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1. Introduction

Theoretical investigation of kinetics is based on kinetic
equation (KE) for a non-equilibrium distribution
function (see [1-4]). Two fundamental problems appear
from the very beginning. The first is the well-grounded
deducing the kinetic equation. The second is acceptable
solution of this equation and calculation of kinetic
coefficients (see [5-9]). Both problems, especially the
second one, are sufficiently far for the total satisfaction.

The main trouble is related with the mathematical
form of KE for general use, which is an integer-
differential equation with specific derivatives. To find
analytical precise solution of that is not possible in
practice without very significant approximations. So,
every time we have to find suitable approximate
solution and to prove its validity. One way to improve
results is to use several distinguished methods of
solution and compare the obtained data. If this
comparison appears efficient, we find some base to rely
on obtained material.

2. Total Hamiltonian and one-particle density matrix
for no equilibrium many-particle system of charged
carriers

Design by the symbols 4, B efc. some quantum numbers
that characterize states of separate particles, which
makes up a system of charged band carriers. For uniform

space, we assume A — k,, where k, is the wave

vector. The values W, () are basic one-particle wave-

functions. In what follows, spin variables and spin
quantum numbers are not used, since any processes of
spin overturn are not considered here.

One-particle density matrix is defined by the
following expression:

Pap(t)=ag(t)a, (). 2.1)

Here, ¢ is time, a} and a, are operators of

generation and annihilation of band particle at the state
A. The averaged value of shown density matrix is
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Fap @) ={p4p(0)) =(az(H)a, (). (2.2)

The act of averaging, we designate by angle
brackets; formally this procedure is performed using a
statistical operator related to total systems of band
carriers and to the whole external system, represented by
external microscopic accidental fields (scattering

system) and macroscopic electrical field E (see [1-5]).

The base of our investigation is the set of equations
for one-particle density matrices pz(f) for non-

equilibrium system of considered particles. As the start
point, we used the standard motion equations for

operators p ,,(#) at Heisenberg representation (see, for
instance [3]):

in op 45
ot
(2.3)

One can represent the total Hamiltonian H' of

the whole considered system as the sum of four parts:

+H¢+H, 3+H,,. 2.4)

Here, the Hamiltonian H, concerns carriers non-

interacting with microscopic scattering fields, individual
Hamiltonian Hj relates to external scattering system of

impurities and phonons (see, for instance [6]) and
Hamiltonian /s =eqg describes the interaction of

carriers (we call them as electrons) with this scattering
system, Hamiltonian H, represents e-e-interaction.

The macroscopic electric field E= (E,,0,0). Then, the
first term in right part of (2.4) is

i, = Z(]:IQ)ABazaB - Z[([:Iém )AB +(ﬁéE) )AB] ajag =
B o
= Z[SABSAB _eEx(x)AB] ajag.
AB

.5)

Hamiltonian of Coulomb interaction of band

carriers has the form (see [10]):

H, = ZVABA'B'a;a;'aB'aB ) (2.6)
ABA'B'
Vasap =
2

e 3— 3 * = * - 1 - —
=——J'd rJ'd P ()W () —— W (F) P 5 (7).

2e; |r—r’|

2.7)

= pAB(I)aI:]mt EPAB(t) q" _ﬁmtpAB(t)~

Hamiltonian that concerns e-S-interaction has the
form

I:[eS:eZ((b(S))ABa;aB:eZ((b(S))ABpBA' (2.8)
AB AB

Below we omit the term that shows simply a shift
of origin for count out the kinetic energy. As result, one
obtains total Hamiltonian in the form

H" = Z{(He )AB + e(‘b(s) )AB}‘SBA +

AB

+ ZVABA'B‘[f)B'A,f)BA’]+ +HS >

2.9)
ABA'B'
where  [C,D], =(1/2)(CD+DC). Consider the
following commutators and anticommutators:
[Pus-PyL]=041P 1B —OrBP aL » (2.10)

lPupslPrr Pyl 1=08 4rlprp Parns 14 +
O umlprr -Pmpls —8rBlPar-Parm s —OarlPrr P am s

