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Abstract. Possibilities of new numerical method for solving the wave equation of 
multilayer planar waveguide were investigated. The method is based on the use of 
Fourier transform to the wave equation and its solution in the frequency domain by using 
the numerical method. The final task of finding propagation constants and the Fourier 
images of the fields in discrete form is reduced to the problem on the eigenvalues and 
eigenvectors. The new method provides highly accurate calculation of propagation 
constants and their fields and is characterized by high numerical stability. 
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1. Introduction 

The primary method of determining the propagation 
constants of localized modes in multilayer planar 
waveguides is based on solution of the transcendental 
equation [1], and this method is easy to use for a simple 
waveguide. However, modern integrated optics uses 
complex multilayer waveguides, for example, 
semiconductor lasers with double heterostructure, 
consists of five layers, and each layer has its own 
refractive index [2]. Distributed feedback waveguide 
microlaser, based on organic semiconductors has 3 or 4 
layers [3, 4]. Increasing the number of layers 
complicates the transcendental equation and, therefore, 
its solution. If you have a simple waveguide in which 
there are two jumps of the refractive index 
(permittivity), the transcendental equation is defined as 
the equality of the 4×4 matrix determinant to zero [1], 
which is formed as equality of tangential components of 
the fields at the boundary between the layers. For the 
waveguide shown in Fig. 1 the transcendental equation 
is based on the 12×12 matrix. 

 
 
Fig. 1. Scheme of non-symmetric multilayer planar waveguide 
with six fixed values of refractive indices. 

 
There is a well-known numerical method in 

coordinate area [5], in which the second derivative is 
replaced with differential operator and the calculation of 
propagation constants of waveguide modes and related 
fields is reduced to solution of the problem on eigen-
values and eigenvectors. However, this method does not 
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ensure high accuracy [5, 6], also it is difficult to use it 
for TM polarization waves, as the function of the 
dielectric permittivity for such waveguide has a 
discontinuity of the first kind. 

Thus, a numerical method to solve the wave 
equation for planar gradient waveguides in the frequency 
domain has been proposed [6, 7]. Analyzed in these 
works are various known methods used for calculation 
of propagation constants of waveguide modes for 
gradient waveguides. All of these methods are mostly 
approximate, and only for few waveguides the 
calculations are exact [7], and they are based on solution 
of the wave equation in coordinate dimension. The 
proposed method [6, 7] is based on using Fourier 
transform to the wave equation, so as a result, one can 
get an integral equation in the frequency domain. Then, 
it is pertinent to write this equation in a discrete 
frequency spectrum by reducing it to solution of the 
well-known problem of higher algebra on eigenvalues 
and eigenvectors. The new method provides high 
accuracy and is characterized with a high numerical 
stability. It is also effective for symmetric and non-
symmetric waveguides and both for TE and TM wave 
polarizations [6]. 

It is shown below that this new method is also 
effective for multilayer planar waveguides. The example 
of such a waveguide is provided in Fig. 1. 

2. Theoretical foundations of the method for 
multilayer waveguides 

In compliance to the refractive index of each layer nm, 
let’s put permittivity 2

mm n=ε , where m varies from 0  
to M. The thickness of each layer is equal to dm, and it is 
shifted from Y-axis by the distance am. The functional 
dependence of waveguide permittivity is expressed as: 
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according to the scaling and displacement theorems is 
equal to [8]: 
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where u in current situation is the spatial frequency. 

Therefore, fourier image of the expression (1) is 
equal to: 

( ){ } ( ) ( ) ( )∑
−

=

−+=
1

1
00 2expsinδδε

M

m
m

m
m uai

u
uduxF π

π
πεε , 

where { }KF  is Fourier transform, ( )uδ  – Dirac delta 
function. 

If the electric field of the waveguide mode is 
perpendicular to plane xz  (ТЕ polarization), then the 
corresponding wave equation can be expressed as[1]: 

( ) ( ) ( ) ( )xExEx
dx

xEd 2
2

2

2
βεπ2

=⎟
⎠
⎞

⎜
⎝
⎛+
λ

. (3) 

The functions E(x) and H(x) that describe electric 
fields in localized waveguide modes, are absolutely 
integrated, also, these functions and their first 
derivatives tend to zero, if ±∞→x . Thus, Fourier 
transform can be applied to these functions, their first 
and second derivatives. 

