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Abstract. Theoretical investigation of the influence of magnetic and electric fields on the 
energy spectrum and wave functions of electron in semiconductor spherical layer has 
been performed. The case of co-directed electric and magnetic fields has been 
considered. The Schrödinger equation has been solved using the method of expansion for 
the wave function of electron in the spherical layer under external fields by applying the
complete set of wave functions of a quasi-particle in a spherical nanostructure without
the external fields. It has been shown that electric and magnetic fields take off the 
spectrum degeneration with respect to the magnetic quantum number. The external fields 
rebuild the energy spectrum and deform wave functions of electron. Moreover, their 
influence on the spherically symmetric state is the largest one. Increasing the magnetic 
field induction entails a monotonous dependence of the electron energy for the states 
with m  0 and non-monotonous one for the states with m < 0. The ground state of 
electron is successively formed by the states with m = 0, –1, –2, … with increasing the 
induction of magnetic field. The enhancement of the electric field mainly diminishes the 
electron energy. The influence of field on the energy and intensities of the 1p-1s 
intraband transition has been studied. It has been shown that there exists a certain value 
of the electric field, at which the energy of quantum transition doesn’t depend on the 
magnetic field induction.
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1. Introduction

Semiconductor nanostructures have attracted a particular 
attention of scientists for about two decades. Recent 
advances in semiconductor technology allow growing 
more complex structures than the simple quantum wells, 
wires or dots. Among them: multiple quantum rings [1], 
complex quantum wires [2] and multilayered quantum 
dots [3-5]. The latter are grown using the chemical 
colloidal method on the basis of CdS, CdSe, ZnS, ZnSe, 
HgS and other semiconductor materials and are 
promising for many technological applications such as 
infrared photodetectors [6], lasers [7, 8], biolabels and 
biosensors [9, 10], etc.

Multilayered spherical quantum dots awake a 
particular interest of researchers because these structures 

can be implemented for production of light emitting 
diodes as they give high-efficient luminescence [11-13]. 
The simplest multilayered spherical structures are 
quantum dots composed of the semiconductor core and 
shell embedded into the matrix [14-16]. If the core 
serves as a potential barrier and the shell – potential 
well, the system is called a spherical layer. 

External electrical and magnetic fields influence on 
localization of quasi-particles in quantum wells and 
affect optical properties of the structures. When the 
external fields are present, the spherical symmetry is 
violated and, therefore, calculation of the energy 
spectrum becomes complicated due to the fitting 
conditions at the interfaces. The influence of electric 
field on properties of nanosystems is described by the 
linear term with respect to the electric field in the 
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Schrödinger equation for electron, so the problem can be 
solved using the variational method or perturbation 
theory for a simple spherical quantum dot [17, 18] and 
spherical layer [19, 20]. In the article [17], the Stark shift 
is calculated using the variational method within the 
framework of the infinite confining potential well model 
for electron in the spherical quantum dot. The authors of 
[18] investigated intersubband absorption spectra in the 
simple spherical quantum dot with definite walls with or 
without hydrogen on-center impurity. The article [19] is 
dedicated to the study of the electron energy shift in the 
spherical layer with impenetrable walls within the model 
of the perturbation theory. The analytical calculation of 
the influence of strong electric field on electron states 
was performed in [20]. But the proposed theory is 
applicable only for limit case of a “thin enough” layer 
laying fairly far from the center of the system, which not 
always corresponds to real nanosystems. The interband 
transitions in the spherical layer driven by electric field 
are investigated in [21, 22] using the perturbation theory 
approach.

The study of the magnetic field effect on the 
electron spectrum and wave functions is much more 
complicated, as the Hamiltonian of electron comprises 
not only a linear term, but the quadratic one of the 
magnetic field induction. Therefore, in the majority of 
theoretical studies, these investigations are performed 
for simple quantum dots [23, 24]. The analogous 
problem for the spherical layer is solved only using the 
numerical calculations [25]. The proposed studies of 
spherical layer don’t give any information about optical 
properties of the structure. Therefore, this problem of the 
influence of electric and magnetic fields on spherical 
layer properties needs more detailed investigation.