Substituting (2.8) — (2.10) to (2.3) and performing
necessary commutations, one can obtain the equation

ih% = ZC:[(I:I)AC Pes(®) =P uc (t)(]:l)CB] +

+> {eA [(‘b(s) (t))Ac Pcs (’)L —ep [pAc o, (‘f’(s) (’))CB ]+ }+
C

+ Z Z { Vacsalpaw 0. pes 0], -

C A'B'

~Vepaw [P ac @) pap (f)]+ } (2.11)

Separating the density matrix p ,z(¢) and external

Qs
corresponding fluctuations, one obtains the equation for
the one-particle density matrix f, ={p 44 :

scattering potential into averaged values and

Ya

~ -O(f) =St f4.

(2.12)

where

Q(fA):Z[(I:[)ACfCB _(I:[)CBfAC] (at B—>4),

C
(2.13)

Sth(t):SteS fA([)+SteefA(t)s (214)
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Stos fu4(1) = (e/ih)z [<((6(\DS(t))AB’6pBA (t))+> - <((6(Ps (1)) 3,30 45 (t))+ >] ;

B

Stee f4(0) = (1 / ih) Z [VABB’A' <(5F’A'3' (#),0p 54 (t))+ > ~Vaapa <((Sp(f))B'A' »0P 45 (f))+ >] .

BA'B'

3. Matrix elements of Hamiltonian He

Accept the quantum numbers 4 as the components
of wave vector £ :

A _)];A :(kAx ’kAy ’kAz)' (31)

For the following calculations it is very convenient
to use the wave functions (plane waves)

W, (7) = Pl 7 )= TT %k gw) = TTL ™2 explik g w);

w

(3.2)

here and farther w=x,y,z and —-L/2<w<L/2.

Every linear dimension L of the system exceeds utmost
every characteristic length and tends to infinity. The
functions W, () are proper functions for the operator of

momentum 2 =hk and operator of kinetic energy e(ﬁ):

— ivw‘P(kAw; W) = kAw‘P(kAW; W) 5

VW (kg5 w) == k5, ¥ (kg3 W) (3.3)
at the parabolic law of dispersion
8wl 7 )=,k :7)= (022 12m)elk o7). (3.4

Note that Hamiltonian Fle evidently depends on

spatial coordinates (see Eq. (2.5)). In spite of all points
in 7 -space are equivalent, this Hamiltonian containing

the field dependent term H® is not arbitrary invariant
in space. Therefore, a specific problem appears for
collision integral. Usually, in calculations of St f;. the

field term H® is simply omitted in collision integral
(and we call that way as “standard variant”, see, for
instance, [2, 3] and [7-9]). In this paper, we also consider
other, the so-called “non-standard variant” (see [11]), for

which the field term (I:I (E))AC in Stf; is retained.

Farther, inside the collision integral we use the
designation

(B,) = (A)  +2(A®) . (3.5)

(2.15)
(2.16)
Here,
x =0 for the standard variant,
x =1 for the non-standard variant. 3.6)

Note at first that the wave functions (3.4) are
invariant to the definite shift of argument w on the length
equal to DeBroglie wavelength A, :

W+ 2,) = L2 explik g (w2, )] = W4(w),
(3.7

here,

A =21/k 4, . (3.8)

It is easy to convince that matrix element of
coordinate w is proportional to the diagonal one at
AL—>0:

L/2
J-W\P * (kAw;W) lP(/‘Bw; W) dw=(w) 446 4 5
-L/2

(W) 4p =

3.9)

(here 8, 5 is Kronecker symbol).

