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Abstract. Raman scattering in mixed MoS2/MoSe2 layer type crystals was investigated 
in this work. The change of intensities and positions of bands for in-plane 1

2gE  and out-

of-plane gA1  vibrations as functions of the “concentration” inherent to corresponding 
type layers has been studied. Estimation of interlayer interaction was obtained from 
comparison of experiment and theory, and effect of this interaction on the frequency of 
intralayer phonon was studied. 
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1. Introduction 

Spectroscopic studying the layer type crystals was 
performed for a long time. It began in the early 70-th of 
the last century. Investigations were related with both 
the electron and vibration properties of these crystals. 
Study of phonons was very intensively made for 
different types of layered crystals, GaSe [1], GaS [2], 
MoS2 [3-5], As2S3 [6], MoSe2, MoW2 [7], etc. and some 
models explaining the observed features, in particular 
Davydov’s splitting effect, were proposed.  

The new period of activity in studying these 
crystals arose when technological possibility appeared, 
using the method by Novoselov et al. for graphen, which 
enabled to prepare a very thin crystal structure having 1 
to 10 atomic layers [8]. Especially perspective in this 
plan are layered crystals MoS2 and MoSe2 showing new 
spectroscopic features, if the crystal structure consists of 
only several n = 1…6 atomic layers [7, 9] (see also 
numerous references cited there). 

The electron band structure of these crystals differs 
from the bulk one, and they demonstrate very intensive 
luminescence. The number of works in which electron 

and phonon properties of such type crystal structures are 
studied using the spectroscopic methods, grows 
significantly for the last years.  

Recently, detailed study of vibration spectra of 
MoS2 layer crystals consisting of several layers, n =  
= 1…6 and analysis of its results were made in [9]. The 
authors observed strong signals of the in-plane ( 1

2gE ) 
and out-of-plane (A1g) Raman modes of all 6 layers. 
These modes exhibited a well-defined thickness 
dependence, with the two modes shifting away from 
each other in frequency with increasing the thickness. 
The behavior of frequency shifts with changing the layer 
thickness, as it was emphasized by the authors [9], 
cannot be explained solely in terms of weak van der 
Waals (vdW) interlayer interaction.  

The spectrum as a function of the film thickness 
has several features. It is noted that most strikingly that 
more low frequency 1

2gE  vibration softens (red shifts), 
while the high frequency A1g vibration stiffens (blue 
shifts) with increasing the sample thickness. For the 
films consisting of four or more layers, the frequencies 
of both modes converge to the bulk values. Also, the rate 
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of frequency change is twice as large for the gA1  as for 
1
2gE  mode. The similar features were recently observed, 

too. The vibrations of bulk materials built up from vdW-
bonded layers are often analyzed in terms of the work 
[10]. 

The vibrations of bulk materials built up from 
vdW-bonded layers are often analyzed in terms of the 
two-dimensional layers from which they are formed [1, 
3, 5]. Within a classical (traditional) model for coupled 
harmonic oscillators [11], 1

2gE , and gA1  modes are 
expected to stiffen as additional layers are added to form 
the bulk material from individual layers, because the 
interlayer vdW interactions increase the effective 
restoring forces acting on the atoms. While the shift of 

gA1  mode was observed in experiments of the work [9] 
with increasing the layer number agrees with prediction, 
behavior of the 1

2gE  mode does not. The failure of the 
model could indicate that the implicit assumption that 
stacking does not affect intra-layer bonding is incorrect. 

But in reality, even weak interlayer interaction in 
crystals can affect intra-layer bonding and lattice 
dynamics. It can be explained at least particularly on the 
base of results obtained in works [12-14] where Fermi-
Davydov (FD) resonance in molecular type crystals was 
considered. Positions of bands and their intensities 
depend on the week vdW intermolecular interaction and 
intramolecular frequencies are renormalized. Indeed, as 
a result of intramolecular interaction between fun-
damental vibrations and overtons (combination tones) of 
molecule, two strong bands (Fermi resonance doublet) 
arise with frequencies fω , and gω . In crystal, due to 
weak intermolecular interaction and exchange by 
excitations, even with one molecule per crystal unit cell 
two type of Davydov terms appear: diagonal, ffff MD , , 

gggg MD ,  and non-diagonal gfgf MD , . The diagonal 
terms result in shift like to all spectral bands, but the 
non-diagonal ones give rise to repulsion of new crystal 
states. Therefore, the shift of high- and low-frequency 
Fermi-doublet components should be in different sides. 
Similar facts were observed in experiments [9, 10]. A 
more complicated case in particular with taking into 
account of Fermi-Davydov resonance and strong 
interaction of H-bond vibrations with lattice phonons 
was later theoretically considered in [15].  