Besides, to the functions, for which Fourier 
transform exists, meaning ( ){ } ( )uGxGF = , 

( ){ } ( )uHxHF = , the following expression is true: 
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Exp. (4) is known as convolution theorem [8]. 
After applying Fourier transform to right and left 

sides of equation (3), one can get the following 
expression: 
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As a result, from the differential equation (3) for 
eigenvalues and eigenvectors we obtained integral equa-
tion (5). In this equation, we can replace the integral with 
a sum. Therefore, after replacing continuous values of 
spatial frequencies u and v with discrete ones, we will get: 
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where Numax=Δ , Δ= sus , Δ= kvk , ( ) ,21 sN ≤−−  
( ) 21−≤ Nk . 
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To solve this equation, N should be sufficiently 
large and, for convenience, odd. Let’s write the latter 
equation for a set of discrete frequencies Δ= sus , 
where s varies from ( ) 21−− N  to ( ) 21−N . As a 
result, we can write the set of these equations in quantity 
N as a matrix equation. Also, 2β  should be common for 
every s: 

( ) EEUP 2β=+ , (6) 

where P – diagonal matrix, elements of which are equal 
to ( )2π4 Δ− s , U – symmetrical square matrix, elements 

of which are equal to ( )ΔΔ−Δ⎟
⎠
⎞

⎜
⎝
⎛ ksε
λ
π 22 , E – row-

vector, with elements ( )ΔsE . 
Transition from the differential equation (3) to the 

integral equation (5), and also transition from the 
integral equation (5) to the matrix equation (6) is 
explained in details in [6, 7]. It is worth to note, that 
solution to all the three equations leads to the problem of 
eigenvalues and eigenfunctions. However, only 
equations (5) and (7) are true for a discrete number of 
propagation constants of localized modes. 

Respectively, the complications of calculating the 
propagation constants are reduced to the problem on 
eigenvalues (square of the propagation constant) and 
eigenvectors (discrete Fourier image E(x)), which 
corresponds to the relevant value β. We can have several 
eigenvalues and corresponding eigenvectors that are 
orthogonal. After applying inverse discrete Fourier 
transform to eigenvector, we will get the relevant 
electric field distribution E(x). 

3. Example of numerical modeling 

Practical use of the proposed method will be 
demonstrated for multilayer planar waveguide, scheme 
of which was shown in Fig. 1, with the following 
parameters: λ = 1 μm, n0 = 1.5, n1 = 1.4, n2 = 1.7, 
n3 = 1.45, n4 = 1.6, n5 = 1.35, d1 = 4 μm, d2 = 2 μm,  
d3 = 2 μm, d4 = 2 μm, d5 = 2 μm, a1 = –5 μm, a2 = –2 μm, 
a3 = 0, a4 = 2 μm, a5 = 5 μm. 

As it is known, the accuracy of calculation is 
defined by parameters of numerical process N and umax. 
Propagation constants, calculated at N = 2001 and umax = 
140 μm–1, and which corresponds to waveguide modes, 
are, respectively, equal to: β0 = 10.59724925 μm–1,  
β1 = 10.34367530 μm–1, β2 = 9.96936112 μm–1,  
β3 = 9.91979424 μm–1, β4 = 9.71932685 μm–1. 

Propagation constants calculated for the given 
waveguide are shown in Table 1. As we can see from 
Table 1, propagation constants are calculated for a wide 
range of umax, and the highest accuracy can be reached 

within the range umax = 120…140. Calculation accuracy 
in this range reaches 8-th decimal place, depending on 
the mode number. Besides, in Table 1, common numbers 
are highlighted for every calculated mode, depending on 
the value of umax. 

In the case of non-symmetrical waveguide, 
dependences of calculated propagation constants from 
umax at fixed values of N = 1001 and N = 2001 are shown 
in Figs. 1 and 2. 

It follows from Fig. 2 that the change of umax within 
the range from 10 up to 100 μm–1 slightly affects 
accuracy of calculated propagation constants, and only 
calculations outside of this range leads to changes. When 
N = 2001 (see Fig. 3), within the range of umax from 10 
up to 200 μm–1, the calculated propagation constants are 
actually stable. 

 

 
 
Fig. 2. Dependence of calculated propagation constants from 
umax at N = 1001. Digits near calculation dots indicate the mode 
number. 
 

