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1. Introduction

Chalcogenide non-crystalline vitreous and amorphous 
materials attract continuously growing interest caused by 
wide possibilities of practical applications and as a 
unique object for scientific investigations. Due to a wide 
range of photo-induced phenomena, these materials are 
current and potential candidates for using in 
optoelectronics and photonics (inorganic photoresists, 
optical sensors, waveguides, recording media, circuits, 
gratings and diffraction elements for various 
applications) [1-8].

From this viewpoint, deeper studied are amorphous 
films of binary and ternary arsenic chalcogenides that 
are characterized by lowering the pseudo-gap
(photodarkening of films) under light irradiation [1, 3, 5-
10], which is assumed to originate from photo-induced
structural transformations that can be subsequently
reversed by annealing near the glass transition
temperature. 

In recent decades, intensively studied are photo-
induced effects in amorphous films of germanium 

chalcogenides [11-18]. First of all, in view of practical 
applications, these materials are attractive if accounting 
the fact that they do not contain the poisonous arsenic. 
Second, in these films under illumination one can 
observe both effects of photodarkening and 
photobleaching (growth of the pseudogap and optical
transparency). Moreover, while germanium sulfide films 
are characterized only by photobleaching [13-15], the 
films GexSe100-x demonstrate both effects: photo-
darkening in Ge-dificient (x<20) and photobleaching in
Ge-rich (x>20) samples [11, 12, 16-18].

In this paper, we report the results of investigating 
the influence of laser irradiation and annealing on 
transmission spectra and optical parameters of GeS2-
GeSe2 and GeS3-GeSe3 films with the germanium 
content 25 and 33.3 at.%, respectively. Our choice of 
these sections was caused by the following reasons. In
[15] we showed that, at the same conditions of 
illumination, changes in optical parameters of GeS2

films are essentially higher than those in Ge2S3 films. For 
instance, the change in the refraction index n of GeS2

film is practically 3-fold higher than that in Ge2S3 film.
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In the system Ge-Se, the highest changes in optical 
characteristics  (shift of the absorption edge Eg and
refraction index n) were observed by us in the films 
GeSe2 and GeSe3 [17]. Thereof, it is for the films of the 
above sections one should expect a high level of photo-
induced changes in optical parameters. 

2. Experimental

The bulk glasses Ce33.3S33.85Se33.85 (or (GeS2)50(GeSe2)50) 
and Ge25S37.5Se37.5 (or (GeS3)50 (GeSe3)50) were prepared 
using direct synthesis from the corresponding elements 
in evacuated silica ampoules. The mass of every charge 
was 20 gram. In the process of synthesis, we used the 
step-like increase of temperature up to the maximum one 
(1250 K). At the temperatures 700, 950 and 1250 К, the 
ampoules were kept for 8, 6 and 4 hours, respectively. In 
what followed, temperature was lowered down to the 
temperature of melt homogenization (1100…1150 К). 
The homogenization time was 48 hours. The melts were 
periodically stirred. After synthesis the ampoules were 
air-quenched.

Thin films (thickness ~ 1 μm) were obtained by 
vacuum evaporation of glasses of corresponding 
compositions from quasi-closed effusion cells onto non-
heated glass substrates. A uniform thickness of layers 
was provided by planetary rotation of substrates.

Light exposure of films was made using defocused 
radiation of a semiconductor laser (λ = 530 nm, 
P = 100 mW). Annealing of the films was performed in 
argon atmosphere for 1 and 2 h at the temperature 
423 K. 

Optical transmission spectra of the films were 
measured at T = 300 K within the range 400 to 800 nm 
by using the method [19] with a monochromator МДР-3. 
The spectral resolution was no worse than 10–3 eV. 

3. Results and discussion

Fig. 1 and 2 (curves 1) show transmission spectra for the 
as-prepared films Ge25S37,5Se37,5 and Ge33.3S33.35Se33.35. It 
is obvious that with growing the germanium content in 
the composition of films, the absorption edge is shifted 
into short-wave spectral range testifying to increase of 
the pseudo-forbidden gap width (Eg).  

