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Abstract. The work is devoted to issues related with implementation of the virial 
theorem for one-center bipolaron. The virial theorem expressions have been obtained for 
an electron system with Coulomb interactions in the phonon field. It is shown that for the 
bipolaron functional (one-center configuration) virial theorem holds for arbitrary 
electron-phonon coupling. As a specific example of the virial theorem for one-center 
bipolaron configuration, the author adduces numerical calculations of the energy of the 
ground state and the various contributions (kinetic energy, electron-phonon interaction, 
electron energy, phonon energy) into the energy of bipolaron, performed within the 
framework of Buimistrov-Pekar method. It is shown that the virial theorem is fulfilled 
with high accuracy for the two-electron systems with Coulomb interactions for an 
arbitrary value electron-phonon coupling. The necessary condition for formation of a 
bipolaron stable state is accounting electron correlations associated with the direct 
dependence of the trial electron wave function of the system from the interelectron 
distance. 
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1. Introduction  

The question of whether a bound state of two polarons is 
possible is closely related to finding a potential of 
pairwise interaction between two polarons, which is a 
function of the distance between them. For large-radius 
bipolaron, the region of existence of a bound state is 
limited, on the one hand, by the Fröhlich constant of 
electron-phonon interaction, to rather a large αc = 6.8 
[1], below which bound bipolaron state does not exist. In 
the paper [1], calculations were carried out using the 
Feynman method of integration over trajectories, which 
yields translation invariant solutions of polaron and 
bipolaron problems. The methods that use a direct 
variation of the bipolaron wave function give a slightly 
higher value of the electron-phonon interaction 
parameter: αc = 7.3 [2, 3], and αc = 6.9 [4]. These values 
were obtained in finding the bipolaron coupling energy 

ΔEBp = 2EP − EBp (where EP and EBp are the energies of 
the polaron and bipolaron ground states, respectively) 
with respect to the lower boundary of the polaron energy 
for η = ε∞/ε0 → 0. 

The idea to explain the high-temperature super-
conductivity by Bose condensation of singlet electron 
pairs localized in spherically symmetric cavities formed 
in metal ammonia solutions, belongs to Ogg [5-7]. Later 
on S.I. Pekar [8] introduced a model of one-center 
bipolaron as a bound state of two electrons in an ionic 
crystal. In that model, the two-center wave function was 
constructed by analogy with helium atom 
Ψ(r1, r2) = N(1 + αr1)(1 + αr2) × 
×(1 + βr12)exp(−αr1)exp(−αr2),  (1) 

where N is a normalizing multiplier; r1, r2 are 
coordinates of first and second electrons, respectively, 
r12 = |r1 − r2| is the distance between first and second 
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electrons, r1 = |r1|, r2 = |r2|; α, β are variational 
parameters. 

For the first time, calculations of the model were 
carried out by S.I. Pekar’s PhD fellow, 
O.F. Tomasevich, for the case of bound bipolaron or F'-
center [9]. 

The mistakes made in calculating the normalizing 
multiplier of the wave function chosen in the form of (1) 
and in finding the phonon contribution into the bipolaron 
functional led to underestimation of the F'-center 
binding energy and erroneous conclusion about an 
insignificant role of interelectron correlations associated 
with the direct dependence of the wave function on the 
distance between electrons. Later on, referring to [9], 
S. I. Pekar [8] made a conclusion that stable bipolaron 
cannot be formed in the framework of the one-center 
model. Function (1) was also used by A.S. Davydov [10] 
to calculate the bipolaron energy in metal-ammonia 
solution. The erroneous conclusion about the instability 
of one-center bipolaron was made in that work, too. The 
failed attempts to find a bound bipolaron state in the 
framework of one-center configuration gave rise to a 
model of two-center bipolaron [11, 12]. Earlier polaron 
effects in ionic crystals were studied for the case of two 
centers system (F2-center) in [13]. That work provided 
the basis for the bipolaron model suggested in [11] 
where the electron wave function was chosen by 
complete analogy with a hydrogen molecule  

