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1. Introduction

Along the way of construction of kinetic equation from
some “first principles”, the rightful place belongs to the
influence of external macroscopic fields and microscopic
scattering fields on movement of band charged carriers.
The scattering fields give the main, principal contribution
to existence and form of collision integral. Evident
influence of macroscopic fields on the scattering system is
not usually taken into attention, because one supposes that
for the scheme of second order perturbation theory the
external field can be omitted (see [1-3]). Special
consideration shows that the latter approach is not
universal, and in some situations the direct influence of
macroscopic fields on the form of collision integral and of
corresponding non-equilibrium distribution function can
sufficiently change the value of kinetic coefficients.

2. One-particle density matrix of nonequiltbrium
many-particle system

Design by the symbols A4, B efc. some set of quantum
numbers (for instant, components of the wave vector)
that characterizes a state of each separate band particle;
farther, for simplicity, we shall say about electrons. One
does not use the direct designations for spin variables
and spin quantum numbers, because processes of spin
overturn are not considered here. The act of averaging
we designate by angle brackets; formally that procedure
is performed using the non-equilibrium statistical
operator of total system of electrons and external system,
representing all scattering fields that interact with the
electron system (see [4-7]).

Define the one-particle density matrix p4z(f) by
using the following mode:
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P (1) =a5(t)a,(t). (1)
Here, ¢ is time, a; and a, are operators of

generation and annihilation of electron at the state A.
The averaged value of given matrix (we call it farther as
the one-particle density matrix) is

fAB(t):<PAB(t)>:<a§(’)aA(t)>~ (@)

N
The dynamic value C = ZC (7,) that belongs to

n =1

the additive type, in representation of secondary

quantization has the form é:ZCBA aza,, where

Cy =ILP§(F)@(?)TA(7)013?.

value ¥, (17) is the wave function of separate band

In this formula, the

particle, which belongs to the state A.
Deduce an equation, solution of which is the one-
particle density matrix f,; for the considered non-

equilibrium system of particles. As a start point, we use
the standard motion equation for operator p ,,(r) at

Heisenberg representation:

H ] p 4B )Hl‘ot HtotpAB() . (3)

ih op 4

o [pAB

3. Total Hamiltonian of band electrons
and scattering system

One can represent the Hamiltonian of considered total

system H'” as the sum of four parts: the Hamiltonian
H, for electrons non-interacting with microscopic

scattering fields,

e

Hamiltonian H,, related to inter-

electron interaction, individual Hamiltonian Hg of

external scattering system and Hamiltonian H,; which

relates to interaction of band electrons with the
scattering system:
H” =H,+Hg+H,, +H,. 4)

In this paper, we assume only the point charged
impurities as external scattering system (S — [).
At the presence of constant, uniform electrical E

and magnetic H fields, the Hamiltonian of free charged
carriers is as follows

He=s[f7+fi1(f)j—e1§f. )
c
. 2 s 0 .
In this formula, p =#hk =—ih— is the momentum
v
operator; € (p) — dispersion law; & ( f;) — operator of

the kinetic energy; A= 1/ 2)[1:1 x 7] — vector-potential

of magnetic field. Further, we suppose that the
dispersion law has the simple form:

e(p)=p [2m =1’k [2m, (©6)

where m is the effective mass and ﬁ:hlg is proper

value of the momentum operator.

The quantum limit of strong magnetic field in this
paper is not considered. Therefore, in the Hamiltonian
(5) we omit the terms of the order A% the latter is

acceptable under the condition |eH |h / 2me << gy . Let

(A4,4y), =(1/2)(A4, Ay + A, A4)) . Then, it follows from

Eq. (5):

H,=HO+H® + g™ =¢ (p) eEr+—( AF)- ) @)
Assume the following orientation ofc fields:

E=(E,E,0); H=(0,0,H.);

A=(-H,y,H.x,0). (8)

For this case (see Eq. (6)), the separate terms of
Hamiltonian H, are

(0)—8(p) (p)z/2m 2k /2m

H(E):—e(xEX+yE) H = jm (xk ) )

In representation of secondary quantization, the
Hamiltonian of electrons that do not interact with
microscopic scattering fields is (see Eqs (7) and (9))