The Eg value can be determined from the Tauc
relation [13]:
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which is valid within the range of high energies, when 
the absorption coefficient has values (h) ≥ 10–4 cm–1. 
In (1), h is the photon energy, B – constant that depends 
on film material and characterizes the slope of the Tauc 
absorption edge. The parameter B is an interesting 
parameter, since it can be taken as a measure of disorder. 
For example, for GeS2, GeSe2, Ge2Se3 and GeSe3 films 
the values of parameter B1/2 is 549 [14], 913 [12], 552 
[12], and 827 cm–1/2 eV–1/2 [12], respectively.

Fig. 1. Dependences of transmission spectra inherent to 
Ge25S37,5Se37,75 films on the exposure time: 1 – 0; 2 – 1; 3 – 10; 
4 – 20 min.

Fig. 2. Dependences of transmission spectra inherent to 
Ge33,3S33,85Se33,85 films on the exposure time: 1 – 0; 2 – 1; 
3 – 10; 4– 20 min.

The Eg values for Ge25S37.5Se37.5 and 
Ge33.3S33.35Se33.35 films were determined by extrapolation 

of the dependences 2/1])([  hh ~ f(h) down to 

)(  h = 0 (Fig. 3) and are 2.276 and 2.301 eV, 

respectively. For the films GeS2, GeSe2, GeSe3, the 
pseudo-forbidden gap values obtained by us earlier [15, 
17] are equal to 2.289 [15], 1.938 [17] and 1.958 eV 
[17], respectively. These Eg values differ to some extent 
from the pseudo-gap values for the films of the same 
compositions but obtained by other authors. The 
determined in [12, 13] Eg values for the films GeS2, 
GeSe2 and GeSe3 are equal to 2.53 [13], 2.073 [12] and
2.044 eV [12], respectively. In our opinion, this 
difference between Eg values is caused by technological 
factors. The refraction index of films was determined 
using the dependence [20]:
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Fig. 3. Plot of (αhν)1/2 versus hν for the films Ge25S37,5Se37,75  
(a) and Ce33,3S33,85Se33,85 (b) non-exposed (1) and exposed (2, 
3) for 1 (2) and 10 min (3).

In these expressions, s is the refraction index of 
substrate; Tmax and Tmin are interferential maxima and 
minima in transmission spectra within the range of 
wavelengths where the dispersion of the refraction index 
is absent. The n values for the films Ge25S37,5Se37,5 and
Ge33,3S33,35Se33,35, determined at the wavelength 
λ = 700 nm, are equal to 2.222 and 2.403, respectively.

Light exposure of films results in a shift of 
transmission spectra to the short-wave range (Figs 1 and 
2, curves 2 to 4). It means that one observes 
photobleaching of the films. It is indicative of the growth 
of the pseudo-gap width. After illumination, the 
refraction index is lowered. The dependences of Eg and
n values for the films Ge25S37,5Se37,5 and
Ge33,3S33,35Se33,35 on the exposure time are depicted in 
Fig. 4. It is seen that the maximum changes in Eg and n
values take place at low illumination times. The rate of 
photo-induced changes in optical parameters is reduced 
with increasing the irradiation time. In this case, the 
greater shift of the absorption edge at the transmission 
level 0.2 (Figs 1 and 2) as well as greater changes of Eg 

and n take place in the film with the Ge content 33.3 at. 
% (Fig. 4) under the same exposure conditions. 

Fig. 4. Dependences of Eg (1) and n (2) on the exposure time 
for Ge25S37,5Se37,75  (a) and Ge33,3S33,85Se33,85   (b) films.

Changes in the absorption edge position (i. e., Eg 

values) and refraction index are caused by structural 
transformations taking place under laser illumination.