In recent experiments, when studying mixed layer 
type crystals MoS2/MoSe2 new features related with 
complex variation of spectrum were observed in [10]. 
The problem related with influence of intra-interlayer 
interactions looks in this case especially complex for 
both the position of bands and their intensities, and it 
includes as a particular case the aspects noted in [9]. 
Therefore, we consider first a more general task for 
mixed crystals, and then the features related with thin 
layer type crystals will be discussed. 

2. Intensity of Raman scattering 

RS intensity can be expressed by imaginary part of 
Fourier component Green function in the tensor of the 
crystal susceptibility βαχ ,  [16, 17], where Hamiltonian 
describing the interaction of electromagnetic (EM) field 
with crystal looks as follows 

( ) ( ) ( ) =−′χλ′′λ−= βα
βαλ ′′′λ

+
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∗
βα∑ kkPPkeke

V
H

kk
kk ,

,,,,,
,,int ,,1
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,,,
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1
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kk PP

V
, (1) 
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,., ,, ; 

λλ′′
∗

λ′′λλ′′−λ− χ=χ=χ ,,,,,,,,, kkkkkk , (2) 

( ) ( ) ( )∑ −χ=−χ=−′=χ βα
∗
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n

nQinQkkQ
rrrrrr
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( )λ−
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2
1
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Here, ),(,, λω αλ kek  are the photon frequency and α-

component of the electric field unit vector;  λ
+
λ ,, , kk aa  – 

Bose operators of creation and annihilation of electric 
field, respectively; λ,kP  and λ,kA  – operators of momen-
tum and potential of EM field, correspondingly, satisfying 
the commutation relations [ ] λ′λ′λ′′λ δδ= ,,,, ; kkkk PA .  

In the layer type crystal where different layers can 
have various properties, two indexes (l, n) should be 
used to numerate unit cells of the crystal: the first index 
(l) points out the number of layer and the other one (n) – 
the number of the unit cell in layer. For conveniency, the 
wave vector is also presented by two components 
oriented in layer, nQ

r
, and normal to layer, lQ

r
, 

correspondingly, so that nl QQQ
rrr

+= . Then, 

( ) ( )
( )( )[ ]=++−×

×+χ=−′=χ ∑ βαβα

lnQQi

lnkkQ

nl

ln
rrr

rrrrr

exp
,

,,
 

( ) ( )[ ]∑ +−+χ= βα
ln

ln QlQniln
,

, exp
rrrrrr

.  (5) 

The value ( )ln
rr

+χ βα,  can be presented as expansion in 

series on deviation of atoms in l layer, l
knu α,, , from 

equilibrium position, which are then expressed by 
normal coordinates of phonon operators, l

sQ ln ,ϕ . Here, sl 
are phonon quantum states of layer l. Using Eqs. (5) and 
(2), the following expression for susceptibility of crystal 
can be obtained: 
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( ) ( ) ,exp, ,
,

,0,.,
l

sQl
sl

ln
l

kkkk ln

l

ilQsQN ϕ−χ=χ ∑ λ′′λλ′′λ (6) 

N0 is the number of unit cell in layer. 
Because the 

lsN  layers with quantum states ls  are 
arbitrary distributed between full numbers of crystal 
layers, the Nl response of crystal on incident light will be 
averaged. Therefore, the expression (6) describing 
susceptibility should be averaged on their distribution. 
The probability that each layer at the same time will 
occupy each “layer cell” in crystal is equal, 

lss NNc
ll

/= . So, we obtain situation that the same 
response on the incident light is carried out by Nl crystal 
layers but with the probability 

lsc . Because all layers are 
now identical, the susceptibility is independent on l, i.e., 

( ) ( )lnkkln
l

kk sQsQ ,, ,,,,,, λ′′λλ′′λ χ=χ . This allows making 
simplification of Eq. (6) as follows 

( ) ( )

