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1. Historical background 

An ohmic contact is such metal–semiconductor contact at 
which an applied voltage decreases linearly, and the 
contact resistance Rc is low as compared with that of bulk 
semiconductor Rb. Ohmic contacts are integral parts of 
any semiconductor device. Regular experimental 
investigations of metal–semiconductor contacts began 
about eighty years ago. A considerable part of the studies 
deals with the so-called Schottky (or rectifying) contacts 
at which boundaries there is a potential barrier. In the 
same years, the pioneer theoretical works were 
performed that dealt with mechanisms of current flow in 
contacts – mainly, in the Schottky ones (Mott, Davydov, 
Pekar, Schottky) [1-7]. Somewhat later, the work by 
Bardeen appeared [8], in which it was shown that in most 
cases presence of barrier is not due to contact difference 
of metal and semiconductor work functions, φms, but 
owes to density and energy distribution of semiconductor 
surface states. The latter, in Spicer’s opinion [9], are 
formed because of presence of foreign atoms on 
semiconductor surface. 

The studies of ohmic contacts have been developing 
simultaneously with the physical investigations of 
Schottky contacts. Their stages are rather minutely 
presented in the review by Gol’dberg [10]. By now, there 
are many monographs and reviews dealing with 
presenting the physical processes of current flow in the 
Schottky contacts as well as their applied applications. 
Some of them contain chapters or sections dealing with 
the properties of ohmic contacts [11-19]. At the same 
time, the monographs describing current flow 
mechanisms in ohmic contacts are few in number, and 
the material presented in them is mostly of descriptive 
character (see, e.g. [20]). By now, the physical 
mechanisms that explain Schottky contacts functioning 
are principally understood. Contrary to this, the 
mechanisms of ohmic contacts operation still are being 
specified. In particular, several physical mechanisms 
explaining temperature growth of ohmic contacts 
resistivity were proposed in the recent 10–15 years. 
Among them, there are current flow through metal shunts 
coupled with extensive defects in semiconductors [20-
26], current flow in ohmic contacts with a doping step 
[27] and the mechanism of partial screening of surface 
charge states at high doping levels [28]. 

Returning to the background, we firstly dwell upon 
an analysis of ohmic contact formation mechanisms 
given in [11-19] and then go to description of physical 
features that ensure realization of ohmic contacts, contact 
resistivity of which increases with temperature. At the 
end, criteria for ohmicity of metal–semiconductor 
contacts are considered in detail. 
 
2. Classical current flow mechanisms ensuring ohmic 

contact realization 

In this section, a brief description is given for classical 
mechanisms of current flow in a metal–semiconductor 
contact that lead to ohmic contact realization. (For the 

most part, the description uses the approach considered 
in the monograph [19] and the review [10].) They are, 
first of all, thermionic, thermal-field and tunnel (field) 
current flow mechanisms. 

Shown in Fig. 1 is the energy diagram illustrating 
these mechanisms. If the thermionic, thermal-field or 
tunnel (field) mechanism is realized, then the current of 
majority charge carriers flows over the barrier, through 
the barrier over the Fermi level or through the barrier at 
the Fermi energy level, respectively. 

The criteria for realization of the above cases were 
considered by Padovani and Stratton [30]. They 
introduced the parameter E00, the physical meaning of 
which is the tunneling energy. For n-semiconductor, this 
parameter is 

∗εε
=

m

N
E

s

d

0
00 2

h
, (1) 

where ħ is the reduced Planck constant, 0nNd ≅  – 
concentration of shallow ionized donors (equal to the 
equilibrium concentration of majority charge carriers in a 
semiconductor), ε0 – vacuum permittivity, εs – 
semiconductor permittivity, and m

* – effective mass of 
tunneling charge carriers. 

It was shown in [30] that at kTE <<00  the main 
current flow mechanism is thermionic emission, while at 

kTE ≈00  or kTE >>00  these are thermal-field emission 
and tunnel emission, respectively, k is the Boltzmann 
constant, T is temperature. Knowing the flowing current, 
one can determine the resistivity Rc of metal-
semiconductor contact: 
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Fig. 1. The energy diagram of contact metal–semiconductor: Ec 

is the bottom of the conduction band and Ev is the top of the 
valence band in semiconductor; EFm is the Fermi level in metal; 
EF is the quasi-Fermi level for electrons in semiconductor; φb is 
the barrier height, counted from the bottom of the conduction 
band; Em is energy of thermal-field emission (TFE), and V is the 
applied voltage. 
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where I is flowing current density. The criterion for 
contact ohmicity is the inequality 

bc RR < .   (3) 

Here, Rb is the bulk semiconductor resistance. In the case 

of cylindrical geometry, it is equal to ( ) SdNq dn
1−µ  (q 

is the elementary charge, µn – mobility of majority 
charge carriers, d and S are thickness and cross-sectional 
area, respectively). 

The temperature dependences of Rc for the above 
current flow mechanisms are as follows: 1) at the 
thermionic mechanism, Rc decreases with temperature 
according to the law ( )kTq bϕexp  (φb is the barrier 
height); 2) at thermal-field mechanism, Rc also decreases 
with temperature but weaker than in the preceding case; 
3) at tunnel mechanism, Rc does not depend on 
temperature. 

In most practical applications, it is possible to use 
the following expression: 








 ϕ
∝

0

exp
E

q
R b

c ,    (4) 

where ( )kTEEE 00000 coth= . In the case (1), 

( ) ( )kTfR bc ϕ= 1ln , and its slope in coordinates 1/T is 
proportional to the barrier height. In the case (2), 

( ) ( )02ln EfR bc ϕ= , and its slope in coordinates 1/E0 is 
proportional to the barrier height. In the case (3), 

( ) ( )003ln EfR bc ϕ= , and its slope in coordinates 
2/11 dN  makes it possible to determine the barrier height. 

More exact expressions of contact resistivity Rc for the 
above current flow mechanisms are presented, e.g., in the 
monograph [19] and the review [10]. 

The case of the so-called doping step (when the 
semiconductor near-contact region is doped very heavily 
– up to degeneracy) is in fact a combination of the 
thermionic and tunnel mechanisms of current flow [27]. 

A special case of the step doping is δ-doping that is 
used to obtain ohmic contacts in up-to-date 
microelectronic devices. 

The barrier height can be reduced, if a 
semiconductor with narrower forbidden band is used in 
the near-contact region. In many cases, it promotes 
ohmic contact realization [10]. 

The case of current flow through metal shunts 
associated with extensive defects (e.g., dislocations) in 
semiconductor near-contact region considered in [10] is a 
special case of more general one that will be considered 
below. 

Practically in all reviews and monographs having 
chapters or sections dealing with ohmic contacts, it is 
stated that ohmic contacts can be realized in structures 
with high velocity of charge carrier recombination at the 
metal–semiconductor interface. This high velocity at the 
contact is obtained after previous lapping the 
semiconductor surface before formation of a metal–
semiconductor contact. Indeed, it was shown in a number 

of works (see [27]) that the contact becomes ohmic after 
pre-lapping the semiconductor surface. However, the 
physical reason for ohmic contact realization in this case 
is related to appearance of high density of dislocations 
(which ensure current flow through metal shunts) rather 
than to high surface recombination velocity. Moreover, 
as was shown in [27], the current of majority charge 
carriers flowing into ohmic contact does not depend on 
the surface recombination velocity value. 