Ψ(r1, r2) = Φ(r1, r2) + Φ(r2, r1). (2) 

In the pioneering paper aimed at calculation of the 
bipolaron energy, the wave function Φ(r1, r2) was 
chosen as a product of hydrogen-like wave functions 
centered at different points coinciding with the centers of 
polarization wells of two polarons [11]. In the next paper 
[12] that dealt with two-center bipolaron, the polaron 
functions were chosen in a more general form, and the 
wave function Φ(r1, r2) was a product of Pekar’s polaron 
functions (1 + αra1)exp(−αra1)(1 + αrb2) exp(−αrb2) 
where the traditional notation is used for the two-center 
coordinate system: ra1(ra2) is the radius-vector of first 
(second) electron reckoned from the center a, rb1(rb2) is 
the same for the center b. 

An alternative method of finding the bipolaron 
energy was used in [14], the authors of which suggested a 
model Hamiltonian for calculation of the two-center 
bipolaron energy by integration over trajectories. There, a 
variational parameter was introduced, which could be 
treated as a distance between the centers of polarization 
wells for two polarons. The model was studied 
qualitatively; numerical calculations were not carried out. 
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For more than thirty years that passed since the 
time when the pioneering papers dealt with calculation 
of the strong-coupling bipolaron energy [11, 12] were 
published till the time when the paper by Suprun and 
Moyzhes [15] came out where the numerical mistakes 
made in [9] and [10] were corrected, the object of 
investigations was just two-center bipolaron, 
notwithstanding the small value of the coupling energy. 

After the paper [15] had come out, and its results 
had been reproduced by various research teams with the 
use of various methods and also in view of the fact that 
the one-center bipolaron configuration is energetically 
more advantageous than the two-center one, 
investigations of the latter practically ceased. The author 
of [16] erroneously (as we will show below) states that 
the virial theorem is violated in the case of one-center 
bipolaron and holds true only in the case of a two-center 
configuration. For this reason, the author [16] 
erroneously claims that the one-center bipolaron 
configuration corresponds to a formal solution that has 
no physical meaning. The proof that the virial theorem is 
fulfilled in the strong coupling limit for the one-center 
bipolaron configuration was carried out in [17]. In this 
paper, we performed a study of the virial theorem for the 
one-center bipolaron configuration in the case of 
arbitrary electron-phonon coupling.  

2. Basic relations 

In this paper, we deal only with the theory of large-
radius continuum bipolaron. The electron-phonon 
interaction will be described by Fröhlich Hamiltonian. 
For two electrons in a phonon field, the Hamiltonian has 
the form: 
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ω is the frequency of optical phonons, k – wave vector 
of phonons,  and  are operators of birth and 
annihilation of phonons with the wave vector k, m

+
ka ka

∗ and e 
– electron’s effective mass and charge respectively, ε0 
and ε∞ – static and high-frequency dielectric 
permittivities, V is the crystal volume.  

Though the analogy with a hydrogen molecule 
provided the basis for the pioneering papers aimed at 
calculation of strong-coupling bipolaron [11, 12], the 
bipolaron Hamiltonian has an essential peculiarity that 
distinguishes it from the Hamiltonian of a hydrogen 
molecule. Namely, in Hamiltonian (3) the parameter 
analogous to the distance between two protons in the 
molecule is lacking. In molecular physics, of equally 
frequent use are the dependences of the hydrogen 
molecule energy on the distance between protons of two 
types: with and without regard for repulsion between 
protons (for example Figs 3.3 and 3.4 in the ref. [18], 
correspondingly). The latter dependences are especially 
suitable for finding the energy of a system consisting of 
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two hydrogen atoms on the small distances between 
protons by using variational calculations and for getting 
a limit transition corresponding to joining of two 
hydrogen atoms into helium atom. In this case, the 
distance dependence of the hydrogen molecule energy 
has the only minimum corresponding to configuration of 
helium atom at the point R = 0. In other words, the 
dependence of the wave function of the hydrogen 
molecule system on the distance between protons does 
not lead to arising of an energy minimum at the point 

. The reason is just that the Hamiltonian of a 
hydrogen molecule contains a term representing 
repulsion between protons. 