Amorphous films of germanium chalcogenides 
(Ge-S, Ge-Se, Ge-S-Se, Ge-Sb-S systems) as well as 
respective glasses possess a nano-heterogeneous 
structure [6, 12, 18, 21-29]. The basic elements of 
structural network in glasses and films with the 
germanium content above 25% are tetrahedrons 
GeSnSe4-n (n = 0 – 4). However, the matrix of 
germanium chalcogenide glasses and films contains a 
considerable amount of structural fragments with 
homopolar bonds Ge-Ge, S-S and Se-Se . In these cases, 
germanium chalcogenide films contain a higher 
concentration of homopolar bonds [12, 18, 23]. When 
illuminating the films, there take place break and re-
switch of Ge-Ge, S-S and Se-Se bonds and formation of 
the heteropolar ones Ge-S(Se) [12, 15, 16, 23]. 
Photostructural transformations can be also promoted by 
such structural defects as over-coordinated and under-
coordinated atoms of germanium and chalcogen. These 
processes result in the increase of ordering in the local 
structure of films. 
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Fig. 5. Transmission spectra of Ge33,3S33,85Se33,85  film 
annealed for 1 h at the temperature 423 K versus the exposure 
time: 1-0; 2-1; 3-10; 4-20 min.

Fig. 6. Shift of the absorption edge at the transmission level 0.2 
(a), changes Eg (b) and n (c) versus the exposure time for as-
prepared (1) and annealed (2, 3) at the temperature 423 K for
1 (2) and 2 h (3). 

With the aim to ascertain the influence of 
temperature on photo-induced changes in optical 
characteristic, we investigated transmission spectra of 
the films Ge25S37.5Se37.5 and Ge33.3S33.35Se33.35 annealed 
for 1 and 2 h at the temperature 423 K. It should be 
noted that this temperature is much lower than the glass-
transition temperature for these films.

Thermal annealing of films results in a shift of 
transmission spectra to the short-wave range. It means 
that one observes photobleaching of the films. In this 
case, Eg value grows, while n is decreased. So, for the 
Ge33.3S33.35Se33.35 film annealed for 1 and 2 h, Eg is equal 
to 2.397 and 2.410 eV, respectively. The refraction index 
values in the same conditions are, respectively, equal to
2.320 and 2.185. In the film Ge25S37.5Se37.5, the degree of 
Eg and n changes is considerably lower.

Thermostimulated changes of Ge-S-Se film optical 
characteristics are caused by structural transformations. 
Like to the case of laser illumination, annealing of the 
films results in break and re-switching the homopolar 
bonds Ge-Ge, S-S (Se-Se) and formation of structural 
units with heteropolar bonds GeS(Se)4/2.

In this case, thermal polymerization of molecular 
fragments with homopolar bonds (for example, Ge2Se6, 
Ge2S6, Se2, S2) into the structural network of GeSnSen-4

types can be realized both via the defectless mechanism 
and with creation of structural charged defects (for 
example, Ge3

–, S3
+, S1

– [30]).
Fig. 5 (curves 2 to 4) shows transmission spectra 

for Ge33.3S33.35Se33.35 films illuminated after annealing. It 
can be seen that the shift of absorption edge (∆E) under 
laser illumination (to the short-wave range) is less in 
them than that in the as-prepared ones (Fig. 6a). The 
pseudo-forbidden gap width (Fig. 6b) and refraction
index ∆n changes (Fig. 6c) become considerably lower, 
too. It means that the level of photo-structural 
transformations in the annealed films is lower than that 
in in the as-prepared ones. The lower level of changes in 
optical parameters in the annealed Ge-S-Se films is 
conditioned by a rather less number of structural 
fragments with homopolar bonds in their matrix after 
annealing, which are able to polymerize under laser 
irradiation.