The results of analysis of the mentioned features of 
ohmic contact resistivity will be considered more 
comprehensively in the present review. 

The results of analyzing the new ohmic contacts 
forming mechanisms are shown in [21-29]. 

It is shown that the case of conductivity through 
metal shunts, conjugated with prolonged defects in the 
semiconductor contact area (for example, dislocations) 
considered in [10] is a particular case of the general one 
analyzed in [21]. 

The case of a doping step is analyzed in details in 
the review. It is shown that for the weak and moderate 
semiconductor doping, the specific contact resistance is 
defined by the specific resistance of weakly doped area 
and increases with temperature. Special attention is paid 
to the analysis of contact ohmicity realization criteria, 
which allows correcting the inaccurate results given in 
literature. So, practically in all reviews and monographs 
having chapters or sections dealing with ohmic contacts, 
it is stated that ohmic contacts can be realized in 
structures with a high velocity of charge carrier 
recombination at the metal–semiconductor interface. This 
high velocity at the contact is obtained after previous 
lapping of semiconductor surface before formation of a 
metal–semiconductor contact. Indeed, it was shown in a 
number of works (see [27]) that the contact becomes 
ohmic after pre-lapping of semiconductor surface. 
However, the physical reason for ohmic contact 
realization in this case is related to appearance of high 
density of dislocations (which ensure current flow 
through metal shunts) rather than to high surface 
recombination velocity. Moreover, as was shown in [27], 
the current of majority charge carriers flowing into ohmic 
contact does not depend on the surface recombination 
velocity value. 

And, at the end, the heavily doped semiconductor 
surface charge states reduction mechanism is analyzed. It 
is shown that this mechanism can promote contact 
ohmicity. 
 
3. Mechanism of contact resistance formation in 

ohmic contacts with high dislocation density 

3.1 Introduction 

In the recent years, a number of papers have appeared 
that reported on observation of anomalous behavior of 
contact resistance Rc in ohmic contacts to semiconductors 
with high dislocation density. The following anomaly 
was registered: in the temperature range starting from the 
room temperature, the contact resistance increases with 
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increasing temperature T. In particular, this temperature 
dependence of contact resistance was observed for In– 
n-GaP and In–n-GaN contacts [10, 31]. The increase of 
contact resistance with temperature was also observed for 
ohmic contacts fabricated to p- and n-InP [32]. The 
experimental Rc (T) curves obtained in the above-
mentioned papers are in contradiction with the 
thermionic mechanism of current flow, according to 
which Rc has to decrease with temperature. In fact, the 
situation is similar to realization of the thermal-field 
mechanism of current flow. In this case, one deals with 
Schottky contacts characterized by depletion in the near-
contact semiconductor region. At the same time, the 
results obtained in Refs. [10, 31] were explained by 
assuming that current flow is limited by resistance of 
metal shunts on dislocations in semiconductor layers 
with a high dislocation density. Since metal resistance 
linearly increases with temperature at temperatures 
exceeding the Debye one, it should be expected 
appearance of linear behavior of Rc(T). However, a 
number of experimental features in Rc behavior for 
metal–GaN contacts have not found their explanation. In 
particular, there was no justification done for specific 
region in the Rc(T) dependence just before the linear 
increase of contact resistance with temperature at low 
temperatures. In addition, it was observed that the contact 
resistance as a function of the doping level has a very 
weak dependence. To illustrate this, the authors studied 
the samples with the doping level changed by more than 
two orders of magnitude and demonstrated that the 
contact resistance at room temperature varied by no more 
than twice in a wide doping range.  

A qualitative explanation for the observed increase 
of contact resistance with temperature [32] was as 
follows: in semiconductors with a stepped doping (n-n

+ 
junction), the flowing current may be restricted by 
diffusion mechanism supplying the electrons. For this 
case, it was supposed that Rc is proportional to T

 2. 
However, a comprehensive analysis made earlier for 
Schottky contacts [33] with a stepped doping 
demonstrated that the current in Schottky contacts 
(except for weakly doped semiconductors with electron 
concentration ≤1015 cm−3) is defined by thermionic 
emission rather than the diffusion limitation. Thus, the 
diode theory of current flow through the contact was 
shown to be more appropriate than the diffusion theory. 
In this case, the temperature dependences of Rc in the 
framework of the thermionic mechanism of current flow 
have to be usual, i.e., decreasing resistance with the 
temperature increase. 

In this review, we propose a novel concept 
explaining the unusual behavior of ohmic contacts in the 
model considering the current flow through the metal 
shunts along the dislocations and current limiting by 
diffusion mechanism supplying electrons. An essential 
difference from the model developed in the work [21] is 
consideration of the current flow paths through the 
regions accumulating electrons rather than depleted ones. 
Being combined, the abovementioned two mechanisms 
allow us to explain the behavior of Rc(T) curves 

(decreasing with temperature increase in the low 
temperature range and increase in Rc(T) curves in the 
higher temperature range) not only for the metal−GaP 
(GaN) ohmic contacts but also for contacts fabricated to 
other semiconductor layers containing a rather high 
dislocation density. A comparative analysis of the 
theoretical and experimental results demonstrates, as a 
rule, very good quantitative agreement. 
 
3.2. Theoretical basis for the concept development 

3.2.1. Distribution of potentials 

Let us assume that a potential well is formed near the end 
of each dislocation grown in a semiconductor. Generally 
speaking, the Schottky layer has to appear near the end of 
dislocation, nucleus of which is filled with metal. The 
reason for its appearance is related to the corresponding 
contact potentials difference and surface states. An 
extremely high electric field appears at the dislocation 
end as a result of considerable curvature as well as very 
small size of metal shunts. One can estimate the electrical 
field by assuming that the dislocation end is 
hemispherical, and their charge is defined by a small 
number Z of electrons (or ions). The electric field Es in 
semiconductor near the end is obtained from the 
condition of equality of electric displacements in metal 
and semiconductor. Both the edge effect (that leads to 
considerable increase of the electric field strength) and 
the effect of mirror image forces lead to considerable 
reduction of the barrier height, ∆φ, near a shunt. Its value 
(in the above approximations) is: 

r

Zq

sεπε
=ϕ∆

04
, (5) 

where q is the elementary charge, εs – semiconductor 
permittivity, and r – radius of the shunt. 

Expression (5) is obtained in approximation that the 
mirror image forces in the metal–semiconductor contact 
vary according to the quasi-classical law 1/z, where z is 
the normal drawn from the surface of the metal end to 
semiconductor. It is valid when the criterion z > a is 
satisfied, where a is the lattice parameter. 

To estimate the r value, let us to use literature data 
on the effect of mirror image forces on lowering the 
barrier height in tip emitters, in which a high concen-
tration of electric field also occurs. According to [34], in 
tip silicon emitters with the tip radius of r ≈ 10–6 cm, the 
initial height of the barrier φs at 107 V/cm decreases to 
zero. Substituting this r value into formula (1), at εs = 10 
and Z ≈ 2.5·103, we get ∆φ = 0.7 V. I.e., when ∆φ > φs 
we get at the end of the shunt not a barrier, but a potential 
well.  

