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Abstract. A model of n+-n-n+ diode is analyzed using analytical and numerical methods. 
First, it was conducted a phase-plane analysis, which was aimed at further calculations 
for low and high injection approximations. A numerical method was used to calculate 
changes of the field, bias and concentration throughout the diode for different current 
values. Expected impoverishment of free-charge carriers near the anode, and enrichment 
near the cathode was observed. Current-voltage characteristics were built for different 
concentrations of traps in base. Increasing bias for same value of current with increasing 
traps concentration was predicted. 
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1. Introduction 

Semiconductors with defects were a subject of intense 
researches as early as 1940s [1]. Later development of 
semiconductor physics and technology allowed creating 
the close to perfect defect-free materials and devices, 
including diodes [2]. However, with increasing ability to 
make nano-sized diodes, processes at surfaces of 
interfaces became more influential. The presence of 
traps in semiconductors contributes to different physical 
phenomena. Unlike defect-free semiconductors, which 
have quadratic current-bias characteristic [3], diodes 
with defects exhibit slow rise of current until critical 
voltage is reached, and power-law rise after critical 
voltage [4]. The presence of dopants in regions with 
traps also has a large effect on currents in semiconductor 
devices [5]. Dopants together with the Frenkel effect 
also control shape of the current-voltage characteristics 
[6]. Another effect that is introduced by traps in 
semiconductor devices are noise sources caused by 
random trapping and detrapping of charge carriers (see 
[7] for bulklike samples and [8] for nanowires/nano-
ribbons). The surface noise can be considerably sup-
pressed due to Coulomb correlations between trapped 
and conducting electrons [9]. 

In this work, we calculate the current-bias 
characteristics alongside distributions of the field, 
potential and concentrations of free and trapped carriers 
in the short diode with dopants and traps. We employ the 
phase-plane method [10] that allows to make qualitative 
conclusions on transport in the short diode. We include 
in the model a finite-length base and infinite contacts 
with higher doping concentration. Numerical 
calculations were performed using the numerical 
methods in general case, but analytical approximations 
were also used for low and high injection modes. 

2. Steady-state transport model and main equations 

The Poisson equation describes the field change in the 
base 
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where E is the field, n, N are electron density of free 
charges and charges captured by traps, Nb, Nc – dopant 
concentrations in the base and contacts, x is the 
coordinate, e0 – positive electron charge, ε, ε0 are the 
relative and vacuum permeabilities. 

For the density change, we consider continuity 
equations for base with generation and recombination of 
free particles 
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In the case of contact, generation and 
recombination terms are absent: 
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r
−  is the charge flow equal to current 

density divided by electron charge, 
( )NNnRNG t −γγ −+ =,=  are the generation and re-

combination terms, Nt is the density of traps, γ+, γ– are 
coefficients. 

For the stationary problem, the time derivatives 
disappear, and we obtain the Poisson equations (1), (2) 
and constant current density that can be defined using 
the drift-diffusion equation 
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where D is the diffusion coefficient, μ – mobility. 
Diffusion can be expressed through mobility 

μ
0

=
e
kTD , where k is the Boltzmann constant, T – 

temperature. The density of trapped charges we can get 
from (4) 
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Dimensionless equations look like 
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for field in the base, 
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for field in the contacts and 
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for the drift-diffusion equation (6) throughout the diode. 
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3. General case: the phase-plane analysis 

We transform dimensionless equations (8), (10) into the 
field-concentration differential equation 
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which we can analyze using calculated separatrix 
guidelines: 
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and such properties as: the null derivative on n = Ncrt 

line, infinity derivative at 
n
j

E =  curve, derivative equal 

to 
j
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Similar and simpler equations (no traps, hence 
terms with Nt and κ disappear) can be written for 
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equations describing movement of the charged particle 
in the contact. 