In this work, we investigate the effect of external 
electric and magnetic fields on the electron energy 
spectrum and its probability density of localization in the 
spherical layer (SL) with infinite confining potentials. 
Also, the intensities of intraband 1p – 1s quantum 
transitions as functions of the electric field and magnetic 
field induction are obtained.

2. Schrödinger equation for electron in spherical 
layer driven by magnetic and electric fields

We consider a spherical nanostructure consisting of a 
core-barrier (r < r1), a shell-well (r1 < r < r2) embedded 
into semiconductor matrix (r > r2), the so-called 
spherical layer (SL). The directions of the magnetic field 
induction and electric field are chosen along the Oz axis. 
To obtain the energies and wave functions of electron in 
SL driven by external fields, the Schrödinger equation 
with the Hamiltonian (1) is to be solved 
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where A


 is the vector potential, F is the magnitude of 

the electric field, )(rV p is the self-polarization potential

with account of the influence of induced charges on the 
interfaces, )(rU  is the confining potential and
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The potential of the field inside the spherical shell 
in uniform electrostatic field E has the form: 
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The coefficients C and D are obtained as the 
solutions of the Poisson equation [26]:
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The potential )(rV p  was calculated in [27] in the 

form:
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It is taken into account that the relationship 

between A


 and magnetic induction B


: 2/][ BrA


 , 

and introduced are the new dimensionless magnitudes: 
Ry* = e2 / (2a*) – effective Rydberg energy, 

)/( 2
0

2* ema   – effective Bohr radius, and parameters 

)Ry2/( *cmeB , ** Ry/eFa . As a result, the 

Hamiltonian (1) transforms to the form:
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where Lz is the z component of the angular momentum 
operator of electron.

If B = 0, F = 0, the Schrödinger equation with the 
Hamiltonian (11) has the exact solutions:
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= )(/)( 11 rknrkjA nllnllnl , )(),( znzj ll – Bessel 

spherical functions of the first and the second kind, 
respectively; the values knl are fixed by the condition 
Rnl(r2) = 0, and the coefficients Anl – by the normality 
condition.

In order to study the electron properties in SL 
driven by electric and magnetic fields, we are going to 
use the method of expansion of the quasi-particle wave
function by applying the complete set of eigen functions
of electron in the spherical nanostructure without the 
external fields, obtained as the exact solutions of the 
Schrödinger equation [23]. When the external fields are
applied, the spherical symmetry of the problem is 
lowered to the axial one and the orbital quantum number
l becomes inconvenient. The new states characterized by 
a magnetic quantum number m are represented as a 
linear combination of the states )(rnlm


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Substituting (13) into the Schrödinger equation
with the Hamiltonian (11), we obtain the secular 
equation for the electron energy spectrum:
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Calculating the energy spectrum and wave 
functions of electron in SL driven by electric and 
magnetic fields, the intensity of 1s1p   intraband 

quantum transitions can be obtained as follows:
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. (16)

In this work, the energies and intensities of 
quantum transition are obtained as functions of the 
magnetic field induction and electric field.

3. Analysis of the results

The computer calculations were performed using the 
physical parameters: electron effective mass 

emm 13.00   (me – the mass of pure electron), dielectric 

constant 6.100   of CdSe for shell-well and dielectric 

constant 25.81   of ZnS semiconductor material for 

potential barriers.
Expanding the wave functions (13), we took into 

account enough quantity of terms, providing the 
condition that the sum of squares of the expansion 
coefficients was equal to unity with the accuracy not less 
than 0.01%. 

The dependences of the electron energy spectrum 
on the magnetic field induction (a) and electric field (b) 
for the cases of applying one or another external field are 
presented in Fig. 1. The spherical symmetry of the 
problem is violated by the applied fields, so only two 
quantum numbers characterizing the electron states 
should be used, but for convenience, we use the same 
quantum numbers characterizing the states of electron in 
a nanostructure driven by electric and magnetic fields as 
the ones without the external fields.
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Fig. 1. Energy spectrum of electron in SL with r1 = 4 nm, r2 = 
12 nm as a function of the magnetic field induction (F = 0) (a), 
electric field (B = 0) (b).