The size of the dislocation core, in which metal 
shunts can be placed, is of the order of 10–6 cm according 
to Matare [42]. 

In the case where the shunt diameter has atomic 
dimensions (~2·10–8 cm), the presence of surface states at 
its end can be neglected. 
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Fig. 2. The calculated dependences of the diffusion potential φc 
and barrier height φb of the contact to GaN as a function of  
the semiconductor doping level. The following parameters  
are used: φms = 0.5 V, Т = 300 K, thickness of the dielectric gap 
d = 2·10–8 cm, dielectric gap permittivity εd = 1, Nsa, cm–2:  
1 – 5·1012, 2 – 1013, 3 – 1.6·1013, 4 – 1013. 

 
Assuming (similar to that was made above) that the 

shunt end is hemispherical, with the radius of ~2·10–8 cm, 
the volume of the hemisphere can be estimated as  
10–24 cm3. In terms of the concentration of surface 
centers, which have one surface level at each end, this 
corresponds to ~1016 cm–2. However, even for contacts to 
the GaAs-based materials having the largest 
concentration of surface centers of the order of 1014 cm–2, 
the estimated value is by two orders of magnitude higher. 
It means that only one shunt of a hundred may be related 
with the surface state. Therefore, in the case when 
φms < 0, at the end of the shunt, enriching band bending 
should be realized. 

The thermionic current flowing through the 
semiconductor regions accumulating electrons may 
decrease with temperature increase, taking into account 
current limitation by diffusion mechanism supplying 
electrons. It results in increasing the contact resistance. A 
sufficiently high density of scattering dislocation centers 
leads to decrease of electron mobility in favor for 
realization of the condition for current limitation by the 
diffusion mechanism. 

Let us consider that the metal−semiconductor 
contact potential is nonuniform. In the places where 
dislocations come into a quasi-neutral region of 
semiconductor, a positive value of band bending φc1 = φc2 
is realized, which forms a potential well for electrons. 
Between the dislocations, as usual, the contact potential 
φc2 is negative. It corresponds to realization of the 
Schottky barrier. The total current flowing through the 
contact interface is a sum of the current flowing through 
the dislocation short-circuits with metal shunts and 
current flowing between the dislocations. Current 
flowing through the dislocation shunts enables one to 
realize ohmic contacts, contact resistance of which will 
be calculated below. 

When calculating the contact resistance, we take 
that the contribution from the current flowing between 
the dislocations can be neglected in the case of a high 
density of the latter. The reason for this is a high value 
(up to 1 V) of the contact potential related to high 
concentration of surface centers. The contact potential is 
the diffusion (built-in) potential φc that is measured from 
the edge of the conduction band of semiconductor. 

Shown in Fig. 2 are the theoretical dependences of 
diffusion potential φc on the doping level for a 
metal−GaN contact with a tunnel-transparent dielectric 
gap calculated at different concentrations of acceptor 
surface centers Nsa located in the lower half of the 
bandgap. One can see that, at Nsa ≥ 2·1013 cm–2, the 
diffusion potential values exceed 0.7 V as the doping 
level varies up to about 1019 cm–3. 

Also shown in Fig. 2 are the dependences of 
qEcb F−ϕ=ϕ  (i.e., the contact potential measured 

from the Fermi level in metal) as a function of the doping 
level; the concentration of surface centers is 1013 cm–2. 
The Fermi level is not pinned at the surface (otherwise φb 
would not depend on the doping level). The values of φb 
(≥0.7 V) are high over the whole doping level range, up 
to the concentrations over 1018 cm–3. Thus, the 
abovementioned results demonstrate rather strong reason 
for neglecting the currents flowing between dislocations. 
 
3.2.2. Calculation of currents 

The problem of calculating the current flowing through 
one dislocation coupled with a shunt has a radial 
symmetry. The collection of current takes place on an 

area of the order of 2
DLπ , and, taking this into account, it 

reduces to the one-dimensional one. 
Here, 

( ) 2/1
2/1

5.0

2
0

D )(
2

−εΦ′









 εε
=

c

s

Nq

kT
L   (6) 

 

is the Debye screening length for the case of arbitrary 
degree of semiconductor degeneracy, Nc − effective 
density of states in the conduction band, 
 

( )
( )( )∫

∞

κ
ε−κ+

ε−κκ

π
=εΦ′

0
22/1

exp1

exp2
)( d ,  (7) 

 

where kTEF=ε  is dimensionless Fermi energy in the 

semiconductor, kTE=κ  – dimensionless kinetic 
energy of electrons. 

The surface density Jnc of the thermionic current 
flowing through the contact at the dislocation outcrop  
can be determined by solving the continuity equation  
for electrons. The relation between the electron 
concentration in the bulk nw, and nonequilibrium electron 
concentration n(x) at a point х of the near-contact space-
charge region (SCR) is obtained by double integration of 
the continuity equation over the coordinate х that is 
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perpendicular to the metal−semiconductor interface. For 
a nondegenerate semiconductor: 














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xde
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J
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w

xy )()()( ,  (8) 

where kTxqxy )()( ϕ=  is the dimensionless 

nonequilibrium potential at a point х, Dn – electron 
diffusion coefficient, and w – width of near-contact SCR. 

The amount Jnc is defined by the following 
expression: 

( )04 cc
T

nc nn
V

qJ −= .  (9) 

Here, VT means thermal velocity of electrons, nc 
( 00 exp cwc ynn = ) − nonequilibrium (equilibrium) 

electron concentration in the contact plane, and 
kTqy cc /00 ϕ=  − dimensionless equilibrium potential at 

the metal−semiconductor interface. 
Taking x in Eq. (8) as being zero and using Eq. (9) 

for Jnc, it is possible to determine nc. Then, substituting 
the expression for nc to Eq. (9) and taking into account 
that the dimensionless nonequilibrium potential 

( )kTqVyy cc ln0 +=  (this is the condition for the 

contact to be ohmic), we obtain the following expression 
for the density of current flowing through the 
metal−semiconductor contact at the dislocation outcrop: 

0c
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When calculating ρc0, we took into account that: 

( )∫∫
−−

=
−

−
x

c

y

y
y

y

D

w

y
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ye

e
Ldxe

5.0
0 1
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The calculation shows that, at yx = 0.5, the integral 
in Eq. (12) varies from 0.56 (for yc0 = 1.5) up to 0.65 (for 
yc0 = 3.5) and becomes practically constant at larger yc0. 

The contact resistance (determined by the diffusion 
input mechanism) for a contact of unit area was 
determined from the expression: 

1
2

D

0

D

c
diff

NLπ

ρ
=ρ , (13) 

where ND1 is the surface density of dislocations that take 
part in current flow. Generally speaking, the surface 
density of dislocations taking part in current flow (ND1) 

and surface density of dislocations taking part in 
scattering (ND2) are different. The first ones are mainly 
those normal to the interface, while the latter are 
dislocations parallel to the interface. 