Using the formulae (3.7) and (3.8) and shifting
space of integration from the area —L/2<w<L/2 to
L, (-)<w<L, (+), calculate the diagonal matrix
element for components of the radius-vector:

Ly (+)
jw‘P*(kAw;w) ‘P(kAw;w) dw.
Ly (=)

(W) 4y = (3.10)

Here

Ly, () =%L/2+%,,. (.11)

As a result, we obtain:
L 4y (+)
I wy * (kAw; w) ‘P(kAw; w) dw =
Law(=)
L gy (+)
j wdw =4, =27k,
Lgw(=)

W) aa =

= (3.12)

and

W) 45 = (2Tf/kAw)5AB- (3.13)
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A

Represent the matrix element of Hamiltonian H
by the form (see (3.5))

e

2neE
%] 5.
Ax

Using the designations k, >k and k, >k—g

(]:[e)AB :EASA,B :[SA -X

e, =h%k2/2m. (3.14)

one obtains the formula

2 — —_
Sus=84—85 > -5, =2h—m(2k(} )+ 0lk.q).
(3.15)
®(]€’q): 2TceEqu/kx(kx _qx) .

Now, we make some approximation. For second
order over ¢ and simplifying the expression (3.16) by
averaging the values, one obtains:

(3.16)

olk.G)— nk g, [m,

k)(rE) :37remEx<k_2 >/h2 =3me E.F_;,(n)/kgTF > (7).

(3.17)

Here

J' w"dw
F(r +1)Jd 1+exp(w—1)’

F.(m)= n=¢gp/kgT. (3.18)

As a result, we obtain the following approximate
form of the equation (4.17):

_1€ - _12—5 = (hz/m)[(kx +x k)(cE))Qx + —q2/2] .

(3.19)
Introduce the new vector &k ):

&(e)= e, (€), w, k), w. (%), (3.20)

here

lf)=k ok ® o lk)=k, ., e (f)=k..  Ga21)
Let @, =&,/h and @, =®,-®;. Then (at

approximations shown before), one obtains from (3.19)
and (3.21):

- =hlw; - é) hop ;g =
=2 fm)l#le)a 47 2]

4. Collision integral

5 -z

(3.22)

Below we consider the averaged distribution function to
be smooth in comparison with fluctuating values. Using
the Laplace transformation (see [8])

£@)= [y explion r,
0

oo+i0
1 .
E(f) = — jz‘;(m) exp(—iot) do, “.1)
2n

—00+i0
one obtains from Eq. (2.11):
—ihop 45 (t = 0) + hawdp 45 (@) =
= (EA —&p )5PAB(CU)+
+ (fB -S4 ){e(&ﬂm )AB + Z Vg 40P 45 (@) | (4.2)

AB

Let us introduce the following designations:

ip45(t=0)
O-®, +i0’

fo=fa

ho—©,p5 +i0)

(0) ( )= s M yp(0) =

Then, we find the lowest terms in the set of
perturbations theory:

Sp 45(@) = 3P (@) +

4.3)

+M 5 () {@ (5¢(S)(w))AB + Z VABB'A'5P£102; (@) |.
AB

In agreement with uniformity of time, the correlator
of fluctuations &p(s )(co) can be represented as follows:

< 390 (@) ,80%) (o )> =2n8(w+ m')<6(p§ >:B =
=083 (27t)_6_[d3éj'd3q,<bé )AB (bf?' )BA %
«(30(0.3).80 0.7 -

=5 45 2n) *8(0+ ) @) AB‘2<8¢§>M . @44
where
bi) = j P (7) expliGr) ¥ p (F)d °F . (4.5)

In the second order of simplified theory of
perturbation (see, for instance, [5])

<6pAB (t=0)3p 4p(t= 0)> —> 08450 45 /3 (1 _fA) . (4.6

As a result, the collision integral for equilibrium
external scattering system has the form (4 — k 4, and

B—)lEB)
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EABakA_k

2 —
Stesfu = _ijdak3<5¢’§> o {[fA(l _fB)+ fB(l = fu )]tanh[

For elastic scattering

<8‘P§>@B, [ :<5‘P~2Y>,;A,,;B S(GI;A,;;B)» (4.8)

then it follows from Eq. (4.7):
2
Rl o)
SteSfA - 87T3h2 '[d kB(fA /{B)(S(pS)kA—k,j6 (DkA,kB :