( ) =ϕ×
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( )
lnl

l

l sQQ
s

lnkksl sQcNN ,,,,,0 , ϕχ= ∑ λ′′λ ,  (7) 

For conveniency, we introduce ( )
ll slnkks sQc χ=χ λλ

~,',',, , 

where the index ls  has a double meaning: l points out on 
the type of layers forming the crystal and 

{ },..., 21
lll sss =  characterize the different vibration states 

in this layer.  
As it was noted above, the intensity of RS can be 

expressed by Fourier component Green function from 
the tensor of susceptibility of crystal, and in our case the 
intensity of light scattering by one unit cell is described 
by the following expression 
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where values in brackets are Fourier components of 
retarded Green functions 

ω

+
′′

ϕϕ=ω )0();(),( ,, llll sQsQss tQG .  (9) 

It is known from the group theory that intermixing 
by anharmonicity of states in particular intralayer states 

are possible, if they have the same symmetry. 
Experiments show that, for MoS2 and MoSe2 layer 
crystals having hD6  space group, the most strong bands 
observed in RS spectra correspond to gA1  and 

gE2 symmetries. In this paper, we consider the case of 
mixing the states in mixed crystals with the noted 
symmetries. In other words, only two types of layers 
l = 0 and l = 1 corresponding to MoS2 and MoSe2, 
respectively, are taken into consideration, and their 
vibrations should have an identical symmetry, gA1 (or 

gE2 ). Then, for the given case, the intensity of RS is 
described by Eq. (8), which looks as follows  

λλ ,',', ppI ~ [ ]×ω+
π

− )(11 n  

{ },)(~~)(~~)(~~)(~~Im
1111010110100000
ωχχ+ωχχ+ωχχ+ωχχ× ∗∗∗∗
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 (10) 

In Eq. (10), we took into account that ( )0→Q  and used 
designation )(),0( ω=ω→

′′ llll ssss GQG . 

3. Hamiltonian and equations for Green functions of 
layer crystal vibrations 

Hamiltonian of layer crystal in the secondary quantum 
representation (SQR) is written as follows  

+ω=+= +∑ l
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where l
sq l,ω , l

sq l
b+

, , l
sq l

b , are phonon frequency and 
creation-annihilation operators of l layer phonons. The 
normal coordinate l

sq l,ϕ and momentum l
sq l,π  look as 

follows  

( )l
sq

l
sq

l
sq lll

bb +
−+=ϕ ,,,

2
1 , ( ).

2
1

,,,
l

sq
l
sq

l
sq lll

bb −
+ −=π  (12) 

The first sum in Eq. (11), H0, describes the system of 
non-interacting layer’s oscillators but the second term is 
responsible for interlayer interaction of phonons. 

Fourier components of Green functions (GF) 
describing the RS by averaged layer crystal are given in 
Eq. (15), but now we will study the GF of a more 
general form  

)0();()( ,,',, '

l
sk

l
sksksk llll

ttG ′
′ ′′

ϕϕ= . (13) 

The equation for such GF looks as follows  
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The equation relating Fourier components of similar 
type GF, 

ω
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follows  
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It is seen that nonzero solution can be obtained, if intra-
layer wave vectors are equal, kk ′= , but concerning 
interlayer interaction the situation is more complicate 
because layers in crystal are arbitrary distributed. 
Therefore, the response of crystal on the incident 
radiation will be averaged on all possible distributions of 
layers interacting with one another. Averaging Eq.(15) 
on all l ′′  and l layers, phonons of which characterizes 

ls , ls ′′  quantum states, gives rise to appearance of 
probabilities lss NNc

ll
/=  and lss NNc

ll
/

′′′′
= . There-

fore, Eq. (15) is transformed into the following one  
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In this approximation, we have the homogeneous 
crystal structure fully filled with identical layers of 

),( lsl or ),( lsl ′′′′ types, but interlayer interaction become 
smaller and depend on the coefficients 

"ll ss cc .This 
situation is very similar to that studied in molecular 
crystal having several molecules in the unit cell and 
quasi-degenerated levels in molecules [12-15], because 
after averaging we obtain a new layer crystal, in which 
different type layers ),( lsl and ),( lsl ′′′′ can be considered 
as forming complex double layer “elementary cell”, but 
with more weak interlayer interaction. For a 
homogenous crystal structure, one can write, 
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. Besides, in this approximation in 