Examples of phase planes are shown in Figs 1, 2 
and 3. All of them show relation of field (vertical axis) 
and concentration (horizontal axis). Phase planes 
shown in Fig. 1 describe all possible field and 
concentration relations in the base and contact of 
semiconductor, with all possible boundary conditions. 
For instance, darker trajectories in the phase plane with 
the critical point Ncrt correspond to any concentration-
field relations inside base (trajectories have lower 
concentration inside the base, and higher concentration 
at interfaces; and field is constantly decreased). 
Likewise, darker trajectories in the phase plane with 
the critical point Nc correspond to relations in the 
contact (maximum of the concentration for particular 
trajectory can be taken as starting and ending points, 
with the concentration decreasing in cathode, and rising 
in anode; and field growing in both contacts). It should 
be noted that different intersections of darker 
trajectories from those phase planes depict all solutions 
to equations (8)-(10) in conditions of equal stronger 
doping the contacts and weaker doping the base. When 
moving along the particular line on the phase plane, 
one can determine the distance between two points by 
integrating the equation (10), for example. Movement 

from or to critical point 
crt

crt N
jN ,  (along any of the 

separatrix) gives infinite distance, which can be used to 
model infinitely large contacts, as in our case. 

Fig. 2 shows few integral paths for the base and 
separatrix for the contact. A solution to the system of 
equations (8)-(10) should start in the critical point for 

contact ⎟⎟
⎠

⎞
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c
c N

jN , , then moving along separatrix one 

reaches the field maximum at the left interface, then 
moving along the path integral for the base to the right 
interface and then again one reaches the critical point in 
the contact by using different separatrices. 
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Fig. 2. Solutions for both the contact and base are shown on 
the same phase plane. Solid line shows separatrices for the 
contact, dashed – integral paths for different intercontact 
distances; both critical points for the base and contact lie on the 

dotted line 
n
j . The top intersection point of separatrix and 

integral path represent the left interface of diode, bottom – 
right interface. 
 

0

N��� N�  
Fig. 3. Phase plane for diode without injection. Dotted line is 
the separatrix for the base, dashed – for the contact, and solid 
lines represent solutions for the base. Unlike previous Figs 1 
and 2, these lines can be built analytically. 
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Fig. 1. Phase planes. Solid lines represent separatrix guidelines, dashed – characteristic lines. Four regions where the phase plane 
is divided by the separatrix define different behaviour of Eq. (11). 
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4. Equilibrium distributions in the unbiased diode 

In the absence of current, equations (8)-(10) can be 
solved analytically. The field-concentration dependence 
can be written as 
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for the base and contact, respectively. Nmin defines the 
minimum concentration in the base. 

A dependence of the concentration on the coordi-
nate can be found from the integral expression 
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The equations give the expected result (Fig. Fig. 3): 
symmetrical distribution of charged particles concen-
tration and the potential in diode, as well as the asym-
metrical field distribution.  

5. Regime of low injection 

We consider a low current in the diode. In this case, we 

can expect a solution in the form 
*10=

N
jEEE ++ , 

n = n0 = n1, where E0, n0 denote unbiased solutions, 

1*1 , n
N

jE +  – corrections for low injection. N* is the 

dopant concentration Nc in the case of contact and the 
minimum concentration Nmin in the case of base. 
Correction for the field is split by two terms for 
convenience – it requires E1 term to be equal to zero in 
the N* point. 

Solving the equations (8)-(10) simplified to the first 
order in respect to E1, n1 and current density j, we get 
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for the base, and 
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for the contact. 

6. Regime of high injection under virtual cathode 
approximation 

Under the high current, we can neglect the diffusion 

term 
x
n

d
d  in (10), and equations become solvable in 

respect to coordinate x 
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for the cathode and anode, respectively. Nc denotes 
another critical point for the equation (11) with the 
negative value, Ec, xc  are the field and coordinate at the 
interface between the base and anode. 