H, Z ABaAaB _Z(He)ABPBA =
:;{(H O)AB +(H “ )AB

H
+(H( ))AB}pBA-

The Hamiltonian of interactions between band
electrons and charged impurities is

H, = (He1)ABPBA(f)-
4B

(10)

(11)

The Hamiltonian of Coulomb e-e-interaction has
the following form (see [8]):

Hee = (1/2) ZVABA'B'azaZ'aB'aB =
ABA'B'

-(1/2) ZVABA 5 Psas pBA’
ABA'B'

(12)
Z VaparaPpas
ABA'

2
NI | e (=
Vipag :e_Jd3VJAd3r‘lPA(”)‘PA'(” )~—~.\P3'(’” )\IJB(F)'
€, |7 7]
(13)
is the dielectric constant of the

considered crystal. Excluding the term that represents a
simple shift of the origin point for energy, one obtains

(see [9]):
Hee = (1/2) ZVABA'B'aZaZ'aB'aB =
ABA'B'

~(1/2) ZVABA'B'(pB’AapBA’ )+ :
ABA'B'

Here, ¢,

(14)
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As a result, the total Hamiltonian presented in
Eq. (3) has the form

H =Y {(H,) 15+ (Her) 450954 -

(1 2) ZVABA'B' (pB’A PB4 )+ :
ABAB'

(15)

The plane waves are the natural basis for spatially
uniform system of electrons:

)1l ) »
then

2 d3_
Vs = 2:28 | ] q_zq(bfz )15 b= ) (17)
(br} )AB = I‘PZ (7 Yexp(igr )W, (F)d*F = .

= (275/L)35(/€A _lgB _5): SEA,EBH} :

Substituting the expression (15) to (3) and
performing necessary commutations of Fermi-operators,
one obtains the following equation for the density
matrix:

in apAB(t )
ot

+Z{

In this formula,

(ﬁ( ))AB = (He,(t))AB +(Hee(t))AB =

=(H e AB+ZVABBAPAB()
AB

=Z{(H ) 4rPrs ) —(H, )y par (0} +
' (19)

(P Ar (t )’ (F] (t ))FB )+ } :

Ar > pFB

(20)

4. Averaged values and fluctuations

Separate the density matrix p ,(f) and Hamiltonian

H(t) by averaged values and fluctuations. One assumes
that the average scattering potential is zero. Therefore,

pAB(t):<pAB(t)>+5PAB(t):fAB(t)"’SPAB(t)a (21)

(ﬁ (t ))AB = <(ﬁ (t ))AB> +9 (ﬁ (t ))AB =3 (ﬁ (f ))AB : (22)

Independence (or very weak dependence) of
electron density on spatial coordinates is provided by the
following condition:

Fas(€)=8 45 f14(6)=8 45 £4 (). (23)

The fluctuations 8p ,,(¢) are considered as small
values. Then,

(o e ))AB = (81 (0)) 45 +5(H,

(8H e]

Mt ))AB =

)5+ ZVABBA 3p.4p(0)-
AB

24

Accept also the following condition (See [6]):
(0P 45 /0t) = p 4g) /0t = Of 45 [0t . (25)

Introducing (21), (24) and (25) to (19), one obtains
the equation

’h%{f 48(0)+3p 45(1)}f =
- z{(He)AF(fFB () +8prp (1))_
T

—(H g (far (O +8p 4r (1))} +
+ Z{(H(t))AF +(8H (1)) 4r» S5 (1) + Sprp (1) }+ -
T

(26)

_Z{(H(t))l"B +(BH () ps Sar () +3p 41 (0) }+ ~
T

Averaging the letter expression, we find:

nd AB (t)

- Z
where

St f4p(t)=
= _%Z{(é‘)ﬁ(t))/lr,f)pm (t))+

(27)
)FBfAF(t)}+ ihSt f45(t).

Arfl"B

—(6[7(t))1-3,59,4r(t) +}~'

(28)
It follows from here (See. (23)):

L= S [1,) 1 a0~ () S 1o O 052140,

B

29)
St/ = —;EB) (CTOEORE
(67 @)y3p.500), )}

One calls Eq. (29) as the kinetic equation and
Eq. (30) as the collision integral.