The amount SNL D1
2
Dπ  (S is the contact area) is the 

total area of the current flowing through the dislocations. 

As a rule, the value of relative area, 1
2
D DNLπ , is rather 

less than unity, even at maximal dislocation densities 
(1010…1011 cm–2). The exception is the case of weakly 
doped semiconductors with Nd ≤ 1015 cm–3, where Nd is 
the concentration of shallow donor centers. 

The electron diffusion coefficient, according to the 
Einstein relation, is qkTD nn µ= . We determined 

electron mobility µn taking into account electron 
scattering by charged impurities (µZ), optical phonons 
(µo) and dislocations (µD): 

( ) 1111 −−−− µ+µ+µ=µ DoZn . (14) 

In our calculations, we applied the expressions for 
µZ and µo from [35] and for µD from [36]. These 
expressions can be described as follows: 
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where θ is the temperature of longitudinal optical 
phonons, m − electron effective mass, m0 − electron 
mass, εsh(εsl) − high- (low-)frequency permittivity of the 
semiconductor, K1(θ/2T) − modified Bessel function of 
the first order: 

)(
)exp(

25
2

2/1 η
η

=µ K
LNT

B

DD

D ,   (17) 

where 
kTLm

2
D

2

16

h
=η , )(2 ηK  is the modified Bessel 

function of the second order, 
( )

2/523

2
0

2

28 mqk

c
B sl

σπ

εε
=

h
 − 

dimension factor, qc2/λ=σ , λ − linear charge density 

of a dislocation line, с is lattice parameter in the [001] 
direction.  
 
3.2.3. General relations and limit cases 

The above expressions are valid for nondegenerate 
semiconductors. The quantity 
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Fig. 3. The calculated dependences of β as a function of the 
GaN doping level for different density of scattering dislocations 
ND2 (сm

–2): 1 – 3·109, 2 – 109, 3 – 3·108, 4 – 106. The following 
parameters are used for calculation: yc0 = 2, Ed = –0.015 eV, 
VT = 2·107 cm/s. 
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defines the degree of diffusion limitation that is essential 
at β > 1. 

In the simplest case, all the donors (concentration of 
which is Nd) are ionized, and nw = Nd. The theoretical 
β(Nd) curves for n-GaN at different density of scattering 
dislocations are shown in Fig. 3, taking the donor 
ionization energy to be 15 meV, yc0 = 2, and Т = 300 K. 
Thus, as a rule, contribution of diffusion limitation 
mechanism is rather high, when parameters vary over a 
wide range, if accumulation is realized in the band 
bending region at the dislocation end. However, one can 
see from Fig. 2 that, as the doping level increases, the 
value of β decreases from the value much exceeding 
unity to the value much less than unity. The reasons for 
this behavior are as follows: (i) decrease of the Debye 
screening length LD and (ii) reduction of yc0 due to 
decrease of the electric field strength at the dislocation 
end. As a result, the diode theory of current flow in the 
metal−semiconductor contact will more appropriate in 
the case of degeneracy. 

By applying the approach developed in [36], one 
can obtain the following expression for specific contact 
resistivity ρte in the case of degeneracy and realization of 
the thermionic mechanism of current flow: 

( ) ( )[ ]00 exp1ln

1

c

te
yTmmAq

k

+ε+
=ρ ,   (19) 

where A is the Richardson constant. The dimensionless 
Fermi energy ε can be determined from the equation of 
bulk neutrality: 
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where Ed is the energy level of shallow donors, Nc0 − the 
effective density of states in the conduction band at Т = 
300 K. 

One should note that, for sufficiently shallow 
donors, Eq. (20) (written in the assumption that the donor 
level is discrete) does not hold at sufficiently low 
temperatures, because in that case it does not take into 
account broadening the donor levels and appearance of 
impurity band. If the inequality 0cd NN ≥  is true, then the 

electron concentration does not depend on temperature in 
all the temperature range down to the liquid helium one. 
In that case, the equation of semiconductor bulk 
neutrality is as follows: 
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At strong degeneracy, the Debye screening length in 
semiconductor, LD, approaches r0 that does not depend on 
temperature and weakly depends on the doping level: 
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According to the above consideration, the contact 
resistance ρtw in the case of strong degeneracy can be 
defined by the expression: 

1
2

0 D

te
tw

Nrπ

ρ
=ρ .   (23) 

In this case, averaging the relaxation time τ  
over the electron energy E for a specific scattering 

mechanism at τ ~ Er gives 〉〈 rE limF , where 

( ) 




 π=〉〈 mNE d 23 3/223/22

limF h  is the Fermi energy for 

the case of full degeneracy. Since 〉〈 limFE  does not 

depend on temperature, the mobility for electron gas with 
strong degeneration also does not depend on temperature. 
The exception of this rule is the polar optical scattering 
for which the relaxation time depends on the optical 
phonon energy rather than the electron energy. 

Let us analyze how ρdiff depends on the semi-
conductor doping level and dislocation density. For non-

degenerate semiconductor: diffρ ~ ( )1
2

DD Ddn NLNL µ . In 

semiconductors with high dislocation density, electron 
scattering by dislocations is predominant at low doping 

[6, 7]. In this case: 1
D~ −µ LD  and 1~ −ρ ddiff N . At 

medium doping levels, the electron mobility is 
determined by scattering by optical phonons and 
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2/1~ −ρ ddiff N . At higher doping levels: zµ≈µ  and 

2/1~ ddiff Nρ . And in the case of strongly degenerate 

semiconductors the analog of ρdiff is 3/1~ dtw Nρ . Thus, 

the dependence of contact resistance (limited by 
diffusion input) on the semiconductor doping level is 
stronger than doping dependence in the case of the 
thermionic mechanism in Schottky contacts. As the 
doping level increases, the contact resistance may not 
only decrease but increase as well. 

The ρdiff dependence on dislocation density is non-
trivial, too. It goes down as the density of dislocations 
taking part in current flow, ND1, increases. At the same 
time, the ρdiff dependence on the density of scattering 
dislocations is more complicated. At low doping levels, 
ρdiff increases with the density of scattering dislocations 
due to decrease of electron mobility, while at high doping 
levels, it does not depend on ND2. 

The total resistance of the metal shunts is in series 
with resistance ρdiff (ρtw) in the case of nondegenerate 
(degenerate) semiconductor. Therefore, taking into 
account the results obtained in Ref. [10, 31], the total 
resistance of ohmic contact in a semiconductor with high 
dislocation density may be described as: 

( ) ( )Tshtediffcs ρ+ρρ=ρ ,    (24) 

where D

D

sh d
Nr

T
T

1
2

0 )1(
)(

π

α+ρ
=ρ , 0ρ  is the metal 

resistivity at Т = 0 °С, α − its temperature coefficient, dD 
− distance traveled by electrons through dislocations 
from the bulk semiconductor to the contact metallization. 
It should be noted that all expressions of this section are 
obtained for contacts of unit area. 

