dislocations) 
shorting the space-charge region. X-ray diffractometry 
showed that the dislocation density in the GaN film under 
investigation was ≥ 108 cm–2 [11], which supported a 
possibility of such mechanism of current flow.

In [5], a model for current flow via metal shunts, 
with current limitation by diffusion supply of electrons, 
was proposed. According to that model, the resistivity of 
a single shunt in a non-degenerate semiconductor is [7]
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Here, q is the elementary charge, VT – mean 
thermal velocity of electrons, yc0 = qφc0/kT – non-
dimensional equilibrium potential at the metal-
semiconductor interface, LD – the Debye shielding 
length, Dn – electron diffusion coefficient, and α –
numerical coefficient of the order of unity.

According to Einstein’s relation, the electron 
diffusion coefficient is qkTD nn / , where the 

electron mobility µn is determined with allowance for 
electron scattering on charged impurities (µZ), optical 
lattice vibrations (µo) and dislocations (µD):
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The expressions for µZ, µо and µD are as 
follows [12]:
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where nw is the ionized impurity concentration, θ –
longitudinal optical phonon temperature, m – electron 
effective mass, m0 – electron mass, εsh (εsl) – semi-
conductor high (low)-frequency permittivity, K1(θ/2T) –
modified Bessel function of the first order, and
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where ND2 is the scattering dislocation density, 
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where σ = λ/2qc, λ is the linear charge density of 
dislocation line, c – lattice constant along the [0001] 
direction.

According to [7, 13], the temperature dependence 
of the contact resistivity can be calculated from the 
following formula:
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where ND1 is the conducting dislocation density.
The dependence ρс(Т) was described using the 

model for current flow via metal shunts, with current 
limitation by diffusion supply of electrons. As a result, 
the density of conducting dislocations (ND1 = 

26 cm105  ) and scattering dislocations (ND2 = 
27 cm101  ) were obtained (see Fig. 1a). Microwave 

treatments of the structures under investigations for 800 
and 1000 s led to increase of both conducting and 
scattering dislocations by an order of magnitude (Table): 

to 27 cm103.3   and 28cm102   after treatment for 

800 s (Fig. 1b) and to 28cm103.1   and 29 cm102 
after treatment for 1000 s (Fig. 1c). No considerable 
changes of dislocation densities were detected after 
further aging at room temperature for 270 days. They 

were ND1 = 28cm103.2   and ND2 = 29 cm108.1   (see 
Fig. 1d and Table).

Table. Dislocation density in the Au-TiB2-Al-Ti-n-GaN 
contact structure before (initial sample) and after 
microwave treatment for 800 and 1000 s and after aging at 
room temperature for 270 days.

Treatment ρc (T = 
300 K),

Ohm∙cm2

|ρc |/ ρc ND1, cm–2 ND2, cm–2

initial sample 1.8×10–4 0.61 5×106 1×107

microwave 
irradiation 
for 800 s

3.6×10–4 0.48 3.3×107 2×108

microwave 
irradiation 
for 1000 s

8.8×10–5 0.45 1.3×108 2×109

aging at Troom

for 270 days
4.1×10–5 0.41 2.3×108 1.8×109
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Fig. 2. Dependence of the contact resistivity c and sample 
curvature on the microwave treatment time.
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The above effect can be explained by using the 
results of [9], namely, supposition of the role of metal 
(Ga) inclusions (localized at dislocations) in current flow 
in the ohmic contact to n-GaN. Indeed, it is known that 
GaN films may contain excess Ga that forms local 
inclusions [14]. In the course of microwave treatment 
(contrary to RTA), local heating of those metal 
inclusions takes place. Because of low melting 
temperature of Ga (29.77 °С), the metal atoms become 
redistributed over non-uniformities at the metal-
semiconductor interface. As a result, the conducting 
dislocation density increases, thus leading to reduction 
of the contact resistivity. This is confirmed by reduction 
of relative spread of ρс values cc  of contacts 

formed on the wafer (Table): it decreases from 0.61 (in 
the initial structure) down to 0.45 (in the contact 
structure after microwave treatment for 1000 s) and to 
0.41 after aging at room temperature for 270 days.