0≠= mRR
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Since Hamiltonian of two electrons in a phonon 
field (3) does not depend on the distance between the 
centers of polarization wells for two polarons, one would 
assume that potential dependences of the total energy of 
the system on the distance between polarons should 
correspond to potential dependences of the hydrogen 
molecule energy on the distance between protons 
without regard for repulsion between protons. Thus, the 
ground state of the two-electron system should 
correspond to a spherically-symmetric state. 

3. The problem of taking account of electronic 
correlations and spatial configuration of a bipolaron  

In the continuum approximation in the strong coupling 
limit polaron and bipolaron functionals have the form 
[8, 15] 

12
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where NP, N are normalizing multipliers of the polaron 
and bipolaron wave functions, respectively; 

;  is the distance between electrons. ( )1
0

1 −−
∞ ε−ε=C 12r

In what follows, we will use effective Hartree 
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The condition necessary to form a bound one-
center bipolaron state is the availability of interelectron 
correlations, which can be taken into account, for 
example, by the direct dependence of the wave function 
on the distance between electrons. 

The reason is that in choosing the electron wave 
function in the multiplicative form, even in the limit of 
the strongest coupling when η → 0, the bipolaron 

functional identically falls into a sum of two polaron 
functionals. 

Interelectron correlations associated with the direct 
dependence of the electron wave function on the 
distance between these electrons were taken into account 
in many papers. As an example, we can write 

( ) ( )( ) ( )( ) ( 1221211212 coshexp11~ rrrrrbCr ξ+δ− )+++Ψ  [19], 

( )∑ −−−+=Ψ
i

iiii rararaCP )2(exp1 23122111212  [2, 3], 

( )( ) (( )2
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2
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2
2112 exp(exp1~ rrrrk +δ−−ξ−−Ψ )  [20], 

( ) ( )( )2
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2
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2
1212 exp1~ rrkr +δ−+Ψ  [21], 

kaaaCbÑ iiii ,,,,,,,, 321ξδ  are variational parameters, 
 is the electron coordinates permutation operator. 12P

To find the energy of one-center bipolaron, use was 
made of different two-electron functions. A correct 
functional of Pekar’s bipolaron in the limit of strong 
electron-phonon interaction is given in [17].  

For the case of strong coupling, the bipolaron 
energy expressed as a function of a distance between 
polarons was studied in [22] where the dependences of 
the bipolaron energy on the distance between the centers 
of polarization wells for two polarons are given for 
various values of the parameter η. In the paper [23], 
similar dependences are presented for various constants 
of electron-phonon interaction. Calculations were carried 
out by Buimistrov-Pekar method [24]. 

4. Virial theorem and interaction between polarons  

The conditions under which the virial theorem holds true 
for the polaron functional were considered in [25] in the 
general case and in [17] as applied to the strong coupling 
bipolaron functional. 

In the strong couplings limit, the energies of the 
polaron EP and bipolaron EBp ground states are 
determined as the lower boundary (absolute minimum) 
of functionals (4) and (5), [ ]1min Ψ= PP JE , 

[ ]12min Ψ= BpBp JE . The only additional condition is 
that the probe wave function should be normalized ([26], 
p. 156). 

Let us replace the probe function  (where )(rrΨ rr  
stands for 1r

r , 2r
r , Nr

r , N is the number of electrons) by 

the function ( )rN rλΨλ=ψ 23 . The scaling 
transformation coefficient  is considered as a 
variational parameter. If the function  leads to an 
extremum of the studied functional, then for 

λ
( )rrΨ

1=λ  turns 
into ( )rr rr Ψ==λψ ),1( , therefore  should have 
an extremum for 

[ ]ψBpJ
1=λ . 