Eq. (16) all functions depend only on the difference 

between layers ll ′′− , therefore the following Fourier 
transformation can be made.  
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Then, Eq. (16) can be written in a more simple form (the 
conservation law for layer wave vectors, kk ′= , is taken 
into account)  
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In Eq. (19), the index ls  similar to Eqs. (7)-(13) has the 
double meaning: i) l points out the character of layer, ii) 

{ },..., 21
ll sss =  marks the type of vibrations in this layer, 

if several vibrations in the given layer are considered. 
We have noted in Section 2 that only two types of layers 
l = 0 and l = 1 corresponding to MoS2 and MoSe2, 
respectively, are taken into consideration and only one 
of layer vibrations that have an identical symmetry, gA1  

(or gE2 ) are studied . The fundamental vibrations can be 
mixed by fourth order anharmonicity of layer but this 
value is very low and in current investigation is omitted.  

Taking into account that designations 10 , sssl =  
are, respectively, related with MoS2 and MoSe2 layer 
types, two pairs of equations are obtained. 
a) 0ssl =′ , the first system of equations looks as 
follows:  

001100000 ,skssssssss GDG ω=+Δ , ( 0ssl = ), (20a) 

0
01110001
=Δ+ ssssssss GGD , ( 1ssl = ),  (20b) 

b) 1ssl =′ , the second system of equations looks as 
follows: 

0
11101000
=+Δ ssssssss GDG , ( 0ssl = ) (21a) 

111111001 ,skssssssss GGD ω=Δ+ , ( 1ssl = ) (21b) 

where designations in Eqs. (20a, b) and Eqs. (21a, b) 
have the following look: 
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In the following consideration, we will omit for 
conveniency the indexes k, p describing the components 
of the wave vector for crystal excitations. As it is seen 
from Eqs. (7), both wave vectors are related with 
components of exciting radiation 0→+= nl QQQ

rrr
 

where interlayer, nQk
r

= , and normal to layer, lQp
r

= , 
components respectively.  
Solutions of Eqs. (20a, b)-(21a, b) are as follows 
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where written below designation was used  

10011100 ssssssss DD−ΔΔ=Δ . (24) 

Insertion of Eqs. (23a, b) and (24) into Eq. (10) gives 
rise to the following expression for the spectral 
dependence of RS intensity  
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For simplicity, we will suppose that the RS tensor 
components are real, ∗χ=χ

ll ss
~~ . Now, to take into 

account the damping of phonon excitations, we will 
suppose the frequency to be a complex value, 

γ+ω→ω i , therefore, all the values depending on 
frequency in numerator and denominator become the 
complex ones, in particular 
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Therefore, the final expression for intensity of RS can be 
written as follows   

It should be taken into consideration that in Eq. (27), 
( )

llll sslnkkss csQc χ=→χ=χ λλ ,0~
',',, , according to Eq. 

(7), therefore, the effective tensor of scattering 
lsχ

~  is 
changed with the “concentration” of the given sort of 
layers and real parameter is 

lsχ . Eq. (27) shows that RS 
intensity has an enough complicated dependence on the 
frequency ω , relation between concentrations of 
different type layers 

lsc and interaction between layers 

',
~

ll ssV . The resonance frequencies are obtained from the 
first term in the denominator of Eq. (27) (if 0→γ ) and 
according to Eqs. (26a, b) are equal 
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In the case when crystals MoS2 or MoSe2 consist of 
only identical layers, some correction to resulting Eq. 
(28) should be made, because mixing the states by 
anharmonicity at corresponding their symmetries are 
possible. 

4. Mixing of crystal states with identical layers and 
discussion of experiments 

The estimation of interlayer interaction parameters can 
be made on the base of results of theoretical calculations 
for phonons in one-layer and bulk MoS2 crystal obtained 
in work [20]. The actual phonon frequencies for one-
layer MoS2, hD3  point group symmetry, are as follows 
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have very close values 1cm412
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that change of frequencies due to interlayer interaction is 
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mistakes in numerical calculations. But experiments 
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, which are 

obviously lower than those predicted theoretically. One 
of the reasons can be anharmonic interaction that is are 
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important in one-layer crystal and is not taken into 
account in theoretical calculations. Indeed, from work 
[20] (Fig. 2, upper panel) follows that combination tones 

1cm470)()()()( −≈−ω+ω≈−ω+ω MLAMLAKLAKLA qqqq
are full symmetric and have frequency higher than '

1A
ω .  