In the course of microwave treatment, relaxation of 
intrinsic stresses occurs in the metal-semiconductor 
structure owing to increase in the defect density. This is 
confirmed by the results of profilometric studies. Shown 
in Fig. 2 is the dependence of the contact resistivity ρс
and curvature 1/r of a sample with contact metallization 
(proportional to the stresses in the wafer) on the time of 
microwave treatment (here r is the radius of curvature). 
A correlation exists between the above dependences. 
The estimated correlation coefficient is 0.6. This 
indicates a considerable effect of intrinsic stresses on the 
contact resistivity.

The relative spread of contact resistivity values 
carries information on integral and local properties of the 
wafer. Therefore, the behavior of relative spread of ρс
values enables one to draw some conclusions concerning 
the effect of microwave treatment on the local intrinsic 
stresses. As the time of microwave irradiation grows, the 
relative spread of contact resistivity values goes down. 
This may indicate homogenization of local intrinsic 
stresses because of transformation of the defect structure 
in the near-contact region of the contact structure under 
investigation.

4. Conclusions

It has been ascertained that in the Au-TiBx-Al-Ti-n-GaN 
contact structure current flows via metal shunts is 
associated with dislocations and limited by diffusion 
supply of electrons. The above shunts may be formed by 
atoms of gallium (whose melting temperature 29.77 °С 
is low) segregated at dislocations. Microwave treatment 
for 1000 s leads to increase in the dislocation density 
(owing to relaxation of intrinsic stresses) and 
redistribution of gallium at the metal-semiconductor 
interface. This treatment increases the conducting 
dislocation density, decreases the contact resistivity ρс of 
ohmic contacts and reduces the relative spread of contact 
resistivity values over the wafer. This is confirmed by a 

correlation between variations of electrical parameters of 
the contact structure and its curvature.
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1. Introduction 

Development of microelectronics involves production of novel devices as well as modernization of the existing ones. The semiconductor materials used in both processes involve, in particular, such wide-gap semiconductors as GaN, SiC, AlN etc. that enable one to make high-power devices operating at high frequencies. Use of advantages of the above semiconductor materials requires development and application of reliable heat-resistant ohmic contacts. One should also take into account the physical properties of contacts and features of current flow in them.


It is known that such mechanisms of current flow as thermionic and thermofield emissions are characteristic of ohmic contacts. Contact resistivity ρс decreases exponentially with temperature T at thermionic emission, while remaining independent of T at thermofield emission [1, 2]. However, in some papers [3-7] non-typical (growing with temperature) dependences ρс(Т) were detected in ohmic contacts. The authors of [3] assumed that these dependences ρс(Т) were related with current flow via metal shunts formed when metal atoms segregate at dislocations, and made qualitative estimation of this process.

In [5, 6], a model of current flow via metal shunts, with current limitation by diffusion supply of electrons, was proposed. This model took into account the density of the so-called conducting dislocations (oriented along the normal to the semiconductor surface) and scattering dislocations (oriented at an angle to that normal). It was found that the dislocation density calculated from the dependence ρс(Т) agrees with that obtained experimentally from the etch pit density [8] and X-ray diffraction studies [6]. The model [7] can also describe ρс(Т) curves decreasing with temperature.


In this work, the above model is applied to investigate the temperature dependence of contact resistivity inherent to Au-TiBx-Al-Ti-GaN ohmic contacts, both before and after treatment of the samples with microwave irradiation.


2. Samples and methods of investigation 


The subjects for investigation were ohmic contacts to heteroepitaxial gallium nitride structures. The latter were VPE-grown from a metal-organic source on an Al2O3 substrate (with the thickness of 400 (m) at the CC “Elma-Malachite” (Zelenograd, Russia). The formed structure involved a buffer n+-layer with the thickness close to 3 (m and donor concentration Nd = 1018 cm–3  (non-degenerate semiconductor), an n-layer (thickness of 1.5 (m) with Nd = 1017 cm–3 and a doped cap layer (thickness of 0.8 (m) with Nd = 1018 cm–3. Doping with Si was made in the course of growing.