4. Conclusions

Laser illumination (λ = 530 nm) of amorphous films in 
the system Ge-S-Se leads to the shift in transmission 
spectra to the short-wave side of the spectrum 
(photobleaching the films takes place). In this case, the 
pseudo-forbidden gap width Eg grows, while the 
refraction index value n is lowered. The highest changes 
in Eg and n were observed in the film  (GeS2)50(GeSe2)50.
These changes of film optical characteristics are caused 
by photo-structural transformations that are related with 
the decreasing content of structural fragments possessing 
homopolar bonds in their matrix. Annealed films show 
lower level and rate of photo-structural changes in 
optical parameters.
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1. Introduction 

Chalcogenide non-crystalline vitreous and amorphous materials attract continuously growing interest caused by wide possibilities of practical applications and as a unique object for scientific investigations. Due to a wide range of photo-induced phenomena, these materials are current and potential candidates for using in optoelectronics and photonics (inorganic photoresists, optical sensors, waveguides, recording media, circuits, gratings and diffraction elements for various applications) [1-8].

From this viewpoint, deeper studied are amorphous films of binary and ternary arsenic chalcogenides that are characterized by lowering the pseudo-gap (photodarkening of films) under light irradiation [1, 3, 5-10], which is assumed to originate from photo-induced structural transformations that can be subsequently reversed by annealing near the glass transition temperature. 


In recent decades, intensively studied are photo-induced effects in amorphous films of germanium chalcogenides [11-18]. First of all, in view of practical applications, these materials are attractive if accounting the fact that they do not contain the poisonous arsenic. Second, in these films under illumination one can observe both effects of photodarkening and photobleaching (growth of the pseudogap and optical transparency). Moreover, while germanium sulfide films are characterized only by photobleaching [13-15], the films GexSe100-x demonstrate both effects: photo​darkening in Ge-dificient (x<20) and photobleaching in Ge-rich (x>20) samples [11, 12, 16-18].


In this paper, we report the results of investigating the influence of laser irradiation and annealing on transmission spectra and optical parameters of GeS2-GeSe2 and GeS3-GeSe3 films with the germanium content 25 and 33.3 at.%, respectively. Our choice of these sections was caused by the following reasons. In [15] we showed that, at the same conditions of illumination, changes in optical parameters of GeS2 films are essentially higher than those in Ge2S3 films. For instance, the change in the refraction index n of GeS2 film is practically 3-fold higher than that in  Ge2S3 film. In the system Ge-Se, the highest changes in optical characteristics  (shift of the absorption edge Eg and refraction index n) were observed by us in the films GeSe2 and GeSe3 [17]. Thereof, it is for the films of the above sections one should expect a high level of photo-induced changes in optical parameters. 

2. Experimental


The bulk glasses Ce33.3S33.85Se33.85 (or (GeS2)50(GeSe2)50) and Ge25S37.5Se37.5 (or (GeS3)50 (GeSe3)50) were prepared using direct synthesis from the corresponding elements in evacuated silica ampoules. The mass of every charge was 20 gram. In the process of synthesis, we used the step-like increase of temperature up to the maximum one (1250 K). At the temperatures 700, 950 and 1250 К, the ampoules were kept for 8, 6 and 4 hours, respectively. In what followed, temperature was lowered down to the temperature of melt homogenization (1100…1150 К). The homogenization time was 48 hours. The melts were periodically stirred. After synthesis the ampoules were air-quenched.


Thin films (thickness ~ 1 μm) were obtained by vacuum evaporation of glasses of corresponding compositions from quasi-closed effusion cells onto non-heated glass substrates. A uniform thickness of layers was provided by planetary rotation of substrates.


Light exposure of films was made using defocused radiation of a semiconductor laser (λ = 530 nm, P = 100 mW). Annealing of the films was performed in argon atmosphere for 1 and 2 h at the temperature 423 K. 


Optical transmission spectra of the films were measured at T = 300 K within the range 400 to 800 nm by using the method [19] with a monochromator МДР-3. The spectral resolution was no worse than 10–3 eV.  

3. Results and discussion


Fig. 1 and 2 (curves 1) show transmission spectra for the as-prepared films Ge25S37,5Se37,5 and Ge33.3S33.35Se33.35. It is obvious that with growing the germanium content in the composition of films, the absorption edge is shifted into short-wave spectral range testifying to increase of the pseudo-forbidden gap width (Eg).  