Since Eq. (10) without diffusion gives the simple 

field-concentration dependence 
n
j

E −= , all the integral 

paths lay on the same line in the phase plane. Because of 
it, we can’t use intersections of integral paths correspon-
ding to the base and contact to determine the values of 
field and concentration at the interface. Hence, we 
should use virtual cathode approximation that puts the 

field maximum 0=
d
d

x
U  for x = 0 at the interface bet-

ween the cathode and base. This approximation requires 



 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2017. V. 20, N 2. P. 210-216. 

doi: https://doi.org/10.15407/spqeo20.02.210 

 

© 2017, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

214 

the current density to be greater than not only diffusion 
term, but also doping concentration of the contact Nc. 

See Fig. 4 for comparison between numerical 
results and approximations for high and low injection. 

7. General case of arbitrary injection.  
Numerical results 

To solve equations (8)-(10) in general case, we will use 
the Runge–Kutta method. Plotting the integral paths for 
the base and contact, then we intersect them to determine 
interface values of field and concentration along with 
base width. By manipulating the minimal concentration 
in the base Nmin, we can change the width of base, and 
get it to the predefined value. After calculating basic 
relations for the field, concentrations of free and trapped 
charged particles, we can calculate and plot the potential 
of the diode at various current densities. 

As a result, we get the expected shift of the 
concentration plot in direction to the anode with 
increasing injection, as seen in the inlet of Fig. 5. 

The above analysis was done in dimensionless 
variables. To apply these results to particular diodes, we 
present the normalization parameters in the table below. 
Values for InAs at 77 K are not included, since the 
calculated mean free path (Lfp) was comparable to 
intercontact distance, which does not satisfy our model. 
All the values are in SI units, except Lfp, which is 
dimensionless. Values for mobility and other 
characteristics of materials were taken from different 
articles [11-14] and books [15, 16]. 

Fig. 6 depicts the dependence current-voltage on 
the trap concentration in the base. A higher potential for 
the same level of injection can be required with 
increasing the concentration of traps. This shift to higher 
voltages can be explained by trapped injected carriers 
that generate push-back voltage until all the traps are 
filled, at which point the current sharply rises [6]. Our 
model doesn’t accommodate for breakdown field, but if 
we take Si as example, its breakdown voltage would lie 
near 240 V, and Fig. 6 goes only to 12 V. 

 

 T, K 3
1,

m
N ch  Lfp Ld, m 

m
VEd ,  2,

m
Ajch

 
Uch, V 

Si 300 1020 0.2 4.1⋅10–07 6⋅104 105 0.03 

Si 77 1020 1.7 2.1⋅10–07 3⋅104 6⋅105 0.007 

Ge 300 1020 0.4 4.8⋅10–07 5⋅104 3⋅105 0.03 

Ge 77 1020 2.8 2.4⋅10–07 3⋅104 106 0.007 

InAs 300 1022 4.9 4.7⋅10–08 6⋅105 2⋅109 0.03 

GaAs 300 1021 1.1 1.4⋅10–07 2⋅105 2⋅107 0.03 

GaAs 77 1021 2.0 6.9⋅10–08 1⋅105 3⋅107 0.007 

GaN 300 1020 3.2 3.6⋅10–07 7⋅104 5⋅106 0.03 

GaN 77 1020 0.8 1.8⋅10–07 4⋅104 6⋅105 0.007 
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Fig. 4. Comparison of approximation and numerical calculation. Solid line denotes the numerical result, dashed line – approxi-
mation for small injection and high injection, respectively. 
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Fig. 6. Current-voltage characteristics. Solid line calculated 
according to Gurney–Mott law, dashed – numerical results for 
different concentrations of trapped charges. Nt = 0, 0.5, 1, 1.5, 
2, 2.5, 3 from shorter dashed lines to the longer ones, 
respectively. 

8. Conclusion 

The introduced model is viable for both analytical and 
numerical analysis. The phase-plane analysis gives 
general prediction of numerical results for concentration 
and field change inside the diode. From these results, we 
can see the dependence of current-bias characteristic 
from traps concentration in the base, with a linear 
characteristic corresponding to the concentration of traps 
being smaller than the dopant one, and a power like 
characteristic for traps concentrations higher than that of 
dopant, which shifts further to higher voltages with 
increasing the traps concentration, due to push-back 
voltage generated by trapped injected carriers. 
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