(4.9)

Collision integral for can be

presented by the form

e-e-scattering

St ofa = e ZJ- 44 l(b‘?)AB‘z‘(bq)A’B"zx

nr BA'B’ q4|‘9(5AB’ 5)|2 |
X0 (EAB - 5A'B')><
x [fB(l_fA)fA’(l_fB’)_fA(l_fB)fB'(l_fA’)]'
(4.10)

Show several correlators for different external
scattering potentials (see Refs. [5, 6]). They have the
simple forms

<6q)§>é =D /q° (a=4or2or0). “.11)
For the system of charged impurities with

concentration 7;

CD(C,) =3213e? n,S(q—qO)/S%; (a=4) (4.12)

for piezoelectric scattering by longitudinal acoustic
phonons

Dy = GikgT  (a=2); (4.13)

at high temperature (i ,, <<kgT) for quasi-ellastical

scattering by polar optical phonons one can use the
expression

D, =8nkyT/e* (a=2); (4.14)

(Op1)

at quasi-elastic acoustic

(hsq <<kgT)

scattering on phonons

+ - . 4.7
2kBT] Sa fg} 4.7)
D4y =2nES kT /*ps®  (a=0); (4.15)

for neutral impurities (see [13])

Dy = 8n5e2rgn§,§) [[+exp(-n+n,)]™" (@=0) (4.16)

(here np =€, /kgT and & <0 represents the energetic

level of a donor).
Consider the static kinetic equation. Then it has the
form (see Eq. (2.12))

e of;
—E—=St,f- +St,.f:.
h ok eka eefk

(4.17)
To find the approximate solution of presented
kinetic equation we consider three different ways.
The first method of approach. Here we accept to
consideration only the carriers scattering with small
transfer of wave vector: (g) <<(k). By this way we

obtain Fokker—Plank equation. This situation is
essentially typical for band carriers scattering by charged
impurities.

The second method of approach. By this way one
uses the distribution function in the form

1= )= 76} 1l6)= 706+ glE, @)

here f O(Ig) is equilibrium distribution function. This

approach is nucleus of the so-called “method of effective
relaxation time” (see, for instance, [7]).

The third method of approach. This way concerns
the model of non-equilibrium distribution function that
has the form of Fermi-distribution with a shifted
argument (see, for instance, [14]):

£ = 1l6)= ol -v); (4.19)
here the shift
k" = mii/n (4.20)

and u is the macroscopic drift velocity of carriers:

4.21)
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5. Solution of kinetic equation in the Fokker—Plank
form

In this part (the first method of approach), we limit the
scattering of carriers by different microscopic fields and
neglect there e-e-scattering. The only possible basis of
the last approximation is total absence of relaxation for
total carriers momentum at the absence of external
sources. Practically, we don’t know which losses we
obtain using mentioned simplification.

Here, we consider only the relaxation for which
small transferred wave vectors ¢ play the main role.

Therefore, we use the expansions

e 1
fia=Sim qa—£+2( jfk,

_ O 1(~ 0 ]2
Er D E—q——+—|q—| €; .
k=4 ok 20 o) *

(5.1)

Then, the stationary kinetic equation (4.18) accepts
the form:

er 6f( ) ’m J‘CD(S) pe
h ok 2(2;;) 3 gt
(1L - Eltea-) o

Carrying out in the equation (5.2) integration over
q , we obtain:

s0lE)_emk@sc@ o) n%
ok 8min’k | ok mkgT

(5.3)

Represent farther the distribution function f (I; ) in

the form, containing equilibrium part f;(k) and
additional non-equilibrium term £, (I; ) :
)=o)+ (k)=
:[1+exp(—77+F12k2/2kaT)]_1 +f1(5)(1€). (5.4)
The density of band carriers
1 =\ 3- 1 =\ 3-
[k = [k
1} ka 3 \/_1 )] 1 gy =
pErE J. +exp w—n W=
_ (mkgT)*" (5.5)

Fin(m).