The ohmic contacts were deposited by magnetron sputtering of successive metallization layers Ti (50 nm)-Al (20 nm)-TiBx (100 nm)-Au (200 nm) in the argon atmosphere onto a gallium nitride surface subjected to photon cleaning (power P = 5 kW, time t = 30 s) and heated to 300 (С. After deposition of Ti-Al layers, the samples were subjected to rapid thermal annealing (RTA) in the nitrogen atmosphere at Т = 900 °С for 30 s.
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The ρс value was determined using the transmission line method (TLM) with radial geometry of contact pads [9, 10]. The contacts were formed using photolithography; the diameters of inner contact pads were 20, 40, 60, 80 and 100 (m, and the ratio between the outer and inner radii was 7.4. The structures under investigation were subjected to microwave treatment (radiation frequency of 2.45 GHz, emittance of 1.5 W/cm2, exposure time lied within 1 to 3 s). The microwave irradiation of structures was performed in open space at room temperature.


3. Results and discussion


The Au-TiB2-Al-Ti-n-GaN contact structure to be studied was subjected to RTA at Т = 900 °С for 30 s. Their I(V curves were linear and symmetric. It indicated a formed ohmic contact. When measuring ρс(Т) dependences in the 100 to 380 K temperature range, it was found that the contact resistivity ρс grew with temperature starting from Т ( 250 K (Fig. 1a). It was noted in [3, 4] that such behavior may be caused by conduction via metal shunts (formed by segregation of metal atoms on dislocations) shorting the space-charge region. X-ray diffractometry showed that the dislocation density in the GaN film under investigation was ≥ 108 cm–2 [11], which supported a possibility of such mechanism of current flow.


In [5], a model for current flow via metal shunts, with current limitation by diffusion supply of electrons, was proposed. According to that model, the resistivity of a single shunt in a non-degenerate semiconductor is [7]




[image: image1.wmf]0


0


4


4


1


D


0


c


c


y


d


T


y


n


T


c


e


N


qV


L


e


D


V


q


kT


÷


÷


ø


ö


ç


ç


è


æ


a


+


=


r


.
(1)


Here, q is the elementary charge, VT – mean thermal velocity of electrons, yc0 = qφc0/kT – non-dimensional equilibrium potential at the metal-semiconductor interface, LD – the Debye shielding length, Dn – electron diffusion coefficient, and α – numerical coefficient of the order of unity.


According to Einstein’s relation, the electron diffusion coefficient is 
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, where the electron mobility µn is determined with allowance for electron scattering on charged impurities (µZ), optical lattice vibrations (µo) and dislocations (µD):




[image: image3.wmf](


)


1


1


D


1


o


1


-


-


-


-


m


+


m


+


m


=


m


Z


n


.
(2)


The expressions for µZ, µо and µD are as follows [12]:
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and
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where nw is the ionized impurity concentration, θ – longitudinal optical phonon temperature, m – electron effective mass, m0 – electron mass, εsh (εsl) – semi​conductor high (low)-frequency permittivity, K1(θ/2T) – modified Bessel function of the first order, and




[image: image6.wmf])


(


)


exp(


2


5


D


2


D


2


/


1


D


h


h


=


m


K


L


N


T


B


,
(5)


where ND2 is the scattering dislocation density, 
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, K2(η) – modified Bessel function of the second order. A dimensional coefficient B is
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where σ = λ/2qc, λ is the linear charge density of dislocation line, c – lattice constant along the [0001] direction.


According to [7, 13], the temperature dependence of the contact resistivity can be calculated from the following formula:
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where ND1 is the conducting dislocation density.


