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1. Introduction  

The collision integral (CI) is the principal term of kinetic 

equation. Its structure determines the whole form of the 

non-equilibrium function f of many-body system. 

Usually, this integral is constructed for the second order 

of the perturbation theory, considering the interaction of 

charged carriers with stochastic microfields. On the way 

of consecutive deduction of CI from the “first 

principles” the specific term E  appears as an 

appendix to the particle energy; here, E is the amplitude 

of electric field and   – fluctuation of the density 

matrix that is proportional to the scattering micro-

potential  . Most often, this term is omitted as the 

small one, together with terms of conformable higher 

orders for fluctuations. But any severe evidence of this 

neglect has not been represented and this trouble has not 

been overcome completely. The noted here problem is 

connected naturally with the specific question arising in 

quantum mechanics for the state of electron interacting 

with the constant uniform force F (there was not 

represented the continuous analytical transition from the 

state at 0F  to the state at 0F ). As a result, the 

influence of the maintained  E  term on the value of 

kinetic coefficients has not been well investigated up to 

this time.  

2. Fluctuative scattering potential  

and fluctuation of density matrix 

Introduce the one-particle density matrix of many-

particle system: 

)()()( tatat ABAB

 ,    (1) 

where 

Aa  and Aa  are operators of generation and 

annihilation of a particle at the A state. Heisenberg 

equation of motion for the density matrix is 

)()(],)([ tHHtHt
t

i AB

tottot

AB

tot

AB
AB 



 . (2) 

For the simplicity, restrict here our consideration 

by the case of electrons moving in uniform space at the 

presence of constant electric field E


 and set of charged 

impurities homogeneously distributed over the crystal. 

Here, total Hamiltonian is 

 
A
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totH +  
AB
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E
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 +  

AB
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BABA

BAABBABAV . (3) 

Here, A  is the kinetic energy of a particle in the 

A-state,  
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)(rA


  is the wave-function of a free particle, L  – 

dielectric constant of the considered crystal, 

)ˆˆˆˆ)(2/1(]ˆ,ˆ[ abbaba  ; )(S

AB  – matrix element of the 

scattering micropotential. For example, for impurities 

with the charge Ie   
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Introducing Hamiltonian (3) into the equation (2) 

and using standard commutation rules for fermions 

operators of generation and annihilation, one obtains this 

equation for the fluctuative part of the density matrix 

(see [1-3]):  
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BAAB  .     (8) 

The matrix element of the screened scattering 

potential is 
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
 3exp  


. (10) 

Separate the density matrix into two parts: an 

averaged one and a fluctuation (here, angular brackets 

show the average with the help of non-equilibrium 

statistical operator (see, for instance, [4])  
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For spacially uniform system,  

ABAAB tftf  )()( . (12) 

The average scattering potential is assumed to be 

zero:  
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Using Eq. (12) and the supposition 

tttt ABAB  /)(/)( ,  

perform the average of fundamental Eq. (7). One 

obtains: 
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Composing the difference of Eqs. (7) and (14), we 

find the equation for the fluctuation of the density 

matrix:  
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where 
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For ),0,0( zEE 


 we have ABz

E

AB zE )( . 

Usually, one neglects in Eq. (15) the bilinear over 

fluctuations term GAB (that is so-called collisionless 

approximation for fluctuations). The field term in 

Eq. (15), which has the form 

 


  )()( E

BAB

E

Ae , (16) 

is also usually omitted (see, for example, [2]). S, one 

declares that the electric field E is small and neglect the 

conformable field term as negligible. But there appears a 

need to show some corresponding criterion which 

permits to omit this term. Usually, this criterion is not 

represented. Here, we don’t neglect the discussed term.  

If one uses the obvious representation of plane 

waves, he obtains: 
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 etc.; 
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Here,  zikLz AzkzA exp)( 2/1 . It follows from 

here:  
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and we come to the formal record: 
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We can consider the term GAB (t) as a source of 

some part of a total “friction” force. 
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Introduce the designation 
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Represent Eq. (19) using the form  
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or 

    )()(
)(

tffet
t

t
i ABABABBA

AB 



 .(21a) 

Let zzA kk   and zzzB qkk  . Then the general 

structure of the form R(A,B) (see Eq. (20)) and 

dimensionship of the considered term prompt the form 

close to 

  2
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The omitted here factor of proportionality requires 

a separate special calculation. That is found as 

nontrivial. If external electric field E


 (let that is 

homogeneous and constant in space) is applied to the 

system of noninteracting charged particles, the use of 

presentation of plane waves is not totally convenient and 

can be a source of some disturbance that appears in the 

limit case 0E


 (see [7]). 