It should be noted that, at realization of current flow 
through dislocations associated with metal shunts, a 
contact remains ohmic down to helium temperatures 
[23]. At moderate levels of semiconductor doping, 
growth of contact resistivity ρc as temperature decreases 
is related to charge carrier freezing-out. At the same time, 
at doping levels comparable with the effective density of 
states in the conduction band, there is no strong growth 
of contact resistivity as temperature decreases. It is 
related to broadening the shallow donor levels into band 
and the Mott transition [29]. 
 
3.3. Discussion of results and comparison with 

experiment 

If the current is limited by diffusion mechanism 
supplying electrons, then the contact resistance is 
inversely proportional to electron mobility. Therefore, 
one should expect rather strong reduction (increase) of 
ρdiff as the electron mobility µ increases (decreases) 
considerably with Т. The electron mobility increases with 
temperature growth in the case of electron scattering by 
charged impurities and dislocations, while it decreases in 
polar semiconductors due to scattering by polar optical 
phonons. In sufficiently doped semiconductors,  
 

Table 1. The semiconductor parameters used for calculation of 
the theoretical µn(T) and ρc(T) curves. 

Semiconductor GaN InP GaAs Si 

m/m0 0.2 0.08 0.063 1.08 
Nc /1018 (cm–3) 2.30 0.57 0.47 28.00 
εsl 9.0 12.5 12.8 12.7 
εsh  5.35 9.65 10.89 − 
θ(K) 1056 494 419 − 

 
scattering by charged impurities is predominant, while 
scattering by dislocations dominates at low doping levels. 
The efficiency of scattering by polar optical phonons is 
determined by the energy of a longitudinal optical 
phonon: the larger is this energy, the higher are the 
temperatures at which this scattering mechanism is 
dominant. 

Table 1 presents the parameters of semiconductors: 
GaN, InP, GaAs and Si used to obtain the theoretical 
dependences µn(T) and ρc(T). Fig. 4 shows the calculated  
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Fig. 4. The temperature dependences of electron mobility in 
GaN (curves 1−3) and InP (curves 4−6) calculated for different 
density of scattering dislocations. The following parameters are 
used for calculation: Nd (cm−3): 1 − 5·1016, 2 − 1017, 3 − 1018, 
4−6 − 9·1015. ND2 (сm

−2): 1 – 107, 2 – 3·108, 3 – 2·109, 4 – 106, 5 
– 107, 6 – 5·107. 
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temperature dependences µn (T) for GaN and InP for 
several values of the density of scattering dislocations 
and semiconductor doping level. It should be noted that 
the values of scattering dislocation densities used for 
plotting the µn(T) curves for GaN correspond to those 
used in fitting the theoretical and experimental 
dependences ρc(T). Both the electron mobility obtained 
as well as its temperature dependence are in good 
agreement with the experimental results [37-39]. Indeed, 
for GaN, in particular, the temperature dependences of 
electron mobility calculated at different doping levels by 
fitting the scattering dislocation densities can match with 
an accuracy of 10% those measured in [37]. Similarly, 
the calculated µn (T) curves are in good agreement with 
those obtained experimentally for InP [38, 39]. 

Let us analyze the dependences obtained taking into 
account the possibility for realization of an anomalous 
temperature dependence of contact resistance, i.e., 
increasing ρc(T) with temperature increase. To this end, 
the electron mobility µ(T) curve would have a decreasing 
portion in the high temperature range starting from room 
temperature. One can see from Fig. 4 that, for GaN, it 
occurs at a sufficiently large variation of the scattering 
dislocation density: from 106 up to 2·109 cm–2. For InP, 
this range is narrower: from 106 up to 3·107 cm–2. At 
scattering dislocation densities ≥ 5·107 cm–2, the electron 
mobility of InP in the usually studied temperature range 
increases with temperature. It corresponds to the case 
when the ρc(T) curves have to decrease at high 
dislocation densities. The reason for such a distinction is 
much stronger polar optical scattering in GaN that 
ensures a sufficiently larger reduction of electron 
mobility at medium and high temperatures. The situation 
in GaAs is similar to that in InP, because the optical 
phonon energy in GaAs is even lower than in InP. 

Our analysis allows us to classify the main behavior 
of possible temperature dependences of contact 
resistance in the case of realization of the proposed 
mechanism of ρc formation in semiconductors with the 
high dislocation density. Generally, the final contact 
resistance value is defined by the diffusion input (i.e., ρdiff 
value) and total resistance of shunts (i.e., ρsh). Therefore, 
the relationship between ρdiff and ρsh also may be crucial 
along with the character of dependence µ (T) for 
realization of decreasing or increasing temperature 
dependence ρc(T). 

III.A. Let us consider the case when the peak in the 
µ (T) dependence occurs and inequality ρdiff > ρsh is 
realized. The clearly pronounced descending part of µ (T) 
curve occurs in polar semiconductors with high energy of 
a longitudinal optical phonon. In particular, polar optical 
scattering in GaN (where the optical phonon temperature 
θ is 1056 K) may reduce electron mobility at high 
temperatures down to 102 cm2/V⋅s (Fig. 4), while in InP 
(where θ = 494 K) the electron mobility is reduced just to 
103 cm2/V⋅s (see Fig. 4). 

In n-Si, like to that in GaN, the electron mobility 

decreases rather strongly (in proportional to 5.2−
T ) at 

high temperatures. It is related to contribution into carrier 
mobility of scattering by acoustic phonons and two  
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Fig. 5. The temperature dependences of In−GaN ohmic contact 
resistance for different densities of conducting dislocations. 
Circles and triangles – experimental data from [3], curves – 
theory. Experimental ND (cm–3): open triangles – 5·1016, filled 
triangles – 3·108, circles – 1019.  The following parameters are 
used for calculation: Ed = –0.015 eV, VT = 2·107 cm/s, yc0 = 3; 
ND (cm–3): 1 – 5·1016, 2 – 1018, 3 – 1019; ND2 (cm–3): 1 – 107,  
2 – 3·108. 

 
intervalley phonons (temperatures of which are 190 and 
630 K) [40]. Thus, one should expect more strong 
increasing ρdiff

 (T) in the region of mobility reduction in 
silicon than in InP. In both cases considered, an increased 
region has to be realized in the ρdiff

 (T) curves (as well as 
a minimum appears under certain conditions). 

Fig. 5 shows the experimental ρc(T) dependences 
for the In−GaN structures measured in [32] in the 
samples with the total dislocation density of about 
108 cm–2 as well as the results of our calculations of 
ρdiff

 (T) for three electron concentrations: 5·1016, 1018 and 
1019 cm–3. In Fig. 5 (as well as in further Figures), the 
density of conducting dislocations ND1 was used as a 
parameter, when plotting the calculated curves. The data 
demonstrate that there is a rather good agreement 
between the theoretical and experimental results. 