Therefore, both vibrations can take part in FR 
interaction, and, as a result, the fundamental band should 
be shifted some down to the value 1cm404'

1

−≈ω
A

 that 

is observed in experiment. The same shift down should 
occur for the one-layer fundamental vibration 

1cm7.391'
1

−=ω
E

 due to FR with combination tone 

≈−ω+ω )()( KTAKLA qq  1cm420 − . The experimentally 

observed its one-layer final position is 1cm383'
1

−≈ω
E

. 

On the other hand, when increasing the layer numbers 
(to 6…8 layers), properties of this thin crystal become 
close to those of bulk MoS2 [9], and the bands discussed 
above are transformed into a new pair of strong gA1  and 

1
2gE  ones, and the final position of these bands is ruled 

by properties of bulk crystal.  
One can note that in the Raman spectra of crystals 

MoS2 and MoSe2, these two fundamental bands gA1  and 

gE2  (Fig. 1) cannot intermix with one another. The 
fundamental states, in principle, can be mixed by fourth 
order anharmonic terms in the potential energy, but both 
these states should have the same symmetry. It is 
obvious that direct interaction of gA1  and gE2  layer 
states are impossible, and they also cannot be intermixed 
by interlayer interaction, too.  

Experimental spectra and theoretical dependences 
describing their change with the “concentration” of 
layers in mixed crystals are presented in Figs 1 and 2. 

 
  

 
 
Fig. 1. Position and intensities of fundamental bands observed 
in Raman spectra of bulk crystals MoS2 and MoSe2 with real 
relation of their intensities at the same conditions of 
experiment. 

 

 
 
Fig. 2. The change of band intensities in spectra MoS2 and 
MoSe2 as a function of concentration 0scx = , 11 scx =− , 

110 =+ ss cc . Spectra at x = 1 and x = 0 were fitted to 
experimental ones in Fig. 1. All parameters describing 
interlayer interaction are taken as high enough, 
( ) 1,

, cm8~ −
′
=pk

lslsV . 

 
It should be noted that in MoS2 bulk crystal, 

with hD6  point group symmetry, close to considered 

states ( ) 1
1 cm412 −=ω gA  and ( ) 11

2 cm389 −=ω gE , the 

combination tones ( ) ( ) ( ) 12
2

1
2 cm35389 −±=ω±ω gg EE  are 

placed which can interact with both bands gA1  and gE2  
due to Fermi resonance (FR). The latter is admitted by 
symmetry relations in hD6  point group, 

gggg EAEE 2122 +=× . The position and intensities of 
interacting bands depend on the anharmonic constant Γ  
responsible for this interaction [18, 19]. As a result of 
interaction, the fundamental vibration 
( ) 1

1 cm412 −=ω gA  with the combination tone 

( ) ( ) ( ) 12
2

1
2 cm35389 −±=ω±ω gg EE  the first is some 

shifted down to the value 1cm408 −≈  (Fig. 3, curve 2). 

The combination band 1cm424 −  is also some shifted 
upper but its intensity is weak and band is broad (Fig. 2, 
curve 2). Space between fundamental ( )gA1ω  and other 

combination tone ( ) ( ) 12
2

1
2 cm354 −=ω−ω gg EE  is wide 

enough and influence of the last on ( )gA1ω  can be 
neglected.  

The fundamental band ( ) 11
2 cm389 −=ω gE  also can 

interact with these combination tones ( ) ( )=ω±ω 2
2

1
2 gg EE , 

( ) 1cm35389 −±=  but this interaction is more complica-
ted because around this fundamental band two combina-
tion tones are placed at the same distances: 
( ) ( ) 12

2
1
2 cm424 −=ω+ω gg EE  and ( ) ( )=ω−ω 2

2
1
2 gg EE  
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1cm354 −= . According to the theory of FR in crystals 
[18, 19], the intensity of scattering (absorption) is 
described by the renormalized constant Γ , and for each 
of the studied cases it is given by the following relations: 

for the first case ( ) ( )[ ]1
2

2
21 gg EnEn ++Γ=Γ→Γ +  and 

for the second one ( ) ( )[ ]1
2

2
2 gg EnEn −Γ=Γ→Γ − , 

where ( )2
2gEn , ( )1

2gEn  are filling numbers of corres-

ponding phonons. It is obvious that −+ Γ>Γ , and so the 

fundamental band of MoS2, ( ) 11
2 cm389 −=ω gE , should 

be shifted some below, as a result of two noted FR inter-
actions, to the value ( ) 11