From Fig. 1a, one can see that the energy spectrum 
of the electron becomes non-degenerate due to the 
influence of magnetic field. The energies of the states 
with m  0 become higher under the influence of the 
magnetic field. For the states with m < 0, the non-
monotonous dependence of the energy on magnetic field 
is caused by the linear and quadratic terms contributed 
by the magnetic field in the Hamiltonian (11). When the 
magnetic field increases, the states with m = ...,2,1,0 
successively play the role of the ground state. The 
ground state of electron with the certain value of the 
magnetic quantum number transforms into the state with 
another m when the magnetic field intensity increases at 
the equal magnitude. Theoretical investigations show 
that the distance between the points of these transitions 
increases when the SL radius becomes smaller. Similar 
behavior of the electron ground state energy was 
theoretically obtained and experimentally confirmed for 
the semiconductor quantum rings [28]. Any analogous 
effects aren’t observed for simple quantum dots, for 
which the ground state is formed by the electron energy 
state with m = 0 independently on the magnetic field 
induction. 

Fig. 1b shows that external electrical field partially 
takes off degeneration of the energy spectrum with 
respect to the magnetic quantum number, mainly 
decreasing the electron energy.

Fig. 2 displays the dependences of the electron 
energy states with m = 0, ±1 on the electric field at the 
applied external magnetic field with different values of 
induction. Magnetic field shifts up the energy spectrum. 
From Fig. 2b, one can see that the ground state is formed
by the lowest energy level with m = 1  at B = 40 T in 

the case of the electric field absence. But the increase of 
the electric field rebuilds the energy spectrum, to higher 
extent pulling down the energies of the states with m = 0. 
So, at a certain value of F, the ground state is formed by 
the state with m = 0 as in the case of the external fields 
absence. In Fig. 2, one can observe the anti-crossing 
effect for the states with the same value of the magnetic 
quantum number and the crossing one for the states with 
different m (the insert of Fig. 2a).

The distributions of probability densities for 
electron localization in SL in different quantum states 
are presented in Fig. 3. 

Fig. 2. Energy spectrum of electron in SL with r1 = 4 nm, r2 = 
12 nm as a function of the electric field at B = 20 T (a), B = 
40 T (b).



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2014. V. 17, N 1. P. 7-13.

© 2014, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

11

     F = 0 F = 20 kV/cm     F = 50 kV/cm

B = 0, 100

B = 0, 110

B = 40 T, 100

B = 40 T, 110

Fig. 3. Distributions of probability densities for electron localization in SL with r1 = 4 nm, r2 = 12 nm for the quantum states 
with 100 , 110  at B = 0, 40 T and F = 0, 20, 50 kV/cm.

Fig. 3 proves that the electron wave functions are 
deformed due to the influence of external fields. The 
turned on electric and magnetic fields deform the 
distributions of electron densities in SL. In the case of 
the electric field absence, the angular probability 
increases near  = 0,  and decreases near  = /2, while 
the magnetic field induction increases. The electron 1s 
state is characterized by the most obvious deformation of 
its wave function. Its view approaches to the form of the 
excited 1p state under the influence of magnetic field. 

The energies of the mentioned electron states become 
closer with enhancement of B, too (Fig. 1a). Electric 
field localizes electron in the potential well made by it 
near  = . Magnetic field mainly promotes this effect. 

The depicted distributions together with the 
energies of quantum transitions determine the intensities 
of intraband transitions. We calculate the intensities of 
the quantum transitions between the first excited and 
ground states (m = 0). The obtained energies and 
intensities of the transitions are shown in Fig. 4.
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the 1sp1   intraband quantum transition on the electric field 

at B = 0, 20, 30, 40 T.

From Fig. 4a, one can see that the intensities of the 
studied transitions decrease with increasing the magnetic 
field induction, obtaining non-monotonous character of 
its dependence on the electric field. This behavior is 
entailed by complicated evolution of energies and 
distributions of electron probability densities in the 
ground and first excited states in SL driven by external 
fields. From Fig. 4b, it is clear that the energy of the  
1p – 1s intraband transition increases with electric field 
strength growth at all the values of the magnetic field 
induction. At F0  17 kV/cm, this energy obtains the 
characteristic value E0 that is constant at arbitrary B. 
The intensity of the quantum transition at F0 can be 
controlled by fitting the magnetic field induction. 