It should be noted a particular situation with 
semiconductor doping level of 1019 cm–3. In this case, the 
thermionic mechanism of ρc(T) formation is valid. 
Therefore, we used in our calculations Eq. (19) in the 
approximation made for degenerated semiconductors. It 
was found that, at sufficiently strong semiconductor 
degeneracy and action of the thermionic mechanism, 
there is practically no temperature dependence of the 
parameters obtained. Similar situation occurs also for the 
Debye screening length at strong semiconductor 
degeneracy. A good agreement between the calculated 
and experimental contact resistance values in the 
degenerate semiconductor is obtained. It should be 
emphasized that both the calculated and experimental 
values of contact resistance weakly depend on the 
semiconductor doping level. 
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Fig. 6. The temperature dependences of GaN ohmic contact 
resistance (the doping level is 1017 cm–3). Circles – experiment, 
curves – theory. The following parameters are used for 
calculation: Ed = –0.015 eV, VT = 2·107 cm/s, yc0 = 3,  
ND2 = 1.9·109 cm–2. 

 
Fig. 6 shows the experimental and calculated ρc(T) 

dependences for the Au−TiBx−Al−Ti−n-GaN structure. 
The GaN samples were prepared using MOCVD 
epitaxial growth on a sapphire substrate at Т = 1050 °С 
with doping level of 1017 cm–3 and dislocation density of 
the order of 108 cm–2 [41]. The agreement between the 
theory and experiment in this case was not as good as in 
the previous case due to the structural parameters 
variation at the interfacial plane. We believe, however, 
that this agreement is rather good, because it enabled us 
to obtain correct values for both position of minimum of 
the ρc(T) curve and minimal ρc value. In particular, 
realization of ρc(T) minimum at the temperature close to 
270 K indicates high density of scattering dislocations (of 
the order of 109 cm–2). The results are also supported by 
X-ray measurements. When summarizing the results 
obtained for GaN, it should be emphasized that presence 
of a well pronounced descending part in the µ (T) 
dependences (see Fig. 3) is sufficient for explanation of 
the ρc(T) increasing. 

III.B. Next, let us consider the cases when either 
the µ(T) dependences contain a peak or they are 
increasing up to high temperatures at arbitrary 
interrelation between ρdiff and ρsh. Such a situation is 
rather typical for the InP-based structures. To illustrate 
this, we present in Fig. 7 our experimental and calculated 
ρc(T) data obtained for the Au−TiBx−AuGe−n-n+-InP 
structures with high dislocation density and 
semiconductor doping level of 9·1015 cm–3 (circles and 
triangles – experimental data, curves – the calculated 
dependences ρc(T) obtained using Eq. (24) for two 
samples with different alloying temperatures of ohmic 
contact). Since in this case the resistances ρdiff

 (T) and 
ρsh(T) are in series, the total resistance is determined by 
the larger value of them. In the case of relation 
ρsh(T) > ρdiff

 (T), the mechanism proposed in [31] is valid. 
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Fig. 7. The temperature dependences of Au (2000Å)− 
TiB2 (1000Å)−Au (250Å)−Ge (250Å)−n-n+-n++-InP ohmic 
contact resistance. Triangles − experiment, curves – theory. The 
following parameters are used for calculation:  
Nd = 9·1015 cm–3, VT = 4·107 cm/s, Ed = –0.007 eV, yc0 = 2, 
ND2 = 1·1010 cm–2, α = 3.9·10–3 K–1. Alloying temperature,  
T (°C): 1, triangles down – 420; 2, triangles up − 450. 

 
To ensure the required increase in Rc(T) with 

temperature, the Rsh value has to be proportional to the 
distance dD that electrons pass through a dislocation from 
bulk semiconductor to metal contact, and inversely 
proportional to r

2. In [10, 31], it was supposed that 
dD = w. However, electrons can enter a shunt only at the 
dislocation end, where the required value of electrostatic 
potential is realized. Thus, they have to pass over the 
whole dislocation length. With assumption made for this 
case, one may ensure the required ρsh value by varying 
either the conducting dislocation density or metal shunt 
diameter. 

According to [42], a diameter of dislocation nucleus 
may be sufficiently large (≥ 1 nm). Therefore, several 
needles composed of metal atoms can be located in it. 
Let it be gold that penetrates into a dislocation. For gold, 
the resistivity ρ ≈ 2.25·10–6 Ω⋅cm2 and its temperature 
coefficient α = 3.9·10–3 K–1. Taking into account that  
the conducting dislocation density is ~1010 cm–2, one  
can obtain good fitting by setting dD ≈1 µm and r ≈ 
2.8·10–8 cm (i.e., two atomic radii of gold). Analysis of 
the obtained data (Fig. 6) demonstrates that the 
agreement between the theory and experiment for ρsh is 
rather good. 

III.C. If there is no peak in the µ(T) curve (the 
electron mobility increases with T up to the highest 
measured temperatures) and the inequality ρdiff > ρsh 
holds, then in the case of realization of the proposed 
mechanism of diffusion limitation the temperature 
dependences of ρc will demonstrate the decrease, as in 
the case of the thermionic mechanism for Schottky 
contact. Shown in Fig. 8 are the experimental and 
calculated ρc(T) curves for the case of contact fabricated 
to GaAs-based material with the doping level of 
4·1015 cm–3. The experimental curves were obtained for  
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Fig. 8. Temperature dependences of In−GaAs ohmic contact 
resistance. Circles – experiment, curves – theory. The following 
parameters are used for calculation: Nd = 4·1015 cm–3,  
VT= 4·107 cm/s, yc0 = 0.8. 
 
an In−GaAs alloyed contact [43]. The authors of 
Ref. [43] suggested that the presence of decreasing 
dependences ρc(T) proves that the thermionic mechanism 
of current flow is realized in that contact. They 
determined the barrier height (that turned out to be 
anomalously low) from the slope of the ρc(1/T) curve. It 
should be emphasized that we obtained the satisfactory 
agreement between the theory and experiment in the 
framework of the mechanism proposed by us in this 
work, assuming that the density of conducting 
dislocations is of the order of 107 cm–2. In this case, both 
characteristics – the value of contact resistance and its 
temperature dependence – can be theoretically described. 
A large increase of contact resistance is caused by 
restriction of the current flow to relative small area. Our 

estimation shows that the relative area, 
1

2
D D

NLπ , is of 

the order of 10–3 at the semiconductor doping level of 
4·1015 cm–3 and ND1 ~ 107 cm–2. The reduction of contact 
resistance at low temperatures in our model is correlated 
with comparatively weak freezing-out, because of the 
low donor energy and electron scattering by dislocations. 
Being combined, the above factors allow explaining the 
results obtained by us in this work. Estimation  
of resistance of indium shunts using the values dD =  
5·10–5 cm, r = 5·10–8 cm and ND1 = 2.5·107 cm–2 gives a 
value that is smaller than the experimental Rc value by 
the factor of seven at Т = 400 K. Thus, the relation 
ρsh (T) < ρdiff

 (T) that is required for realization of 
decreasing dependences ρc(T) is valid in this case. 

The results allow determining the densities of 
scattering and conducting dislocations by comparing the 
theoretical and experimental dependences of contact 
resistance as a function of temperature. Thus, the 
proposed concept has a heuristic capability for 
determination of new parameters of metal−semi-
conductor contacts. 

It should be noted that no averaging was applied 
when fitting the experimental dependences by using the 
calculated ones. It demonstrates that the scattering in 
parameters related to lateral nonuniformity of contact 
does not play a crucial role. 
 