2 cm383 −=ω gE  (Fig. 3, curve 4).  
These new states that take part in FR with the 

fundamental ones gA1  and gE2  will be marked with the 

index B: Bω , 
BA ssD , 

BA ssΔ , 
BE ssD , 

BE ssΔ , etc. (see 

Eqs. (22a, b)). For example, the position of bands for 
crystal with one type of layer s0 for vibration of A-type, 
interacting with B-type vibrations are described by the 
following relation  

( ) ( )[ ]{ ±⎢⎣
⎡ −ω+−ω=ω± BBBAAA ssssss DD 22

2
1

( ) ( )[ ] +
⎭
⎬
⎫

+γω+−ω−−ω±
ABBABBBAAA ssssssssss DDDD 416 22222

]212γ+ .  (29) 

where 1,1
10

=→=→
BA ssss cccc , and instead of Eqs. 

(22a, b) we have 

( ) ( )pk
ssskssskss jjjjjjjj

V ,
,,

2
,

2
'''

~
ω+δω−ω=Δ ,  (30a)  

( )pk
ssskss jjjjj

VD ,
,, ''

~
ω= . (30b) 
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Fig. 3. Effect of FR interaction with combination tones at the 
position of fundamental 1

1 cm412 −=ω gA  and 

1
2 cm389 −=ω gE  bands in bulk MoS2.  
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Fig. 4. The change of intra-layer phonon frequencies 
1

'
1

cm404 −≈ω
A

 and 1
'
1

cm384 −≈ω
E

 with increasing the layer 

numbers and conversion of them into the bulk ones 
1

1 cm408)( −≈ω gA  and 11
2 cm383)( −≈ω gE ; curves 1, 3 are ex-

perimental, curves 2, 4 are theoretical; parameters: 2 – )( 1gAω , 

( ) 1,
0,00 cm8~ −−=pk

ssV , ( ) ( )== pk
ss

pk
ss VV ,

,0
,
,0 0110

~~ 1cm6 −− , ( )pk
ssV ,
1,10

~ = 

1cm3 −−= ; 4 – ( )1
2gEω , ( )pk

ssV ,
0,00

~ = 1cm5 −− , ( )=pk
ssV ,
1,00

~  

( )pk
ssV ,

,0 01

~
= = 1cm4 −− , ( )=pk

ssV ,
1,10

~  1cm2 −− . 

 
 
 
Interlayer interaction between different layers is 

described by the following expression (that will be 
considered in details elsewhere)  

( ) ( ) 0,1(~~

1
1

,
,0

,
, ''

>α≈ ∑
=

α+

N

n

pk
ss

pk
ssN n

VV
jjjj

, (30c) 

( )pk
ss jj

V ,
,0 '

~  describes the change of interaction energy 

between two layers when changing their excitation from 
js0  state to '

0
js  one; in our case 45.0=α . It is seen from 

Eqs. (29) and (30a-c), if interlayer interaction 
( ) )0(,0~ ,

, '
→γ=pk

ss jj
V  frequencies are correspondingly 

equal (if 
AsB ω<ω ): 

gA As 1
ω=ω=ω+  and Bω=ω− . 

With inclusion of interlayer interaction, ( ) 0~ ,
, '

≠pk
ss jj

V , 

intermixing the layer fundamental vibrations occurs, and 
frequencies +ω  and −ω  are additionally shifted to some 
extent into different sides. Fitting dependence described 
by Eq. (29) to experiment [9] gave the possibility to 
obtain parameters of interlayer interactions ( )pk

ss jj
V ,

,0 '

~ , 

which are given as legend to Fig. 4 and parameter 
45.0=α . 
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5. Conclusion  

The change of intensities and position of bands for in-
plane 1

2gE  and out-of-plane gA1  vibrations as a function 
of the “concentration” of corresponding type layers was 
studied. The dependence of internal layer phonon 
frequencies on interlayer interactions and estimation of 
interlayer interaction by using the comparison of 
experimental results and theory was obtained. 
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