Having varied functional [ )( rJ Bp ]rλψ  with respect 
to parameter λ , we get  

0=
λd

dJ Bp . (8) 
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The formula (8) is a mathematical expression of the 
virial theorem associated with scaling transformation of 
the studied system coordinates. It is fulfilled for any 
extremum of the initial functional including any 
subsidiary minimum. 

In the strong coupling limit, the terms standing for 
kinetic and potential energies in functionals (4) and (5) 
possess the property of homogeneity. In this relation, 
application of scaling transformation enables us to 
perform variation with respect to the parameter λ  in an 
analytical form and to get simple expressions for the 
ground state energy for which the virial theorem in the 
simplest form holds true at the extremum points. 
Namely, the kinetic energy of the system is equal to the 
negative total energy. For normalizing functions of 
polaron and bipolaron, the scaled multiplier and the 
energy of the self-consistent ground state are determined 
by the expressions: 
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where EP(Bp), TP(Bp) are the mean values of the total and 
kinetic energies of polaron and bipolaron, respectively. 
In the general case, when some additional Coulomb 
interactions of bound polarons and bipolarons take place 
in the system (such as F and F′-centers in polar crystals), 
the mean value of the potential energy VP(Bp) includes the 
energy of the phonon field, the energy of electron-
phonon field and also all Coulomb interactions in the 
system. 

Naturally, the condition (8) should be fulfilled for 
any constant of the electron-phonon interaction. 
However, we cannot vary the functionals of intermediate 
coupling polaron and bipolaron with respect to 
parameter  and get the scaling transformation 
multiplier in an analytical form. Nevertheless, at the 
points corresponding to the minimum of polaron and 
bipolaron functionals the virial theorem should hold true 
and can be checked numerically. 

λ

As applied to polaron, the virial theorem was 
studied in S.I. Pekar’s paper [8] and obtained the name 
of 1:2:3:4 theorem. The theorem states that in the strong 
coupling limit the following relation: 

PP FT −= , ,  PPh FE 2−=

Pel FE 3−=− , , (11) PFE 4int −=−

is valid, where 

int2
1 ETF PP += , .  (12) intETE Pel +=

The ground state energy EP and the quantities TP, 
EPh, Eint corresponding to the mean values of the kinetic 
energy, energy of the phonon field and energy of 
electron-phonon interaction, respectively, are given by 
the expressions: 
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Since in the strong coupling limit at the minima 
points, the total polaron energy EP is equal to the 
negative kinetic energy, the quantity FP determined by 
expression (12) coincides with the total energy of the 
self-consistent state, which can be treated as the energy 
of polaron thermoionization. 

The authors of [25] cite evidence that for polaron, 
the relation 1:3:4 of the theorem remains valid for the 
whole range of variation of the electron-phonon 
coupling constant, while the relation 1:2 as well as the 
equality FP = EP is valid only in the strong coupling 
limit. Relation 1:2 of the theorem results from the fact 
that the ground state should be proportional to  and 
corresponds to the strong coupling limit considered by 
S.I. Pekar [8]. As shown in [27], if the polaron energy 
can be presented as an expansion in terms of parameter 

2α

21 α , the theorem 1:2: 3: 4 remains valid for the terms 

proportional to . 2α
Expressions (11) can be obtained if we apply the 

Feynman theorem to the polaron functional [28]. Recall 
that according to the theorem, when the value of 

000 ΦΦ= HE  depends on the parameter , then the 
derivative with respect to the parameter is given by 

β

00
0 Φ

β
Φ=

β d
dH

d
dE . (14) 

The parameter can be the electron charge, effective 
mass, phonon energy, etc. The development of 
expressions (11) by using the Feynman theorem (14) is 
given in the paper [25]. There, the quantities *1 m  and 
electron charge are successively considered as 
parameters. 