For the purpose to construct the appropriate form of 

the term R(A,B), we proceed our consideration using 

some possible artificial way. At the fixed quantum 

number kzA, choose the area AA Lzl   and accept the 

model wave function  rA


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Here, 
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The function (24) is normalized to unity:  

1)(2  dzz

LA
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kzA . 

Note that, inside the shown area, every function 

having the form (23), (24) is the self-function of the 

kinetic energy operator m2/22 ; the corresponding 

self-value for which is   mkk zAAA 2222   . But for 

the whole set, all the proposed functions zk  are not 

mutually orthogonal. We use these functions only to 

calculate the value R(A,B). 

Using the form (24), calculate the diagonal matrix 

element. Choose the lengths LA and lA, as well аs LB and 

lB, satisfying the conditions 

 AzALk2sin  AzAlk2sin  

    12sin2sin  BzBBzB lkLk . 

In addition, we accept the following relation: 

LA + lA = LB + lB. Then after several transformations and 

simplifications (LA >> lA), we come to the following 

expression (see (22)): 
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The latter expression does not depend on the 

lengths L and l. Naturally, the form (25) is not strictly 

correct, because we used the model wave-function. But 

we can consider it as acceptable at a sufficiently long 

length LA  lA. 

Here, we have to notice that the form (24) of 

accepted wave-function is totally intuitive. Usage of this 

form is justified by final results for the calculated 

mobility that are totally transparent.   

With the use of Eq. (7) and formulae (21)-(25), we 

execute a succession of calculations that repeat the 

standard order of steps (see, for instance, [3, 5]) and 

come to the collision integral in the form:  

      .exp

)2(
St

2
2

3

3

2

BA
q

S

B

ABBA

ASe

ffrqiqd

e
f
















 

   (26) 

Here, 
q

S 
2  is the correlator for Fourier-

components of scattering potentials.  

Let kA


  and qkB


 ; then in the 

representation of plane waves   
AB
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
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,
. In 

the course of the following calculations, we shall 

consider the case when scattering takes place with small 

transfer of momentum (  kq ). Then it follows 

from Eq. (25): 
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3. Calculation of mobility 

For k


-representation, apply to both sides of kinetic 

equation (14) the operator 
 kdk


33)2(2 . Let zu  is z-

component of the macroscopic drift velocity u

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Introducing mobility μ by the determination zz Eu  , 

we obtain the equation of the forces balance: 
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Using the forms (26), (28) and the designation 
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)(

2  r

S
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S q , one finds after uncomplicated 

transformations: 
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Here, n is the density of band particles, forms for 

the functions )(S  and numerical values of the 

parameter r are determined by the choice of the 

mechanism of momentum relaxation.  

Further, we restrict our consideration by the case of 

scattering of band carriers by uniformly distributed 

charged impurities with the density nCI. For this case 

(see refs. [5, 6]) 
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Moreover, we will use the simplicative procedure 

for construction of the screened scattering potential. It 

introduces in (29) under the sign of integral the step-

function )( 0qq  , where 1/q0 is the length of 

screening.  
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At further calculation, one uses such simplification: 
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Here, the average energy is 
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TkBF  is the dimensionless Fermi-energy, 
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Carrying out in Eq. (29) the integration over 

components of vector q


, we obtain:  
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Where  mqM 22 . Considering the case 

n = nCI, we come to the following record: 

 
  






2/3
22

1

13

2

/

KEEK

EEK
KfKdEE

zz

zz
z


. (35) 

Further, the following designations are accepted: 
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Introduce into the formula (35) the model form of 

the non-equilibrium function of distribution as the 

Fermi-function with the “shifted” argument: 
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Then, the relation between the dimensionless 

electric field W and dimensionless current density J 

takes the form: 
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.

exp1

)(
)(

)(

0
2

2/32

2/3

2/1

 




 












gp

pgp
dgdp

T
F

F
J

 (40) 

Here, 

  JW
F

F
JW 






)(

)(
,

2/3

2/1 . (41) 

Assuming the electric field to be small, perform 

linearization of the expression (40). One finds: 

  











 S

F

F
JWJ

)(

)(
1,

2/3

2/1 , (42) 
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where 

 
 
  

.
)(exp1

)(exp

)(2)(

22

2

0

2/32

2

Tgp

Tgp

pg

p
dgdpTTS









  






 (43) 

As a result, we come to the Ohm law in the 

following form ( 1WW  ): 

)()(1 2/32/1

1



FSF

S
JW . 