Subtracting Eq. (27) from Eq. (29), we find (terms
of second order of trifle are omitted here):

Z[ )—(H, g 8p 4r ()] +
[ B( )= £4 )3 )]( H(1))

(30)

6PAB AFSPFB

(3D
Farther in Eq. (31), we consider the average

distribution function to be smooth in comparison with
fluctuating values. Using the Laplas transformation [10]

o)= T&(t)exp (io)t)dt ,

0+i0

&(r)= 2—171 j&(m)exp (~iot)do,

—00+i(0

(32)
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one obtains:
—iliSp 4t =0 ) + Fewdp, () =
Z{(He) AT Sprp(o) —(H, )rB SPAF((’))}+ (/514 )(51?1 ((D))AB ’

r
(33)
Stf,=— 2Tt12h Im{I dcoj do'exp [—i (o+ (o’)]x
(34)
x 3 (69 4@, (677 4 (@), >} .
B

5. Correlation of scattering potential for charged
impurities

Designate the non-screened electrical potential created
by a charge disposed in the point 7 =0 by the symbol
0] ,(?)z H, (17) e. The total potential created by all

centers is

N
0= 0, F-7). (35)
j=1
N
0 (0.4)= C(©.0)0,(3) exp(- g7, ) -
. = (36)
- 27:8(0))([)1 (L})Z exp (— i(ﬁj )
j=1

Here, 7,

is the radius-vector of j-th impurity,
(pl(c])=41'ce/q28L , N — total number of impurities in

crystal.
Calculating  correlations  over
impurities, we have (See [9] and [11])

80" (,4) 50" (@, =

positions  of

caxt5(o+ 0BG +7) (b03) 7
Here,
(s07) | =(s01), -o0):
| (38)

2 ~\]2 32 2 4
<5‘P]>E] = 27‘”1[%(‘1)] =32ne "I/SLLI .
Turn out to the equation for fluctuation of the
density matrix in the form (31) and use the following
approximation:

(He )Ar =8, rho, =38 &,

The standard approach (See [1-3]) is related with
neglecting the field terms in collision integral; in
particular one uses the form (7), where

(39

H,—>HY, (40)

Then
(He )AF = (HO)AF =0 rhw =8 r& 4,

and equation for the fluctuation of density matrix (33)
accepts the simplified form

—ih8p 45(t=0)+(ho> —& 4 +5) 8p 45(w)+
+( A _fB)(SH(m))AB =0.

If field terms in the Hamiltonian H, are

(41)

(42)

maintained (this is non-standard or “field” approach),
using the form (39) gives such equation:

—ih5PAB(t = 0)+(h03 -y +§B)pAB((D)+
+( 4 —fB)(5H(°)))AB =0.

Then after formal transition i/(x+i0)— 27md(x)

(43)

and designation €,5 =€, —€5 =fim,; We obtain

8p 45 () = 21 18(h> — € 4 )

X604y 0 = 0)= (/1) (f5 — 1) 881 45(0)] -

The standard approach can be considered as a
limited case of the non-standard approach. For this
approach, we apply the following approximation:

(44)

€40€y . (45)

The distinction between Hamiltonians /H, and
HY (See (7)) is the principal one, and as result the
essential difference can appear between coefficients

calculated by these two ways. Farther, it is convenient to
use the numerical factor ¥ :

% =0 for the case of standard variant (a), (46a)
% =1 for the case of non-standard (field)
variant (b). (46b)

Below, when calculating kinetic coefficients, we
will see at which condition both variants give practically
the same and at which the opposite condition when a
substantial difference appears.

As the initial form of density matrix p 45 (), we use

pAB(tZO):ag ay- (47)
Here and farther, we don’t show the argument
t=0 for Fermi-operators a, and a .

3p 4p(t=0)=
=apa, —<a§aA> and 8p yp(t=0)=apa, —<a§faAr>:
<59AB (f = 0) 8PA'B'( = 0» =

+ + ]+ + :
apayapay apaygNapdy

Using Bogolubov’s principle of weakening of
correlations and performing Week-coupling for two-

Construct the correlator for

(48)

particle correlator <a§a Lapa A'>: one obtains the

following expression:
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(6o (o) 80 (), ) =
2n26(®+@’)6(0)_6143)814/38/43/ X

<[f4 (1= f5)+ £5((1= £4)]-

(49)