This technique can be applied to a system 
containing Coulomb interactions. Performing some 
simple transformations, we can show that for one-
electron and two-electron (in the general case many-
electron) systems in a phonon field, the theorem 1:3:4 
holds true for any value of the electron-phonon 
interaction. In the case under consideration, it has a more 
general form  

FTP
~

−= , FEel
~3~

−=− , FE ~4int −=− ,  (15) 

where use is made of a new notation generalizing 
Eq. (12) to the case of systems with Coulomb 
interactions  
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CintCint 2~,
2
1~ EETEEETF el ++=++= , (16) 

where T is a kinetic energy, Eint is the energy of the 
electron-phonon interaction, 0C0C ΦΦ= HE  contains 
all Coulomb interactions in the system. 

For the bipolaron functional 
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where Φ12 is the wave function of the system with 
Hamiltonian (3). 

The problem of calculation of the quantities 
involved in the expressions (15) deserves special 
consideration. 

By way of example, let us consider calculation of 
the energy of polaron and bipolaron states in the 
framework of Buimistrov-Pekar method [24]. The 
bipolaron probe function  is chosen in the form: 12Φ
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where  is the electron wave function, 12Ψ 0  is the wave 
function of the phonon vacuum state, Fk and gk are 
variational functions. 

When calculating the mean values of the quantities 
involved in expressions (17), we can conveniently 
employ useful expressions relating the operators of 
phonon field and kinetic energy before and after 
canonical transformation: 
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where . ( ) ( ) ( 21 expexpexp SSSU −−=−=
That is to say, in checking whether the virial 

theorem determined by (15), (16) holds true, we should 
first perform a canonical transformation corresponding 

to a particular method and get the expressions 
corresponding to the new values of the operators for 
kinetic energy and electron-phonon interaction, and only 
after that carry out averaging over the electron wave 
functions.  

5. Numerical illustration of the virial theorem for 
bipolaron (arbitrary electron-phonon interaction)  

To verify the virial theorem validity for bipolaron, let us 
introduce the following notation: 

PhHHHHH +++= intCkin , (22) 
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The bipolaron ground state energy is given by: 

00
0 ΦΦ= HE .  (25) 

We also define the following average values as  

0C0C ΦΦ= HE , (26) 
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Using the above designations, the virial theorem for 
bipolaron can be represented as: 

FE −=kin , ,  FEPh 2C −=

FEel 3−=− , FE 4~
int −=− . (33) 

In the strong coupling limit, the theorem holds 
4~,3~,2~,1~  and in the general case for an arbitrary 

communication theorem 4~,3~,1~ . Signs waves above 
figures indicate that the system has a Coulomb 
interaction. We introduced similar notations for 
convenience to distinguish from bipolaron and polaron. 

In the framework of Buimistrov-Pekar method, the 
energy of the self-consistent state polaron (bipolaron) 
can be separated into terms that correspond to addition 
of the strong coupling and addition of an intermediate 
coupling:  
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Table 1. Different contributions to the total energy of the bipolaron ground state. =Ψ≡Ψ ),( 211212 rr  

( ) ( ))(exp1 2
2

2
1

2
12 rrrN +μ−γ+ . Energy is given in effective Hartree *2

0
2* maHa h= , 2*2

0
~ ema ε= h , 1

0
11~ −−

∞
− ε−ε=ε  

(Feynman energy unit ħω=Ha /∗ 2α2). 
α  7 8 9 10 15 20 

0E−  0.159593 0.152337 0.147437 0.143963 0.135835 0.133019 
F−  0.128335 0.128851 0.129087 0.129212 0.129382 0.129409 
kinE  0.128335 0.128851 0.129080 0.129212 0.129383 0.129409 