 
 
Fig. 3. Dependence of calculated propagation constants from 
umax at N = 2001. Digits near calculation dots indicate the mode 
number. 
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Table 1. Calculated propagation constants for a non-symmetric waveguide (N = 2001). 

umax
 60 μm–1 80 μm–1 100 μm–1 120 μm–1 140 μm–1 160 μm–1 

β0 10.59724917 10.59724922 10.59724923 10.59724924 10.59724924 10.59724925 

β1 10.34367501 10.34367518 10.34367525 10.34367528 10.34367529 10.34367530 

β2 9.969361076 9.969361106 9.969361116 9.969361121 9.969361123 9.969361125 

β3 9.919793605 9.919794003 9.919794144 9.919794207 9.919794238 9.919794256 

β4 9.719326665 9.719326782 9.719326824 9.719326842 9.719326852 9.719326857 
 
Comparison of these two plots shows that lower 

limit umax doesn’t change significantly with a change of 
N, although the upper limit is rising twice. 

Therefore, we can conclude that lower limit umax is 
independent of N, and this bottom limit can be 
determined by a criterion, that is described and well-
grounded in the paper [7]. The upper limit umax increases 
in proportional to N, which defines the maximum value 

Numax=Δ , consistent with the sample theorem [8], as 
Numax=Δ , and this value defines a range in the 

coordinate region [ ]ΔΔ− 5.0,5.0 , where the fields of 
modes are being calculated. At the edges of this range, 
electrical fields of discrete modes are assumed to be 
equal to zero. 

The electrical field distributions for the first three 
modes are shown in Fig. 4. Computational process 
parameters are equal to N = 2001 and umax = 120 μm–1. 

It follows from Fig. 4 that modes with indices 0 
and 1, are basically concentrated in the layer with the 
refractive index n2 = 1.7, the mode with the index 3 is 
concentrated in the layer with n4 = 1.6. Fields for the 
latter two modes are shown in Fig. 5. The numerical 
process parameters are the same as for the first three 
modes. The electrical field of the mode with the index 
3 is concentrated in the layer with n2 = 1.7, and field 
of the mode with the index 4 is concentrated in the 
layer with n4 = 1.6. This is related with the fact that 
the respective layers have the highest refractive 
indices, and the layer 3 between them has the 
refractive index n3 = 1.45, which is less than n0 = 1.5. 
Therefore, this layer is of some kind of potential 
barrier for tunneling photons from the layer 2 to the 
layer 4, and vice versa. 

In the case, when refractive index of the mode 3 
will be higher than n0, the waveguide modes will spread 
over three layers, especially it is typical for the modes of 
higher indices. A similar result will be observed, when 
the thickness of the third layer d3 will be significantly 
reduced.  

In addition, we calculated propagation constants for 
symmetrical multilayer planar waveguide with a profile 
shown in Fig. 6. Parameters of calculated waveguide are 
as follows: λ = 1 μm, n0 = 1.45, n1 = 1.47, n2 = 1.45, 
n3 = 1.5, n4 = 1.45, n5 = 1.47, d1 = 2 μm, d2 = 2.5 μm,  
d3 = 1.5 μm, d4 = 2.5 μm, d5 = 2 μm, a1 = –4.25 μm,  
a2 = –2 μm, a3 = 0, a4 = 2 μm, a5 = 4.25 μm. 

 
Fig. 4. Field distribution in waveguide for the first three 
modes. The field with the index 1 is (11 – real part, 12 – 
imaginary part). 

 

 
 
Fig. 5. Field distribution in the waveguide for the last two 
modes. 

Since our waveguide structure is spatially 
symmetrical, the electrical field distribution may be 
either symmetric or antisymmetric. Its fields can be 
described by real functions: modes with even indices 
will correspond to fields that are defined by the 
symmetrical function ( ) ( )xExE jj −= , and modes with 
odd indices are defined by the following expression: 

( ) ( )xExE jj −−= . 
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Fig. 6. Scheme of symmetrical multilayer planar waveguide 
with six fixed values of refractive indices. 

As it was said previously, calculation accuracy is 
defined by the parameters N and umax. When calculation 
parameters were N = 2001 and umax = 60 μm–1, we 
obtained the following values of propagation constants: 
β0 = 9.33165605 μm–1, β1 = 9.19041624 μm–1,  
β2 = 9.19029113 μm-1, β2 = 9.19029113 μm–1,  
β3 = 9.12237133 μm–1. 

In Figs. 7 and 8 one can see the dependences of 
calculated propagation constants from umax at fixed 
values of N = 1001 and N = 2001. 

We can observe from Fig. 7 that propagation 
constants within the range of umax from 10 up to 80 μm–1 
practically do not change, but, with increase of the top 
limit, we can observe some kind of divergence between 
the 1-st and 2-nd propagation constants. 