N 3/243
'\/572' h

Let electric field E = (E,,0,0). For the small E,,

the linearized over this field kinetic equation has the
form

0
P AN

Ok ,
_em®c@ o) w2 540
Tk | ok kT b-2rw])

(5.6)

where
Sa=4)=In(gy /9y), sla <4 =2"""J4-a). (5.7)

Note that linearized FP-equation (5.6) does not
contain the vector k& (see Eq. (3.17)). Therefore, the
collision integral and kinetic equation relate here only to
“standard” case (that is y = 0 ; see (3.6)).

Note that in the general case the value and the form
of non-equilibrium distribution function f (IE ) substan-
tially depend on specifics of scattering system S.
Therefore, farther we mark off the symbols £, /°, f; and
other symbols by the index ().

Accept the artificial form (for the first method of
approach):

FOE)= (e A ) > (K JK)AD(K). (58)
Here and further one uses the designations:
K =k/ky = k| \[2mhyT . (5.9)
E5) = em® 0 g ¢(a) /27 0 (kg T)" > 0"
(5.10)

Then, it follows from the equation (5.6):

(2K)'oAS) (K)/aK + A (K)tanh(K * /2 7/2) =

——(aE, J2E ) 12E5) )K" cosh 2 (K2/2-7/2).
(5.11)

Suitable solution of the equation (5.11) is (at
number a > 0)

A (K) == (E, /Es))K “cosh2(K?/2-n/2).  (5.12)

Then, the solution of linearized kinetic equation
(5.6)is
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PARE (12): (£, /Es) (2,2 f2miyT) ' x

% (k. Jk)cosh~2 (22 /2kaT—77/2)—>
> [ (R)= (ke ! K.E,[2Es) 2
x cosh ™2 (K2/2—r7/2).

Determine the mobility p'®) by using the relation

(5.13)

(S) =J S)/enE

= (n/mE, Ikxfl(s) k d3E/jf°(k)d3k (5.14)
It follows from here:
Mﬁ% M<FP/ND) M gp(a,m); (5.15)
) 4,kgTT(2+a/2)
WrpinD) = 3\/— ; (5.16)
nmE(S)
1
M, a, = X
v a D ()
x j K “* cosh2(K? /2-n/2)dK. (5.17)

0

Here ug},/ npy 1s mobility for non-degenerated

carriers (see below Fig. 1) .

4\JkgT T(2+a/2)
) _ B
HEFP/ND) - 3WE(S) > (5.16)
M () (asn)= 1 x
o 20(2+a/2)F 5 ()
(5.17)

ij “*3 cosh _2(K2/2—77/2)dK
0

4 2 0 2 4 6

Fig. 1. — M, rp(a, M), - - - Msepy(a,m); a=4 (1), a=0(2),
a=2(3).

Remember that Fokker—Plank approach is
acceptable on practice only at sufficiently large positive
parameter a. Note also that for small electric field the
non-standard variant (y = 1) disappears.

6. Model of effectiverelaxation time

Here, we again neglect e-e-collisions, as that was per-
formed before (see also remark at p.5). Using the elastic
scattering and starting from the equation (4.9), we obtain
the kinetic equation

- Gfk -
ok
- [atalond) oli—a* 2+ A Pa)lf - 11 )
6.1)
Use farther the model having the form
fe = 1E)= e Alk)= W) s O WRE. (62)

After linearization of the equation (6.1) over the
small external electrical field £ (see (3.17) and (4.11)),

one obtains the equation for unknown function g (k):

0
(#7)2/ (k) _

oe
8z 3h4 [gz +g(S) vfq)(S) kq qz/z)