3.4. Conclusions 

The mechanism of formation of metal−semiconductor 
contact resistance proposed in this work may take place, 
first of all, in wide band-gap semiconductors with high 
density of dislocations and surface centers in the contact. 
It seems paradoxical because, according to this 
mechanism, current flows through the depletion rather 
than accumulation regions. 

At the same time, there are a number of facts 
counting definitely in favor of this mechanism. The 
theory developed is in good agreement with the 
experimental results, such as increasing the contact 
resistance Rc with increasing the temperature, weak 
dependence of contact resistance on the semiconductor 
doping level as well as strong dependence of ρc and 
position of minimum in the temperature dependence of ρc 
on the dislocation density. The above agreement was 
obtained for the contacts fabricated not only to III−V 
semiconductors but on heavily doped silicon as well. 

Realization of the proposed mechanism does not 
still exclude the possibility of contact resistance decrease 
with temperature increase over the whole measurement 
range. It is more likely in the structures with low-energy 
optical phonons, and the mechanism has been 
demonstrated in weakly doped gallium arsenide [44, 45]. 
The characteristic features in this case are high contact 
resistance and extremely low contact barrier height 
obtained in assumption that the traditional thermionic 
mechanism of current flow is predominant. 
 
4. Features of temperature dependence of contact 

resistivity in ohmic contacts on lapped n-Si 

4.1. Introduction 

No dependences ρc(T) growing with temperature were 
observed in dislocation-free silicon (with the exception 
of [32]). Moreover, metal–silicon contacts in dislocation-
free silicon are rectifying [19]. 

At the same time, it is known that lapped silicon 
surface has a microrelief and contains a large number of 
structural defects, in particular, dislocations, which 
density may be 107−108 cm–2 (see [46]). Such a surface 
also demonstrates pronounced adhesive and gettering 
characteristics, which ensure high quality of contact and 
p-n junctions. It also serves as efficient sink for defects, 
thus reducing their number. The authors [47-50] reported 
on the role of microrelief made with photolithography in 
reduction of dislocation density near the Si−Si interface 
formed at fabrication of p-n junctions for power 
electronics by direct silicon joining. The important role 
of structural factor in formation of p-n junction by using 
direct silicon joining was also stressed in [49]. In [49] it 
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was shown that, if a microrelief Si surface is joined with 
the smooth one, the dislocation density is by three orders 
of magnitude lower than that in the case of joining two 
smooth surfaces. 

The lapped Si wafers are still used in manufacturing 
technology for p-n junctions and ohmic contacts to high-
power silicon isolators [51, 52]. However, the 
temperature dependence of ρс on lapped n-Si surfaces 
was not studied yet. Similar situation is also with 
investigation of power integrated circuits made using 
modern microelectronic technologies (including direct 
joining the epitaxial and other high-quality polished 
silicon structures [53, 54]). With consideration for the 
above, we believe that ohmic contacts to lapped n-Si 
wafers not only are a good model object for investigation 
of the effect of dislocations on ρс value but carry 
information about temperature dependence of ρс for 
structures used in power electronics. 

Next, we show that making ohmic contacts on the 
lapped silicon wafers leads to realization of current flow 
through the metal shunts associated with dislocations. To 
prove that, we made contacts on lapped surface of 
initially dislocation-free silicon and investigated 
experimentally the dependence ρс(Т) for the contacts 
obtained. It was shown that, at temperatures over 250 K, 
all the ρс(Т) curves grow with temperature. 
 
4.2. Theoretical notions 

Let us consider a theoretical approach to calculation of 
contact resistivity in ohmic contacts to n-Si with high 
dislocation density. One should note, first of all, that the 
above contacts are ohmic, no matter what the 
interrelation between the contact and semiconductor bulk 
resistivities. It is possible only if the current flows 
through the regions that accumulated electrons. In that 
case, the total applied voltage drops across the quasi-
neutral bulk, thus providing contact ohmicity. 

The contribution of thermionic current flowing 
through the regions that accumulated electrons may 
decrease as temperature grows (with allowance made for 
diffusion supply limitation). It results in growth of 
contact resistance. A sufficiently high density of 
scattering dislocations leads to reduction of charge carrier 
mobility, thus favoring realization of the condition of 
current limitation by diffusion supply of electrons. 

In our case, the metal–semiconductor contact is 
nonuniform in contact potential value. For instance, the 
positive value of the contact potential φс0 that 
corresponds to a potential well for electrons (see [55, 
56]) is realized at the sites of the emergence of 
dislocations (associated with metal shunts) to the quasi-
neutral region of semiconductor, while the negative 
contact potential φс1 (corresponding to the Schottky 
barrier) is realized between the dislocations. (As the 
contact potential, we imply the diffusion (built-in) 
potential φс measured from the conduction band edge to 
the bottom of potential well or the barrier top.) 

The total current flowing through the contact is a 
sum of the currents flowing through metal shunts 

associated with dislocations (the so-called conducting 
dislocations) and those flowing between dislocations. 
Current flow through shunts makes it possible to realize 
ohmic contacts.  

In the absence of degeneracy, the value of contact 
resistivity Rс is determined from Eqs. (6)–(17) presented 
in the previous subsection. 
 
4.3. The specimens and methods of measurement 

We studied the Au–Ti–Pd2Si–n-Si ohmic contacts made 
using layer-by-layer vacuum thermal deposition of 
metals onto n-Si (doped with phosphorus) wafers heated 
to 300 °С. The wafers were cut from the dislocation-free 
n-Si ingots obtained using crucibleless melting. The 
specimen parameters are given in Table 2. 

The n-Si wafers (specimens 1–3) were lapped on 
both sides with abrasive powder M10. The dislocation 
density was estimated from the density of etch pits that 
appeared in Si after treatment in the selective etchant 
CrO3 (100 g per 200 ml H2O):HF:H2O = 1:2:3 (Fig. 9). 
The concentration of near-surface structural defects 
(including dislocations) in the lapped specimens was 
106…7·106 cm−2. The ND1 values calculated from the 
temperature dependence of ρс were in good agreement 
with those determined from the density of etch pits. The 
calculated values of both scattering and conducting 
dislocation densities are given in Table 3. The ohmic 
contact was formed by the palladium silicide phase Pd2Si 
that appeared in the course of metal deposition onto Si 
wafer heated to 300 °С. 
 
Тable 2. Resistivity ρ, impurity concentration Nd, dislocation 
density ND1 and thickness d of the n-Si wafers under 
investigation (Т = 300 K). 

Number of specimen 1 2 3 

ρ, Ω⋅cm 0.12 0.045 0.024 
Nd, cm–3 5·1016 3·1017 8·1017 
ND1, cm–2 106 7·106 1.2·106 
d, µm ~350   

 

 
Fig. 9. Surface microstructure of lapped n-Si wafer after 
selective etching (a fragment); density of conducting 
dislocations ND1 = 7·106 cm–2. 



SPQEO, 2018. V. 21, N 1. P. 5-40. 