As in the case with non-symmetrical waveguide, 
increasing N twice leads to widening umax range. Here, as 
we can see from Fig. 8, the range of umax is from 10 up to 
160 μm–1, and outside of this range we can also observe 
divergence of the 1-st and 2-nd modes. It means that in 
the point of divergence between these two modes, we 
have the maximum permissible value Numax=Δ . This 
condition agrees with the sampling theorem [8], as 

Δ=1maxx , and this value defines the range in 
coordinate dimensions [ ]ΔΔ− 5.0,5.0 , in which the 
mode fields are calculated, and at the edges of this range, 
electrical fields of discrete modes should be equal to 
zero, which can be observed in Fig. 9. 

In Table 2, one can see the calculated 
propagation constants for a symmetrical waveguide. 
Analyzing these data, we can see that within the range 
of umax = 60…80 μm–1 we have the highest accuracy 
(up to 8 digits). In addition, the mode with the index 
0, both for symmetrical and non-symmetrical 
waveguides is the most accurate. With increase of the 
mode index, accuracy decreases, and is the lowest for 
the last mode. These results agree with conclusion, 
described in the paper [7]. With further increase of 
umax, the last mode disappears, and instead of four 
eigenvalues of matrix equation Eq. (6), we will have 
three eigenvalues. 

 
Fig. 7. Dependence of calculated propagation constants from 
umax at N = 1001. 

 
Fig. 8. Dependence of calculated propagation constants from 
umax at N = 2001. 
 

 
 
Fig. 9. Field distribution in the waveguide for all the 
waveguide modes, N = 2001, umax = 60 μm–1. 
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Table 2. Calculated propagation constants for a symmetric waveguide (N = 2001). 

umax
 20 μm–1 40 μm–1 60 μm–1 80 μm–1 100 μm–1 120 μm–1 

β0 9.33165569 9.33165601 9.33165605 9.33165605 9.33165606 9.33165606 

β1 9.19029109 9.19029113 9.19029113 9.19029114 9.19029141 9.19030643 

β2 9.19041619 9.19041623 9.19041624 9.19041624 9.19041597 9.19040113 

β3 9.12237085 9.12237134 9.12237133 9.12236880 9.12234487 9.12224307 
 
 

From Figs. 7 and 8, and from Table 2, we can see 
that propagation constants with the indices 1 and 2 are 
very close. We cannot distinguish them visually from 
Figs. 7 and 8, but analyzing Table 2, we can conclude 
that they differ in the fifth significant digit. This is 
because the energy of this waveguide mode is 
concentrated in two identical outer layers with the 
refractive indices n1 and n5, which are equal.  

Analyzing Fig. 9, we can note that the mode with 
the index 0 concentrates in the central layer, modes with 
indices 1 and 2 – in outer layers, and the last mode – at 
the edges of central layer. As noted above, since the 
waveguide is spatially-symmetrical, the modes with 
indices 0 and 2 are symmetrical with respect to vertical 
axes, and the modes with the indices 1 and 3 are 
antisymmetric.  

4. Conclusions 

Results of this paper show that using the proposed 
numerical method to solve multilayer planar waveguide 
gives accurate results. Propagation constants and 
distribution of electric fields for symmetric and 
antisymmetric waveguide have been calculated. Optimal 
parameters for propagation constants calculations have 
been obtained, namely: umax and N. We have found that 
the lower limit of umax does not change significantly with 
a change of N, and upper limit is 2-fold increased, while 
increasing N twice. We can conclude that the lower limit 
of umax is independent of N, and the upper limit of umax 
increases in proportion to N. In other words, umax defines 
the maximum allowed value of Numax=Δ , which is 
consistent with the sampling theorem [8], as Δ=1maxx , 
and this value defines the range in the coordinate region 
[ ]ΔΔ− 5.0,5.0 , in which the electrical fields are 
calculated, and at the edges of this range the electrical 
fields of discrete modes are practically equal to zero. 

The obtained results are significant for 
development of DFB waveguide lasers, and also for 
physical measurement sensors that are based on the 
principle of disorder of resonance of waveguide modes. 
Knowing the propagation constants in a waveguide, and 
corresponding fields, enables us to calculate gain 
coefficients of active laser media, binding coefficients 
between modes, and also to explain characteristics of 

similar multilayer waveguide lasers with Bragg gratings 
[3]. The calculated fields show that they approach their 
maximum value in layers with a higher refractive index. 
This conclusion is also valuable for development of 
multilayer waveguide lasers. Since the probabilities of 
laser transitions are in proportion to the field powered 
two, it is efficient to make the active layers with a high 
refractive index. 
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