(6.3)
where
0

gx(k):X%:eth_l/z(n)af (k) (6.4)

mkpTFy,(n)  d¢

At E = (E,,0,0), it follows from here (see p. 5):

fl(S’T)(];)z
2247 a-1
kB, — T h'k 3
m-ekgT® g 5(a)
x cosh 2 (n2k2 f4mky T - 17/2)

3 eth—uz (n)
X
m(kBT)2 Fyp ()

(6.5)
or
_ a-l F_y15(m)
(S,7) —_KE K _L 1/2 %
/ ( ) ! {4E(S) Er Fy)h(n)
xcosh2 (K 2/2-1/2), (6.6)
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where

Ep =m"? (kgT)'? [3n2¢h . (6.7)

As a result, one obtains (see Figs. 1 and 2)
75/2 3/2(k T)1/2

3m'"F ), (m)

xIKz K X 1/2(11)
4E ) ET Fijn(m)

xcosh(K?/2-n/2)d*K ;

(S.1) _ _

i)

(6.8)

252152 (e, )12 )
3E(S)m]/2Fl/2(n)

n® 0 =0) =~

ij”” cosh (K2 /2-m/2)dK;
0

(6.9)

2n5/2(kBT)”2
3F1/2(1”I)ml/2E(S)

(S.FP) _

ij”” cosh 2(K?/2-n/2)dK. (6.10)

For standard variant considered here mobility
i;(x 0) = u(s) is presented by the form (see (5.14))

S) _
R =
23203203 (a )2+ 2))

3em2CD(S)g(a)kT1_a

M(a,m)= Mff) ND)M(a ,Mn).
(6.11)

Note the following relation between distribution
functions f5P(k) and £ (k) at 3 =0 (see
(5.13) and (6.3)):

fl(S,FP) (];) _ ZfI(S’T) (/;) ) (6.12)

The same relation for mobilities follows from the
determination (5.14) (see also [13] ):

My = 20(3) - (6.13)

7. Model of shifted Fermi-distribution (SFD).
Balance of forces

Here, as the sufficiently simple model of non-

equilibrium distribution function £ (1; ) we accept
Fermi-function with a shifted argument (see (4.19)):

rOk)=fole-£)-

n? (k mu(]‘z)/h) Jam—g, . o
B

-1

=|1+exp

It follows from (2.8) and (4.10):

EE@f(S)(IE)_ e’m y
ok 8ah’
03w a2 0=}

St fOF)

(7.2)

Note, at this expression we don’t neglect e-e-
scattering.

To find the relation between vectors #* (drift
velocity) and E (electrical field), apply to both sides of

Eq. (7.2) the operator
2(2n)‘3j£ &k .

For the form (4.10), it is easy to see that
ISteef“)(/E)/Ed%:o. (13)

Performing some uncomplicated transformations,
we obtain the following balance of forces:

E+—" | rOF)GS Rk =0, 74
+(2n)6h2njf K)o &) (7.4)
where

G (% J.CD(S)q G 8(Ri-q*2)d’ (7.5)

After integration over ¢, one obtains (see (5.7) and

(5.8)):

2K
G (Tc): (nf(/K3 )ICI)(S)q%”dq = nd)(s)g(a)ﬁl(““ )
0

(7.6)
Using (7.4) — (7.6), we have
-~ ema®d ¢ ¢(a) N a-
E+— 32 e Ok ) x! ~aa’k =
(2”)6712" If ( )KK
- em®d c(a) “\_ -
=E+—— 2| fOk )& 'Kk = 0. 7.7
(2x) Jro)es a7
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The condition (7.3) does not mean that e-e-
collisions do not play any role in the equation (7.7).
These collisions practically have introduced their
influence in the formula (7.1). In what follows, we will
limit our consideration by the small external electric

field E=(E

linearized form for the non-equilibrium distribution
function:

150 )= 16+ 1 )=
= [+ exp (3267 /2mky T | +
(hk ul® /i Jexp (nk> [2mky T~ 1)
[l+exp( k2/2kaT ’7)]
—>f((§jp)D)(ﬂ) ok )+f1(f;FD>(ﬂ)
= [l+exp(K2 —77)]_1 +
+USK exp(K2 —77)[1+6XP(K2 _77)]_2 =
= [1+exp(K2 —77)]_1 +
+(U)(CS)KX/4)cosh_2(K2/2—’7/2)-
Here (see (3.17)),
1%=/€/kT =h]€/w;
U =mu§8) =hkTu)(cS)/kBT; ky =\/W/h;

_kFp) e K _bnemE Ry _E,

0,0) and construct the corresponding

x>V

(7.8)

4’ N ko 3GRR()  Er
(7.9)
1—a _p2-a| g g0 g 2K B gl 1 l-a
KyK ~ =kp x ALKy K_3+F .
(7.10)
The mobility of carriers is
ﬂg}D) = ”(S)/E \/kBT/zm (U;(CS)/EX):
= (#ky J2m U [E, ). (7.11)

From the equations (7.8) and (7.11), it follows the
form of linear non-equilibrium supplement for
distribution function:

s
Hgs}D)\/; E. K,

\8kpT coshz(Kz/Z —n/2) ‘

This formula appreciably differs from the obtained
before expression (6.6) (see also (6.7) and (6.8)).

(7.12)

e (&)=

Now remember that SFD-method, in distinction of
two previous methods, allows two different variants (see
[11-13]): “standard” (yx=0) and ‘“non-standard”

(x=1). Below, at calculation of the mobility, we
consider both variants.

7.1. Standard variant (y = 0)
For this variant, one finds from (7.11):

K, k' TC=kFOK KO, (7.13)

X

Then, from (7.7) and (7.8) it follows the balance of
field and dissipative forces:

emCD(S)g(a)kz “us

487> n’ Fl/z(ﬂ)

><J‘K57” coshfz(Kz/Z—n/Z)dK (7.14)
0
As aresult (see (7.12)),

#((5}0) (Z =0, T,n)=

= M (a, 77) =

4 (SFD)

e<I)(S)g(a)m2kT1 r(3-a/2)

fu((gllD ND) (Z =0, T)M(SFD) (a, 77)’ (7.15)
where (see the Fig. 2)

M () (a,1) = 2T (3= a/2)F, , (7)x

-1
X[IKS_“ cosh_z(K2/2—77/2)dK ) (7.16)

0
M(SFD)(a,T]%_OO)_)l.

The relation between mobilities calculated for three
different considered methods is represented in Figs. 1
and 2. One can see that distinction of these mobilities is
sufficiently evident.

= 3 T T
N

o 2

S

=

s 1

S

~ 0.5

i 0 | | |

-4 -2 0 n 2 4

Fig. 2. 1 — pw(a, n)/uer(a, ); 2 — wela, N/ wspr(a, n),
a=2and a=0; 3 pm(a, n)/uspr(a, n),a=4.
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7.2. Non-standard variant (y, # 0) 6
Introducing the expressions (7.8) and (7.11) into
the equation of balance (7.7), we obtain the following
linearized form: 4 /
— 4L
P (@) B
em a .
E, +—<S>g [rowc-aaca=o 717 o
(ZT[) [II 2_
or
K" exp (K —7)dK 0 ' I
Ex :E(S)U)(CS)(Z)J. ol 77)2 -4 -2 0 2
7 [1+exp(k —7)] n
+yE, é5(a,T.n)=0, (7.18)  Fig.3.a=4(1),a=2(2),a=0(3).
where (see also (3.17), (4.7), (5.7) and (7.12))
2 o 4
E _ em‘b(s)g(a)kT7 [_:\.
=5 5220 () =
120° 12, (n) lL:
22 ‘
_ e*m*® g (T) —
&sla.7n)= RO (1)Z(an), RO (1)=——57 D 1) (&
h (2kT)I A 2r
5 8
(7.19) - N (3
S
2(a=4 ﬂ)_ 32F 5 (n)inlg, /o) =,
/2[F1/2( )] [l+exp( )] % 0 | I
- 32F ) T KUK 1 2 3 4
n(a¢4,n) = I (7.20) /TS ; T/TS
[Fl/z(n ]2 0 1+exp(K —n) R) (w)