Completing the calculation of corresponding
correlators, represent collision integral in the form
Sth:StelfA+SteefA9 (50)
where

. 4t d*g
St . f4= — X
o z;;"[ q4|8(0)AB’q)|2
2 2
X‘(bé)AB‘ ‘(bl?)A'B" 6(('OAB_U‘)A'B')>< (51)
*fa(= 201 0= 1) £40= 1)1 (= £ ).
1 o 2
Sterfa = —322J-d3‘1 3(@ 45 )‘ (b(} )AB x
(275) n- g (52)

X(fB —fA><5H12>

Introducing the designations A4 —>k and B>k’
in Eq. (52), we obtain (here £ = /(£ ))

st ) - (275;37‘1

Ry . — 2
><J-d q B(SIE —Slziq)(flgié —f];)<6H1> p .

In practical calculations, we shall use in future the
following approximation for dielectric function (here

q

(53)

1/q, is screening length, § is step-function):

1/e(0,q)1/e(0.)—> /e, )9(g—q0). (54)

6. Calculation of the energies €,

Accept the components of wave vectors k as quantum
numbers:
Ay =gy kg ko). (55)

The set of matrix elements of Hamiltonian H, is

(See (7))

(He)yr = (H (O))Ar +(H ® )AF + (H (H))Al" : (56)
Here,
(H(O))Ar :(h2/2m) l?zj ,
AT
(H(E))Al“ =-¢ [(x)ArEx +(y ArEy],
(H(H) )Ar = ezhnl;[; (xjgy —y/gx )Ar' (57)

Note that the Hamiltonian H, containing field-

dependent terms is not arbitrary invariant in space. The
problem disappears when using the standard approach.

Usually, this approach is applied without sufficient basis
(see, for instants, [1] and [2]). The most convenient for
calculations are the following wave functions
¥, (w)="Y(k,,w)=L " explik,,w).

aw

(58)

Here and farther, and

—L/2<w< L/2. The linear dimension L of the system
exceeds utmost an every characteristic length. These
functions are proper functions for the operator of

W=x,y,2

momentum hlé (and for the operator of kinetic energy):
- iquj (kAw;W) = kAw\P (kAW;W) ’
Vi‘{f (kAw; W): - kf!wly (kAw; W) .
When the parabolic law of dispersion takes place,
S {Ei7) ol P57 (5 2 7).
Write this way:
(Dr =081 » (léw )AF =k 4,0 4r »
(é)Al" = (hzki /Zm)SAl" .
Now consider the non-standard (field) variant. In

consequence of (46), the matrix elements of Hamiltonian
H, can be presented by the form

(H, ) = (H(O) )AF +X[(H(E) )Ar + (H(H))Ar] :

When one uses the field variant, the Hamiltonian
H, evidently depends on spatial coordinates. But at the

(59)

(60)

same time, all points of 7 -space are equivalent. Note
that wave functions are invariant to the shift of argument

w on the length proportional to the deBroigle
wavelength. For a minimal shift
‘I—’A(W+Xaw)=L_1/2exp[ikaw(w+7»aw)]= ©1)
=¥y (w)="¥(kg),

where

A =21k, - (62)

Using (61) and shifting the area of itntegration to

-L/2+A,,<w<L/2+M\,,, calculate the matrix-
components of radius-vector:
L(+)
()45 = .[WT # (k gy 5) Pk, s w) dw =
/(=
L/(-) (63)

LI(+)
= J.W‘I—’ *(kAW ;w+kaw)‘P(kBW ;w+kbw)dw.
L(-)
The diagonal element (B — 4) is
L(#) L(+)

[k g 390) Wk g sw) =2 [ (64)
L(-) L(-)
Here L(£)=%L/2+A,, . As it follows from (64):

(W)AA = Xaw = 2n/kaw .

(W)AA =

(65)
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Further, we assume the following relation to be
valid:

LI | = Ly | 27 — o0 (66)
and accept

(W)Ar ~Re(W) 4r,

(W)ar = 840 (W) 14 = 27/ k) - (67)

As a result of the limit L — oo, one obtains the
formula (39), where

22 2nek, k
o _I7k; _2meE, _ y+m[ﬁ_@} )

T om ok, ky,

x kAx Ay

Q=mneH, [mc. (69)

The transformation (63) is not possible only one.
We accept the shown form because just that gives
expected physical result (See below (124) and (125)).