4. Conclusions

We have studied the electron energy spectrum in 
semiconductor spherical layer under the influence of 

electric and magnetic fields. The problem has been 
solved using the method of electron wave function 
expansion over the set of eigen functions being the exact 
solutions of the Schrödinger equation for the same 
structures without the external fields. 

Turning on the magnetic field takes off degeneracy 
of the energy spectrum with respect to the magnetic 
quantum number. The electron energies for the states 
with positive and negative values of the magnetic 
quantum number differently depend on the magnetic 
field induction: for the states with m  0, the energy 
monotonously increases, and for m < 0, the energy 
decreases at first and then, only when the magnetic field 
becomes strong enough, enhances. The electric field 
takes off degeneracy of the spectrum partially. Due to 
applying the electric field, additional lowering the 
potential well is introduced, so the energy levels are 
pulled down. 

The distributions of electron probability densities in 
SL are deformed by both electric and magnetic fields. 
Electric field localizes electron near  , magnetic 

field with large induction promotes this effect. 
The complicated dependence of electron 

localization on the magnitudes of external fields defines 
non-monotonous character of the intensities of intraband 
quantum transitions. The specific value of the electric 
field exists, at which the intensity of the 1s1p 
transition can be changed by applying the magnetic field 
with different induction at the constant transition energy.

The results of the investigation can be applied for 
constructing new devices on the basis of multilayered 
quantum dots. Nevertheless the problem is solved for 
CdSe/ZnS SL, the proposed method can be used for 
calculating electrical and optical properties of SLs for 
other materials and sizes. The introduced theory can be 
applied for further investigation of the features of 
multilayered quantum dots.
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1. Introduction 

Semiconductor nanostructures have attracted a particular attention of scientists for about two decades. Recent advances in semiconductor technology allow growing more complex structures than the simple quantum wells, wires or dots. Among them: multiple quantum rings [1], complex quantum wires [2] and multilayered quantum dots [3-5]. The latter are grown using the chemical colloidal method on the basis of CdS, CdSe, ZnS, ZnSe, HgS and other semiconductor materials and are promising for many technological applications such as infrared photodetectors [6], lasers [7, 8], biolabels and biosensors [9, 10], etc.


Multilayered spherical quantum dots awake a particular interest of researchers because these structures can be implemented for production of light emitting diodes as they give high-efficient luminescence [11-13]. The simplest multilayered spherical structures are quantum dots composed of the semiconductor core and shell embedded into the matrix [14-16]. If the core serves as a potential barrier and the shell – potential well, the system is called a spherical layer. 


External electrical and magnetic fields influence on localization of quasi-particles in quantum wells and affect optical properties of the structures. When the external fields are present, the spherical symmetry is violated and, therefore, calculation of the energy spectrum becomes complicated due to the fitting conditions at the interfaces. The influence of electric field on properties of nanosystems is described by the linear term with respect to the electric field in the Schrödinger equation for electron, so the problem can be solved using the variational method or perturbation theory for a simple spherical quantum dot [17, 18] and spherical layer [19, 20]. In the article [17], the Stark shift is calculated using the variational method within the framework of the infinite confining potential well model for electron in the spherical quantum dot. The authors of [18] investigated intersubband absorption spectra in the simple spherical quantum dot with definite walls with or without hydrogen on-center impurity. The article [19] is dedicated to the study of the electron energy shift in the spherical layer with impenetrable walls within the model of the perturbation theory. The analytical calculation of the influence of strong electric field on electron states was performed in [20]. But the proposed theory is applicable only for limit case of a “thin enough” layer laying fairly far from the center of the system, which not always corresponds to real nanosystems. The interband transitions in the spherical layer driven by electric field are investigated in [21, 22] using the perturbation theory approach.

The study of the magnetic field effect on the electron spectrum and wave functions is much more complicated, as the Hamiltonian of electron comprises not only a linear term, but the quadratic one of the magnetic field induction. Therefore, in the majority of theoretical studies, these investigations are performed for simple quantum dots [23, 24]. The analogous problem for the spherical layer is solved only using the numerical calculations [25]. The proposed studies of spherical layer don’t give any information about optical properties of the structure. Therefore, this problem of the influence of electric and magnetic fields on spherical layer properties needs more detailed investigation.