Flg 4. ] - (S(p)) = (CI), 2 - (S(p)) = (AC), 3 - (S(p)) = (S(R)) =

Here (see Egs. (4.12) — (4.17) and Figs. 3 and 4), (NI, Opt, TI); 4 — (S) = (A0).

RO(T)= (/75 ), (7.21)
5
y(CHy=-5/2; y(I1,0pt ,NI)=-1/2;
y(Ac)=1/2; y(NP)=3/2. (7.22) 4
=
Then, the mobility for non-standard variant has the N 3F
form (see (7.19)) N
. s
60 —
,U((g;D)( ) = (hkT /Zm)[Ui_S) (Z)/Ex J:
= /u(SFD) (Z = 0)[1_15(5)(% T”7)] (7.23) I
0 | | |
or - 2 2 4
4 0 n
”g}m) (X)z ME?I)TD)(X = 0)_ xuog(a,n), (7.24) Fig.5.a=4(I);;a=2,a=0(2).
where (see Fig. 5)
Wy = eh/mikyT = Ze/hk% ’ (7.25) As it follows from (7.9), (7.21) and (4.12) — (4.17):
/2
glam)=37"M(an)E ()2 )T G-a/2). (7.26)  wSy e =0.7)=(r/7))".
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#fgpagpf)(z =0, T) - (T/T((j))) 1/2’
MEIS‘II'?D,ND) x=0,T)= ( /T((MS))) 3/2’
M(SFD ND) X 0,T)= (T/T((Hs))) 5/2;

R(CI)(T)=(T/T((I§)))75/2, RV 0pID(p =(T/T((,;°’))) 12

R )=l k)b

At & (a,T,n)=1, the mobility p(3), (x=1)

becomes zero and macroscopic movement of carriers
breaks off. Only the microscopic movement of plasma is
left.

Plots in Figs. 3 and 4 are calculated on the base of
relations (5.7) and (7.20) — (7.28). In numerical
calculations, we have taken for simplicity:
la=4)=1In(g, /q0)=2

Now represent free-path L and average length of
DeBroglie wave A = (L) by the following forms:

Liso) (. T. )= (2m(e)) * e u(5h (T 17) =

_ Nk (T) | 3Fy5(n)  (s)

45 (4. T.n). (7.29)
e\ 2R,() o )
(T, )= 27“/_1/ 27 /3F0§:77; . (730

Then, in agreement with the expressions (7.25),
(7.29) and (7.30)

Z((_g}i))(% T, Tl) _ HE?%D)(X» T, 1”l)
k(T» T]) “HO(T)

(7.31)

It follows from (7.31) that mobility of carriers
pg}D)(x) reaches small value close to n,, when free

path L((g}D) becomes comparable with average length of

DeBroglie wave A .

hkT(T) 3F3/2(T1) ()
Wm0 Tom).
2F 5(m)

Z((30) 0 T,m=

8. Discussion

Presented results show that the obtained non-equilibrium
distribution functions and following calculated mobility
are distinct for different methods of solution of kinetic
equation. Therefore, in real practice any obtained
popular solution cannot be confidently considered as
guaranteeing reliable result. One of the most interesting
point is specific influence of macroscopic electric field
on the collision integral with possible total disappea-
rance of carriers mobility at characteristic situation. That
appears at the non-standard variant and concerns the
kinetic equation for the non-equilibrium distribution
function that contains e-e-collisions by any way (evident
or hidden). Two non-standard cases are related to the
method of effective relaxation time (see Sec. 6) and to
the method of distribution function having the form of
Fermi-distribution with shifted argument (see Sec. 7).
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