Using the designations £, —k and kg >k—q,
one obtains the form

I
€4p =€ 4 —Ep > £ —Ep - _%(qu_q2)+
dmebyq, , 2mekyq, +hQ(kqu—kyqx)X
ko(ky —q,) ky(ky qy)
1 1
x +
ko (ke —qy) ky(ky _qy)

(70)

Simplify the calculations with the help of the
approximation |qw| << |kW| and such changes:

K2 (k)= (1/3)<k2>:2m<8)/3h2,

(71)
k2> (k2) = (1/3)k?) = 2me)/3n7
Here, (e)=3kzT F5,,(m)/2F},;(n)is  average
energy;
Fom)= W dw (72)

1
l"(r+1)v([1+exp(w—n) in=er/kyT

As aresult,

o\ hk> 2neE.  2meE k
g =alk) =2 T 0 5 k1

2m  k, k, k. k,
hk?
€ = s 73
= (73)
g -5 - _ﬁ(21€5—q2)+
k k—q om (73 )
a
3neh? 31°Q (kg — k4, )
(Equ +Eyqy)+ .
m (€) m(e)

We don’t consider here quantazed magnetic field
(that is b << 1); therefore values of the order »* will be
every case omitted. Under the designations

3neEf(e) =k'®), 31n(e)=b (74)
the expression (73a) can be written as
N n?
g 5, = ;{(k}f) +k, — bk, )qx +
i e (75)
+(k§ )4k, +bkx)qy thgs =2
The latter expression prompts to introduce the new
vector Tc(]g :
€le)= e €). (). . ). (76)
Here,
)=k, k=, 5w €)=k, + k5 bk,
«.k)=k. . 77)

The reverse transformation (if using the inequality
b <<1)is

ky =%, +be, —k — bk,
(78)

k,=x

=1, —be, — k) + k(P

Then (for approximations shown before) one
obtains from (75)

o (o n (.. g
;—S;_gzh(‘ﬂr ;;_q):—{‘“l—7 :

Introducing the mechanical momentum ﬁ:hlg ,

(79)

one can see that at (73a) two latter terms are quantum
amendment to classical part. Therefore, the retained field
terms in collision integral give the reason to name the
considered kinetic equation as the quantum kinetic one.

7. Balance of forces

For stationary spatially uniform system kinetic equation
(29) has the form

%{ml[v(;;)x H]} o

c

=St f; . (80)

Construct the first moment of the equation (80),
applying there to both sides the operator

2(2n)*3j/€d31€. (81)

Then, we obtain a vector equation, having the sense
of balance of dynamical and statistical fields forced in
all the system of band carriers:
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e[+ ()i x|+ T’sz'ESte_SfE P =

(82)
—e[E+(/c)i xa)|+ F, =0.

Here, the value 1361 is resistant force acting from

the side of charged impurities (something as “friction
force™). The values

(ZL):;J‘f]; &k,
) releE

T AeE enn

[ole)s, a2k

are density of electrons and drift velocity of whole band
electrons.

After non-complicated transformations of the
formula (53), we obtain the following expression:

(83)

4
~ e'nm

Fy=- s .[ f(;E)d%zJ‘q*dSqa(ﬁq_qz 1) (s4)

h

Performing here integration over components of
vector ¢ (see (78)) we find

Fy=- zﬁnen’l(qMij  Jra'%

nhney

(85)

For standard variant =0 (See (46)), the

expression (85) transforms to

.2
F,=- ﬂl (qMJIf k3 kdk .

(86)
©’h? nsL

8. The model of non-equilibrium distribution
function

As one can see, the friction forces (85) and (86) are
linear integral functionals of the non-equilibrium

distribution function f° (l;) As the sufficiently simple

model of f (E), we accept here Fermi-function with a
shifted argument:

£lE)- 4 (/z_;;u){uexp[w(;;_

mﬁg;)/Zm—aF ﬂ _]'

(87)

Introduce three-dimensional vectors K , K™ and
several dimensionless values:

£ _ (K)(ru)’ KW, O), K& =k + 0k +mu [,
w) _ 1.(E E)
K =k bk v 1, )

R=(K, K, K. )=k, +bx, %, ~bx,,x.).  (89)