The Eg value can be determined from the Tauc relation [13]:
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which is valid within the range of high energies, when the absorption coefficient has values ((h() ≥ 10–4 cm–1. In (1), h( is the photon energy, B – constant that depends on film material and characterizes the slope of the Tauc absorption edge. The parameter B is an interesting parameter, since it can be taken as a measure of disorder. For example, for GeS2, GeSe2, Ge2Se3 and GeSe3 films the values of parameter B1/2 is 549 [14], 913 [12], 552 [12], and 827 cm–1/2 eV–1/2 [12], respectively.
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Fig. 1. Dependences of transmission spectra inherent to Ge25S37,5Se37,75 films on the exposure time: 1 – 0; 2 – 1; 3 – 10; 4 – 20 min.
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Fig. 2. Dependences of transmission spectra inherent to Ge33,3S33,85Se33,85 films on the exposure time: 1 – 0; 2 – 1; 
3 – 10; 4– 20 min.


The Eg values for Ge25S37.5Se37.5 and Ge33.3S33.35Se33.35 films were determined by extrapolation of the dependences 
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= 0 (Fig. 3) and are 2.276 and 2.301 eV, respectively. For the films GeS2, GeSe2, GeSe3, the pseudo-forbidden gap values obtained by us earlier [15, 17] are equal to 2.289 [15], 1.938 [17] and 1.958 eV [17], respectively. These Eg values differ to some extent from the pseudo-gap values for the films of the same compositions but obtained by other authors. The determined in [12, 13] Eg values for the films GeS2, GeSe2 and GeSe3  are equal to 2.53 [13], 2.073 [12] and 2.044 eV [12], respectively. In our opinion, this difference between Eg values is caused by technological factors. The refraction index of films was determined using the dependence [20]:

n= [N + (N2 – s2)1/2]1/2 ,


 (2)


where 
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Fig. 3. Plot of (αhν)1/2 versus hν for the films Ge25S37,5Se37,75  (a) and Ce33,3S33,85Se33,85 (b) non-exposed (1) and exposed (2, 3) for 1 (2) and 10 min (3).


In these expressions, s is the refraction index of substrate; Tmax and Tmin are interferential maxima and minima in transmission spectra within the range of wavelengths where the dispersion of the refraction index is absent. The n values for the films Ge25S37,5Se37,5 and Ge33,3S33,35Se33,35, determined at the wavelength  λ = 700 nm, are equal to 2.222 and 2.403, respectively.

Light exposure of films results in a shift of transmission spectra to the short-wave range (Figs 1 and 2, curves 2 to 4). It means that one observes photobleaching of the films. It is indicative of the growth of the pseudo-gap width. After illumination, the refraction index is lowered. The dependences of Eg  and n values for the films Ge25S37,5Se37,5 and Ge33,3S33,35Se33,35  on the exposure time are depicted in Fig. 4. It is seen that the maximum changes in Eg and n values take place at low illumination times. The rate of photo-induced changes in optical parameters is reduced with increasing the irradiation time. In this case, the greater shift of the absorption edge at the transmission level 0.2 (Figs 1 and 2) as well as greater changes of Eg and n take place in the film with the Ge content 33.3 at. % (Fig. 4) under the same exposure conditions. 


[image: image9.png]2,24

217

2,10

2,03

1,96

10

15
t, min

20

25

30

2,325

2,310

2,295

2,280






[image: image10.png]2,40

2,52
2,32

2,45
2,24

2,38
2,16

2,31
2,08

0 5 10 15 20 25 30
t, min






Fig. 4. Dependences of Eg (1) and n (2) on the exposure time for Ge25S37,5Se37,75  (a) and Ge33,3S33,85Se33,85   (b) films.

Changes in the absorption edge position (i. e., Eg values) and refraction index are caused by structural transformations taking place under laser illumination.