In this work, we investigate the effect of external electric and magnetic fields on the electron energy spectrum and its probability density of localization in the spherical layer (SL) with infinite confining potentials. Also, the intensities of intraband 1p – 1s quantum transitions as functions of the electric field and magnetic field induction are obtained.

2. Schrödinger equation for electron in spherical layer driven by magnetic and electric fields 

We consider a spherical nanostructure consisting of a core-barrier (r < r1), a shell-well (r1 < r < r2) embedded into semiconductor matrix (r > r2), the so-called spherical layer (SL). The directions of the magnetic field induction and electric field are chosen along the Oz axis. To obtain the energies and wave functions of electron in SL driven by external fields, the Schrödinger equation with the Hamiltonian (1) is to be solved 
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The potential of the field inside the spherical shell in uniform electrostatic field E has the form: 
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The coefficients C and D are obtained as the solutions of the Poisson equation [26]:
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The potential 
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It is taken into account that the relationship between 
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. As a result, the Hamiltonian (1) transforms to the form:
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where Lz is the z component of the angular momentum operator of electron.

If B = 0, F = 0, the Schrödinger equation with the Hamiltonian (11) has the exact solutions:
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where
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 – Bessel spherical functions of the first and the second kind, respectively; the values knl are fixed by the condition Rnl(r2) = 0, and the coefficients Anl – by the normality condition.


In order to study the electron properties in SL driven by electric and magnetic fields, we are going to use the method of expansion of the quasi-particle wave function by applying the complete set of eigen functions of electron in the spherical nanostructure without the external fields, obtained as the exact solutions of the Schrödinger equation [23]. When the external fields are applied, the spherical symmetry of the problem is lowered to the axial one and the orbital quantum number l becomes inconvenient. The new states characterized by a magnetic quantum number m are represented as a linear combination of the states 
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Substituting (13) into the Schrödinger equation with the Hamiltonian (11), we obtain the secular equation for the electron energy spectrum:
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where the matrix elements 
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Calculating the energy spectrum and wave functions of electron in SL driven by electric and magnetic fields, the intensity of 
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 intraband quantum transitions can be obtained as follows:
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In this work, the energies and intensities of quantum transition are obtained as functions of the magnetic field induction and electric field.


3. Analysis of the results


The computer calculations were performed using the physical parameters: electron effective mass 
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Expanding the wave functions (13), we took into account enough quantity of terms, providing the condition that the sum of squares of the expansion coefficients was equal to unity with the accuracy not less than 0.01%. 


The dependences of the electron energy spectrum on the magnetic field induction (a) and electric field (b) for the cases of applying one or another external field are presented in Fig. 1. The spherical symmetry of the problem is violated by the applied fields, so only two quantum numbers characterizing the electron states should be used, but for convenience, we use the same quantum numbers characterizing the states of electron in a nanostructure driven by electric and magnetic fields as the ones without the external fields.
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Fig. 1. Energy spectrum of electron in SL with r1 = 4 nm, r2 = 12 nm as a function of the magnetic field induction (F = 0) (a), electric field (B = 0) (b).


From Fig. 1a, one can see that the energy spectrum of the electron becomes non-degenerate due to the influence of magnetic field. The energies of the states with m ( 0 become higher under the influence of the magnetic field. For the states with m < 0, the non-monotonous dependence of the energy on magnetic field is caused by the linear and quadratic terms contributed by the magnetic field in the Hamiltonian (11). When the magnetic field increases, the states with m = 
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 successively play the role of the ground state. The ground state of electron with the certain value of the magnetic quantum number transforms into the state with another m when the magnetic field intensity increases at the equal magnitude. Theoretical investigations show that the distance between the points of these transitions increases when the SL radius becomes smaller. Similar behavior of the electron ground state energy was theoretically obtained and experimentally confirmed for the semiconductor quantum rings [28]. Any analogous effects aren’t observed for simple quantum dots, for which the ground state is formed by the electron energy state with m = 0 independently on the magnetic field induction. 


Fig. 1b shows that external electrical field partially takes off degeneration of the energy spectrum with respect to the magnetic quantum number, mainly decreasing the electron energy.