K/ \[2mkyT =1 ,

hK [ \J2mkyT =Y | &y [kyT =n. (90)

Then, the “friction” force (85) takes the form
1312, 3/2(; Y12 4
el =7 m3(382) —Lin| DL |
n honey 90

€2y

P eaplexd)] s

EEE

Introduce the dimensionless electric field and
current density:

X

W=E/Ey, J=3j]jo=1mlksT . (92)
Here,
Ep =(e)\2mkyT 3reh, jo =enkyT [im . (93)
It follows from (90), (92) and (46) that
¥ =Jay[7+bixe.)]. (94)
Then the balance equation accepts the form
- - (]
W+b(EZxJ): D
F3,(n)
XJ' tl_p[f—xb(fxéz)]d3f (95)
1+exp{[t—xW xb(W )—j]z—n}
where
252345, p
O, =————"2—In| L. 96
% e2m 2 (k) n( do ) (©6)
For gq,, >>¢q,
de, 8k, ThE?(
in(gy /40)~ { = } (97)
\/_Fl/z( ) 1/2(‘1)

If external magnetic field is absent, the equation
(95) is converted to the following equation:

(P

(98)

Designate a mobility tensor by the symbol
1% and write here:

F=eniWE, J=(3% fup 7 (99)

© 2016, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

179



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2016. V. 19, N 2. P. 173-182.
doi: 10.15407/spqeo19.02.173

Jo 3neh

Hmin = enET = \/Em <8> =
_ V2reh Fij3(n) _ Fl/z(ﬂ).
mkpT Fy,5(n) Fy5(n)

Dimensionless magnetic field b=p,,H,/c. In

(100)

absence of magnetic field ;,t,(’j‘») = p”‘)?}i, ;- In the system

CGSE and for m=2-10"%8,

M =8.1-10°CGSE .
Define the conditional free-path length L and

T =100K, we find:

average length of the deBroighle wave A by the
relations:

L0 =[a@|\2m(e) [e, %=n/{2mee) . (101)
Then the equality
700 s 7 (102)

can be written as J >>W or ‘ﬁl(")‘ >>Woin - Under the

condition L™ < X, or ‘j ‘ < ‘W‘ , the concept “mobility”,

how one will see below, loses its usual meaning, and
description of macroscopic movement of band carriers
requires other ways.

If electrical field and current density are weak, that is

‘W‘+‘j‘ <<1, (103)

one can linearise the model non-equilibrium distribution
7lE)

electrical field W with dimensionless density of current

In this case, the relation of dimensionless

J becomes the linear equation

[f+wplxe)]
n)J-t3[1+exp(t2 —n)]2

{07+ + 4o 7 2. ) |Jexp (12 —n)a®7

(104)

For the case y =0, one obtains after performing
the integration over angles in the latter formula:

j) Am ®(1> *I 7 expl® )
b d
W+ (e ><J F3/2 [1+exp( )]2 t

9. Current-voltage characteristics
in absence of magnetic fields

. (105)

For b =0 (that is at H = 0), the linear equation (105) has
the form (external macroscopic electrical field is
directed along the x-axis):

Wx :(Jx +XWx)Q([)(n):®(1) a(n)(‘]x +XWx) > (106)

o0

texp(t2 —n) g
) 0 [1 + exp(t2 —n)]z

C4n Fal) an

3 Fyn) 31+ exp-m)] F55(n)

81
afn)=
3F.
3/2 (ﬂ (107)

Accordingly to (99) and (106), the current-voltage
characteristic has the form

1
Jy =——n1 0, =W, (/0 (n)-7) - (108)
M min
It follows from here:
P-(O) = Mmin /Q(I) > W D= M min (1 _Q(I) )/Q(I) 5 (109)
W0 =1-0y, . (110)

One can see from the formula (123) that for field
variant (y =1) the concept “mobility” has a meaning

only under the condition:

Oy <1. (111)

)

In this case, O<p'’ < u(o). It also follows from

(109) that distinction between results of calculations for
standard and field variants disappears under the

condition Q) <<1 or n® s> Pmin -

10. Galvanomagnetic kinetic effects

10.1. Kinetic characteristics calculated for standard
linear equation of forces balance

Supposing y =0, we write the vector equation
(105) as the system

W, _be :Q(I)(T]) Jis

W,+bJ,=0pnm)J,.