Amorphous films of germanium chalcogenides (Ge-S, Ge-Se, Ge-S-Se, Ge-Sb-S systems) as well as respective glasses possess a nano-heterogeneous structure [6, 12, 18, 21-29]. The basic elements of structural network in glasses and films with the germanium content above 25% are tetrahedrons GeSnSe4-n (n = 0 – 4). However, the matrix of germanium chalcogenide glasses and films contains a considerable amount of structural fragments with homopolar bonds Ge-Ge, S-S and Se-Se . In these cases, germanium chalcogenide films contain a higher concentration of homopolar bonds [12, 18, 23]. When illuminating the films, there take place break and re-switch of Ge-Ge, S-S and Se-Se bonds and formation of the heteropolar ones Ge-S(Se) [12, 15, 16, 23]. Photostructural transformations can be also promoted by such structural defects as over-coordinated and under-coordinated atoms of germanium and chalcogen. These processes result in the increase of ordering in the local structure of films. 
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Fig. 5. Transmission spectra of Ge33,3S33,85Se33,85  film annealed for 1 h at the temperature 423 K versus the exposure time: 1-0; 2-1; 3-10; 4-20 min.
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Fig. 6. Shift of the absorption edge at the transmission level 0.2 (a), changes Eg (b) and n (c) versus the exposure time for as-prepared (1) and annealed (2, 3) at the temperature 423 K for 1 (2) and 2 h (3). 


With the aim to ascertain the influence of temperature on photo-induced changes in optical characteristic, we investigated transmission spectra of the films Ge25S37.5Se37.5 and Ge33.3S33.35Se33.35 annealed for 1 and 2 h at the temperature 423 K. It should be noted that this temperature is much lower than the glass-transition temperature for these films.


Thermal annealing of films results in a shift of transmission spectra to the short-wave range. It means that one observes photobleaching of the films. In this case, Eg value grows, while  n is decreased. So, for the Ge33.3S33.35Se33.35 film annealed for 1 and 2 h, Eg is equal to 2.397 and 2.410 eV, respectively. The refraction index values in the same conditions are, respectively, equal to 2.320 and 2.185. In the film Ge25S37.5Se37.5, the degree of Eg and n changes is considerably lower.

Thermostimulated changes of Ge-S-Se film optical characteristics are caused by structural transformations. Like to the case of laser illumination, annealing of the films results in break and re-switching the homopolar bonds Ge-Ge, S-S (Se-Se) and formation of structural units with heteropolar bonds GeS(Se)4/2. 


In this case, thermal polymerization of molecular fragments with homopolar bonds (for example, Ge2Se6, Ge2S6, Se2, S2) into the structural network of GeSnSen-4 types can be realized both via the defectless mechanism and with creation of structural charged defects (for example, Ge3–, S3+, S1– [30]).


Fig. 5 (curves 2 to 4) shows transmission spectra for Ge33.3S33.35Se33.35  films illuminated after annealing. It can be seen that the shift of absorption edge (∆E) under laser illumination (to the short-wave range) is less in them than that in the as-prepared ones (Fig. 6a). The pseudo-forbidden gap width (Fig. 6b) and refraction index ∆n changes (Fig. 6c) become considerably lower, too. It means that the level of photo-structural transformations in the annealed films is lower than that in in the as-prepared ones. The lower level of changes in optical parameters in the annealed Ge-S-Se films is conditioned by a rather less number of structural fragments with homopolar bonds in their matrix after annealing, which are able to polymerize under laser irradiation.


4. Conclusions


Laser illumination (λ = 530 nm) of amorphous films in the system Ge-S-Se leads to the shift in transmission spectra to the short-wave side of the spectrum (photobleaching the films takes place). In this case, the pseudo-forbidden gap width Eg grows, while the refraction index value n is lowered. The highest changes in Eg and n were observed in the film  (GeS2)50(GeSe2)50. These changes of film optical characteristics are caused by photo-structural transformations that are related with the decreasing content of structural fragments possessing homopolar bonds in their matrix. Annealed films show lower level and rate of photo-structural changes in optical parameters.
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