2C
PhE  0.112706 0.117106 0.119910 0.121836 0.129441 0.127603 

3elE−  0.128335 0.128851 0.129085 0.129212 0.129383 0.129409 
4intE−  0.128335 0.128851 0.129084 0.129212 0.129383 0.129409 

 
α  50 100 200 ∞→α  

0E−  0.129994 0.129564 0.129456 0.129420 
F−  0.129420 0.129420 0.129420 0.129420 
kinE  0.129420 0.129420 0.129420 0.129420 

2C
PhE  0.129132 0.129270 0.129402 0.129420 

3elE−  0.129420 0.129420 0.129420 0.129420 
4intE−  0.129420 0.129420 0.129420 0.129420 

Values fk are variational functions. Further 
calculations can be performed after the choice of the 
variational function, which will be used to compute the 
expressions included in the energy functionals for 
polaron or bipolaron. We choose the variational function 
fk in the form 

*
)()( bkpbkp Lf = . 

 (37) 

We also introduce the notation that will simplify 
the above rather cumbersome formula for the ground 
state 
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Further calculations can be made for the variation 
function of polaron or bipolaron selected in the given 
form. The above formulas are needed to calculate 
various contributions to the energy of bipolaron: 
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We perform numerical illustration of the virial 
theorem fulfillment for Pekar bipolaron for the one of 
the simplest wave function =Ψ≡Ψ ),( 211212 rr  

, admitting to obtain a 
sufficiently accurate value of the bipolaron energy for 
intermediate 

( ) ( )(exp1 2
2

2
1

2
12 rrrN +μ−γ+ )

electron-phonon coupling (Tables 1, 2).  

6. Сonclusion 

Numerical check performed by us demonstrates that the 
virial relations (15) are fulfilled for bipolaron considered 
using the Buimistrov-Pekar method for an arbitrary 
value of the electron-phonon interaction. As in the case 
of strong coupling limit, the virial theorem holds true for 
both the one-center bipolaron configuration and the two-
center one corresponding to a shallow subsidiary 
minimum that disappears when the electron wave 
function is chosen with regard for electron correlations 
associated with the direct dependence of the wave 
function on the distance between electrons. Therefore, 
V.K. Mukhomorov’s statement [16] that the virial 
theorem does not hold true for one-center polaron (as 
distinct from the case of two-center polaron), and the 
statement that for the virial theorem to hold true the 
variational principle should be supplemented by a 
condition that would limit from below the functional 
under variation by the virial relation are erroneous (see 
also сomments [29]). At the points corresponding to 
minimum values of the functional, the virial theorem 
holds true automatically. According to the variational 
principle, preference should be given to a lower energy 

value, since higher values can disappear when a more 
versatile wave function is chosen (see for example р. 49 
in ref. [8]).  

Table 2. The ground state energy of the bipolaron and values of variational parameters bipolaron wave function for 
various parameters of the Fröhlich coupling constant. Energy unit is ħω, the unit of length is  

12,1,1,20 ==ω=ω= ∗∗ mmL hh .

α  μ  γ  0E−  
7 1.96536431 1.59748281 15.640148 
8 2.7862314 2.2722311 19.499196 
9 3.70608514 3.02842228 23.884708 
10 4.72947124 3.86989438 28.792678 
15 11.42912057 9.37860362 61.125685 
20 20.79242068 17.07742448 106.415533 
50 133.10153731 109.42434937 649.973127 
100 534.18890865 439.21965692 2591.27627 
200 2138.53636 1758.40582 10356.4928 
 

The last work by V. L.Vinetskii performed with his 
colleagues was made for the one-center bipolaron model 
[30]. Research issues related to the spatial configuration 
of bipolaron in low-dimensional systems and anisotropic 
crystals deserves the separate consideration because such 
systems have a preferred direction.  

The author wishes to express her appreciation of 
valuable advice and encouragement afforded by 
Professor V.D. Lakhno and Professor E.A. Pashitskii. 
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