Fig. 2 displays the dependences of the electron energy states with m = 0, ±1 on the electric field at the applied external magnetic field with different values of induction. Magnetic field shifts up the energy spectrum. From Fig. 2b, one can see that the ground state is formed by the lowest energy level with m = 
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 at B = 40 T in the case of the electric field absence. But the increase of the electric field rebuilds the energy spectrum, to higher extent pulling down the energies of the states with m = 0. So, at a certain value of F, the ground state is formed by the state with m = 0 as in the case of the external fields absence. In Fig. 2, one can observe the anti-crossing effect for the states with the same value of the magnetic quantum number and the crossing one for the states with different m (the insert of Fig. 2a).


The distributions of probability densities for electron localization in SL in different quantum states are presented in Fig. 3. 
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Fig. 2. Energy spectrum of electron in SL with r1 = 4 nm, r2 = 12 nm as a function of the electric field at B = 20 T (a), B = 40 T (b).

Fig. 3 proves that the electron wave functions are deformed due to the influence of external fields. The turned on electric and magnetic fields deform the distributions of electron densities in SL. In the case of the electric field absence, the angular probability increases near ( = 0, ( and decreases near ( = (/2, while the magnetic field induction increases. The electron 1s state is characterized by the most obvious deformation of its wave function. Its view approaches to the form of the excited 1p state under the influence of magnetic field. The energies of the mentioned electron states become closer with enhancement of B, too (Fig. 1a). Electric field localizes electron in the potential well made by it near ( = (. Magnetic field mainly promotes this effect. 
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The depicted distributions together with the energies of quantum transitions determine the intensities of intraband transitions. We calculate the intensities of the quantum transitions between the first excited and ground states (m = 0). The obtained energies and intensities of the transitions are shown in Fig. 4.
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Fig. 4. Dependences of the energies (a) and intensities (b) of the 
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 intraband quantum transition on the electric field at B = 0, 20, 30, 40 T.


From Fig. 4a, one can see that the intensities of the studied transitions decrease with increasing the magnetic field induction, obtaining non-monotonous character of its dependence on the electric field. This behavior is entailed by complicated evolution of energies and distributions of electron probability densities in the ground and first excited states in SL driven by external fields. From Fig. 4b, it is clear that the energy of the  1p – 1s intraband transition increases with electric field strength growth at all the values of the magnetic field induction. At F0 ( 17 kV/cm, this energy obtains the characteristic value (E0 that is constant at arbitrary B. The intensity of the quantum transition at F0 can be controlled by fitting the magnetic field induction. 


4. Conclusions


We have studied the electron energy spectrum in semiconductor spherical layer under the influence of electric and magnetic fields. The problem has been solved using the method of electron wave function expansion over the set of eigen functions being the exact solutions of the Schrödinger equation for the same structures without the external fields. 


Turning on the magnetic field takes off degeneracy of the energy spectrum with respect to the magnetic quantum number. The electron energies for the states with positive and negative values of the magnetic quantum number differently depend on the magnetic field induction: for the states with m ( 0, the energy monotonously increases, and for m < 0, the energy decreases at first and then, only when the magnetic field becomes strong enough, enhances. The electric field takes off degeneracy of the spectrum partially. Due to applying the electric field, additional lowering the potential well is introduced, so the energy levels are pulled down. 


The distributions of electron probability densities in SL are deformed by both electric and magnetic fields. Electric field localizes electron near 
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, magnetic field with large induction promotes this effect. 


The complicated dependence of electron localization on the magnitudes of external fields defines non-monotonous character of the intensities of intraband quantum transitions. The specific value of the electric field exists, at which the intensity of the 
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 transition can be changed by applying the magnetic field with different induction at the constant transition energy.


The results of the investigation can be applied for constructing new devices on the basis of multilayered quantum dots. Nevertheless the problem is solved for CdSe/ZnS SL, the proposed method can be used for calculating electrical and optical properties of SLs for other materials and sizes. The introduced theory can be applied for further investigation of the features of multilayered quantum dots.
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Fig. 3. Distributions of probability densities for electron localization in SL with r1 = 4 nm, r2 = 12 nm for the quantum states with � EMBED Equation.3  ���, � EMBED Equation.3  ��� at B = 0, 40 T and F = 0, 20, 50 kV/cm.
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