(112a)

(112b)

Here, we accept b* << 1. One writes the solution of
the system (112) in the form (99). Components of

mobility tensor 1? are

(0) _ (0) MminQ(I)
“’xx (H) ( )_ s
Qb +b*(H)
O () = (O)Hz—bHA. 113
()= 2 () =D oS8 (1)

At presence of magnetic field H =H_e, and at

the longitudinal component j,,
and Hall

current ]':(jx ,0),
transverse component of electrical field £,

constant Rg)) are
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Wanf |

J(H)=en| p (H)+

WO b (114)
=en " (H)E, ,
0) “mln
(H)=
Q(I)
E,(H) =9 (H)E, = W (H) | bU) (115)
w0y Y
E,(H) 1
Oy | L
RV (H) szx(H)‘ — (116)

As one can see, in the standard variant the

longitudinal ~conductivity cﬁo) :enpﬁo) and Hall

constant R}f) do not depend on the intensity of

magnetic field.

10.2. Kinetic characteristics calculated for non-standard
linear equation of forces balance

Write the components of linear vector equation for
x=1:
W,~bJ, =0, ), +W,~bJ,); (117a)
W, +bJ, =0y, +W, +bJ,). (117b)

Solving this system of equations, represent the
solution in the form (99). One applies the magnetic field

to be not quantized, that is |b| =u@H /c<<1; but the
value |b| can be comparable with Q) and even exceeds

it. As a result,
1-04))0u)
o +b2(1—Q(1>>2
(1- Oy f .
o +02(1- Q) f

1
pll) =

1
H(v) = Hmin

M _ O =

l"lxy - “w - ummb (118)

Consider the case j =(j, ,0). Then,

M
jo=en|p® + (“’ry E —ennVE.
x" () x I ~x
Mo
1-0
“I(\l)(b) —p, D) ( (1)) , u”1)(1)) pﬁo)(b) wo . (119)
O
E (b (1) b 1—
90 () = »( ) (1)( ) —p Quy =9(0)(b)(1—Q(1)),
E, < (b) Qu
()
H_j.(b)| lenc

Comparing the results of standard and field
variants, we find:
1 1 0
“I(I : :“H ( _Q(I))’ 90 = 9 )(I_Q(I))v
R (b) =R () =Ry (121)

It follows that formulae (119), (120) and the
meanings of mobility and Hall-angle have a sense at the
following condition only:

O <l.

The free-path distance (see (101)) is
7 0
7O 7t )( Qu))

If for the inequality (122) the value Q) is

(122)

(123)

sufficiently close to unity, one can say about small
mobility or about definite “demobilization” of band
electrons due to extremely high intensity of scattering.

The limit of mobility p(l) =

One obtains from (101) and (121):

0 achieves at Q) =1.

L(x) I

1-0, J; Oy =3m0/\209 .
\/_Q(S)( (1)) () /

(124)

10 -
=] e
g ~
i ~
Q_ \J@:
" 5F I
I S_
a)
) o
pa) — =
0 1 5 0

Q( 5)

0 05

|
0.5 i
Q(S)

1o 15
Q(S)
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It follows from here that retention of field terms in
collision integral is the reason of appearance of quantum
amendment to kinetic coefficients, for instance:

3n A
M) _ 0
Ko =H [“ﬁﬁ}

As a result, we obtain the important conclusion: a
quantum kinetic equation distinguishes from classical
kinetic equation by retention of field terms in collision
integral.

Therefore, we can use the expression “classical
approach” instead of “standard variant” and “quantum
approach” instead of “field variant” (See the forms (46)).

Below in Fig. 1 there are presented several plots,
drawn using the formulae (115) and (119). One can see
that, under the field approach to collision integral
typical, the kinetic characteristics substantially differ by
the values corresponding to standard variant even at

O >0.1.

(125)

11. Discussion

One can make the conclusion that regard for the field
terms in collision integral results there in appearance of
deBroighle wavelength A and comparability of that with
the free-path distance L. Taking into account the finite
ratio of A and L, we can say about quantum kinetic
equation in total. If a consideration does not use directly
the field terms in collision integral, the kinetic equation
leaves to be the classic one.
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