The dependence ρс(Т) was described using the model for current flow via metal shunts, with current limitation by diffusion supply of electrons. As a result, the density of conducting dislocations (ND1 = 
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) were obtained (see Fig. 1a). Microwave treatments of the structures under investigations for 800 and 1000 s led to increase of both conducting and scattering dislocations by an order of magnitude (Table): to 
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 after treatment for 800 s (Fig. 1b) and to 
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 after treatment for 1000 s (Fig. 1c). No considerable changes of dislocation densities were detected after further aging at room temperature for 270 days. They were ND1 = 
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 (see Fig. 1d and Table).

Table. Dislocation density in the Au-TiB2-Al-Ti-n-GaN contact structure before (initial sample) and after microwave treatment for 800 and 1000 s and after aging at room temperature for 270 days.


		Treatment

		ρc (T = 300 K), Ohm∙cm2

		|(ρc |/ ρc

		ND1, cm–2

		ND2, cm–2



		initial sample

		1.8×10–4

		0.61

		5×106

		1×107



		microwave irradiation for 800 s

		3.6×10–4

		0.48

		3.3×107

		2×108



		microwave irradiation for 1000 s

		8.8×10–5

		0.45

		1.3×108

		2×109



		aging at Troom for 270 days

		4.1×10–5

		0.41

		2.3×108

		1.8×109
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Fig. 2. Dependence of the contact resistivity (c and sample curvature on the microwave treatment time.


The above effect can be explained by using the results of [9], namely, supposition of the role of metal (Ga) inclusions (localized at dislocations) in current flow in the ohmic contact to n-GaN. Indeed, it is known that GaN films may contain excess Ga that forms local inclusions [14]. In the course of microwave treatment (contrary to RTA), local heating of those metal inclusions takes place. Because of low melting temperature of Ga (29.77 °С), the metal atoms become redistributed over non-uniformities at the metal-semiconductor interface. As a result, the conducting dislocation density increases, thus leading to reduction of the contact resistivity. This is confirmed by reduction of relative spread of ρс values 
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of contacts formed on the wafer (Table): it decreases from 0.61 (in the initial structure) down to 0.45 (in the contact structure after microwave treatment for 1000 s) and to 0.41 after aging at room temperature for 270 days.


In the course of microwave treatment, relaxation of intrinsic stresses occurs in the metal-semiconductor structure owing to increase in the defect density. This is confirmed by the results of profilometric studies. Shown in Fig. 2 is the dependence of the contact resistivity ρс and curvature 1/r of a sample with contact metallization (proportional to the stresses in the wafer) on the time of microwave treatment (here r is the radius of curvature). A correlation exists between the above dependences. The estimated correlation coefficient is 0.6. This indicates a considerable effect of intrinsic stresses on the contact resistivity.


The relative spread of contact resistivity values carries information on integral and local properties of the wafer. Therefore, the behavior of relative spread of ρс values enables one to draw some conclusions concerning the effect of microwave treatment on the local intrinsic stresses. As the time of microwave irradiation grows, the relative spread of contact resistivity values goes down. This may indicate homogenization of local intrinsic stresses because of transformation of the defect structure in the near-contact region of the contact structure under investigation.


4. Conclusions


It has been ascertained that in the Au-TiBx-Al-Ti-n-GaN contact structure current flows via metal shunts is associated with dislocations and limited by diffusion supply of electrons. The above shunts may be formed by atoms of gallium (whose melting temperature 29.77 °С is low) segregated at dislocations. Microwave treatment for 1000 s leads to increase in the dislocation density (owing to relaxation of intrinsic stresses) and redistribution of gallium at the metal-semiconductor interface. This treatment increases the conducting dislocation density, decreases the contact resistivity ρс of ohmic contacts and reduces the relative spread of contact resistivity values over the wafer. This is confirmed by a correlation between variations of electrical parameters of the contact structure and its curvature.
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Fig. 1. Temperature dependence of the contact resistivity (c before (a) and after microwave treatment for 800 (b) and 1000 s (c), and after aging for 270 days (d) at room temperature.
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