Here, one obtains dimensionless specific 

conductivity (taking into account the evident dependence 

of the collisional integral on electric field) in the form:  

S

FFS

j

E

j

E

E

j

W

J

z

z )()(1 2/32/1

0

0
1

0

0

1

1


 . (44) 

For the case of standard calculation, where the 

evident dependence of the collisional integral on electric 

field is not considered (so in the formula (35), one uses 

the change zzz KEEK  1 ), the other record appears: 

 

  
.

exp1

1

)(

2

0

2/32
2









  






gJp

pg

p
dgdpTW

 (45) 

After linearization of the expression (45), we obtain 

other form of Ohm law: 

 
 
  

,

exp1

exp

)(2

22

2

0

2/32

2

2









  






gp

gp

pg

p
dgdpJTW

 (46) 

and come to the following expression for dimensionless 

specific conductivity: 

Sj

E

j

E

E

j

W

J

z

z 1

0

0
2

0

0

2

2  . (47) 

One obtains from the formulae (44) and (47) the 

ratio of conductivities calculated by both mentioned 

ways: 

 )()( 21 TT  

= )()()(1)()( 2/32/121  FFTSTT . (48) 

4. Conclusion 

Figure shows the results of calculations of the ratio of 

two specific conductivities. One of them (the value 1 ) 

relates to the consideration that takes into account the 

evident dependence of the collision integral on electric 

field. The other one (the value 2 ) relates to traditional 

approach that neglects the mentioned field dependence.  

 
 

At construction of the shown figure, the following 

numerical values were used: g10 28m , 1502 L , 

  5.2ln 0 qqM . The curve 1 relates to the case 

316 cm10 CIn , the curve 2  to the case 

317 cm10 CIn . It is seen for scattering with a small 

transfer of momentum that the introduced evident 

dependence of the collision integral results in decrease 

of the calculated conductivity, but doesn’t disturb the 

Ohm law. The distinction of conductivities 1  and 2  is 

expressed clearer, if the temperature of carriers is lower 

and the density of scattering impurities is higher 

(practically, the less is the free path length). At a high 

temperature and low current density, the influence of the 

evident electric field, entered into collision integral, is 

not essential.   

One can see the vast area of temperatures in 

presented figure, where neglecting the electrical term 

  )()()( te AB

E

BB

E

AA   in Eq. (21) and renouncement of 

the following complication of the collision integral is 

totally satisfactory. It follows from Eqs. (48) and (33) 

that possibility to neglect the evident dependence of the 

collision integral on the electric field E is not bound with 

the amplitude of the field (as that is usually supposed, 

see [1, 2]), but with mobility μ of carriers. 

Introduce the designations: 

en11  ;  en22  ; Tmke B20  . 

Then, it follows from Eqs. (44) and (47): 


















2

3
1

)2(

0
)2()1(

TkB ; (49) 

 )2()1(  at  







m

eTkB

4

3

2

3
0


. (50) 

Represent the length of free motion l(Sc) and 

deBroighle length : 

  


 m
e

vl Sc 2 ;  



m

l dB

2


; 

 

  


m

e

l

l

Sc

dB

2


. (51) 
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Then, the condition (50) can be presented in the 

form: 

   dBSc
ll  . (52) 

Therefore, the inequality (50) can be considered as 

the criterion of neglect by the evident dependence of the 

collision integral on the electric field. One can see that 

the usual concept of mobility is related to the small ratio 

   ScdB
ll . Really, the concept of mobility, as it follows 

from (49) and (51), has a sense only at 

1)()()( 2/32/1  FFTS . (53) 

From the physical viewpoint, the obtained results 

are evident. So, we can consider the model (24), as 

intuitive (like to every model) and as acceptable one. 
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