A.V. Sachenko, R.V. Konakova, A.E. Belyaev. Physical mechanisms providing formation of … (Review) 

17 

Table 3. Densities of scattering and conducting dislocations in 
contacts to the specimens 1–3. 

Number of specimen 1 2 3 

Density of scattering 
dislocations, cm–2 

(calculation) 
2·108 107 107 

Density of conducting 
dislocations, cm–2 

(calculation) 
1.05·106 7·106 1.45·106 

Density of conducting 
dislocations, cm–2 
(experiment) 

106 7·106 1.2·106 

 
Table 4. Lattice parameters and coefficients of thermal 
expansion for Si, Pd and Pd2Si (Т = 300 K) [19, 20]. 

Lattice parameters, nm 
Material 

a c 

Coefficient of thermal 
expansion α, K–1 

Si 0.543  2.54·10–6 
Pd 0.389  11.75·10–6 
Pd2Si 0.6497 0.3437  

 
Owing to mismatch of both the coefficients of 

thermal expansion and lattice parameters of materials 
(see Table 4), stresses appear in the Si near-contact 
region. Relaxation of those stresses leads to increase of 
the density of structural defects in the near-contact region 
of silicon as compared to the case of initial lapped 
surface. The calculated density of scattering dislocations 
grows and equals 107–2·108 cm–2. 

The contact resistivity was measured in the 
temperature range 100–380 K with the transmission line 
method [57]. The phase composition of contact 
metallization was studied with X-ray diffractometry 
technique in the Bragg−Brentano geometry using Philips 
X’Pert–MRD (CuKα = 0.15418 nm). To separate phases 
of thin layers, the experimental diffraction patterns were 
taken at different angles of X-ray incidence. Fig. 10 
shows the diffraction pattern obtained for the Au–Ti–
Pd2Si–n-Si contact metallization. 

 

35 40 45 50 55 60 65 70

10
2

10
3

10
4

 

In
te

n
s
it
y
, 
a
rb

. 
u

n
it
s

2θ, deg.

Au(200)

Au(111)

Au(220)Pd(111) Pd(200)

Pd
2
Si(111)

Pd
2
Si(002)

 
Fig. 10. X-ray diffraction pattern of the Au–Ti–Pd2Si–n-Si 
contact metallization deposited onto a lapped n-Si wafer heated 
to 300 °С. 

 

Phase analysis of the metallization layers showed 
that the following reflections were observed: Au (111, 
200, 220), Pd (111, 200) and Pd2Si (111, 002). Presence 
of the families of reflections from metallization indicates 
polycrystalline structure of single Au and Pd layers. 
Absence of reflections from the Ti film seems to be 
related to its X-ray amorphous state having metallic 
conductivity. The Pd2Si phase is formed at Pd interaction 
with Si in the course of Pd deposition onto the wafer 
heated to 300 °C. This conclusion correlates with the data 
of X-ray diffraction and Auger electron spectrometry 
presented in [58]. 
 
4.4. Experimental results and discussion 

Shown in Fig. 11 are the ρc(T) dependences of the Au–
Ti–Pd2Si–n-Si ohmic contacts made on the lapped n-Si 
wafers with the impurity concentrations of 5·1016, 3·1017 
and 8·1017 cm–3 (curves 1–3, respectively). One can see 
that the resistivity ρc of the specimens under investigation 
is a nonmonotonic function of temperature. The 
calculated ρc(T) curves built using Eqs. (6)–(17) agree 
rather well with the experimental ρc(T) dependences 
(dots). The calculated density of conducting dislocations, 
ND1, in the near-contact region varies within the range 
from 106 up to 7·106 cm–2 and practically coincides with 
the results of metallographic analysis (see Table 3). The 
density of scattering dislocations, ND2, is about 107 cm–2, 
except the only case when it is about 2·108 cm–2 (see 
curve 1 in Fig. 11). We believe that this increase of ND2 
could result at contact alloying. 
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Fig. 11. Temperature dependence of contact resistivity ρс for 
three specimens (1–3) of Au–Ti–Pd2Si–n-Si ohmic contact (full 
curves, theory; symbols, experiment). Impurity concentration 
Nd, cm–3: 1 – 5·1016, 2 – 3·1017, 3 – 8·1017. The equilibrium 
dimensionless potential at the metal–semiconductor interface 

yс0: 1 – 5, 2 – 2, 3 – 5. Densities of scattering dislocations ND2 
are indicated. 
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The results obtained can be explained in the 
following way. 

1. If ρc value is limited by diffusion supply of 
electrons, then nonmonotonic temperature dependence of 
ρc is typical for nondegenerate semiconductor (see [21]). 
One can see from Fig. 11 that, at low temperatures, the 
curve 3 for Nd = 8·1017 cm–3 passes above the curve 2 for 
Nd = 3·1017 cm–3. It follows from the theoretical ρc(T) 
dependences described by Eqs. (11)–(13) that the contact 
resistivity ρc is a function of the density of conducting as 
well as scattering dislocations. As the density of 
conducting (scattering) dislocations grows, the ρc value 
decreases (increases). One can see from the data 
presented in Table 3 that the densities of scattering 
dislocations for the specimens 2 and 3 are the same, 
while the density of conducting dislocations for the 
specimen 2 is five times higher than that for the specimen 
3. It leads to reduction of the ρc(T) value for the specimen 
2 in comparison with that for the specimen 3, despite the 
fact that the higher doping level favors reduction of ρc. 
Besides, at low temperatures the value of accumulation 
band bending at the dislocation end, yс0, essentially 
affects the ρс(Т) curves. The larger band bending yс0, the 
stronger growth of ρс(Т) at low temperatures as the 
temperature decreases. To illustrate, the fitting value of 
yс0 for the curves 1 and 3 was five, while for the curve 2 
it equalled two. 

2. At further growth of measurement temperature 
(curves 1 and 3 after Т >240 K, curve 2 after Т > 125 K), 
the contact resistivity ρc increases. The reason for this is 
that the contribution from scattering dislocations and 
charged impurities to the temperature dependence of 
electron mobility µn decreases, while that from scattering 
by phonons (leading to reduction of µn with temperature) 
increases. 

3. An analysis of the temperature dependences of ρc 
for ohmic contacts formed on lapped wafers of rather 
high-resistant nondegenerate silicon (curves 1–3) showed 
that a portion of the ρс(Т) curve corresponding to 
anomalous temperature dependence of ρс was observed 
for all the specimens under investigation. This portion is 
due to current flowing through the regions of electron 
accumulation. Those regions appeared at the metal shunt 
ends under the condition of current limitation by 
diffusion supply of electrons. 

The observed ρc(T) dependences corresponded to 
the mechanism of ρc formation proposed in Ref. [21]. It 
assumed existence of two types of dislocations in the 
near-contact region, namely, scattering dislocations 
(parallel to the metal–semiconductor interface) and 
conducting ones (crossing SCR). The origin of the latter 
dislocations is related to lapping the Si surface, while the 
scattering dislocations are related to stress relaxation in 
the contact. (The stresses were caused by mismatch of 
both the coefficients of thermal expansion and 
parameters of the Pd2Si and Si lattices.) 

It should be noted that the growth of contact 
resistivity with temperature may be also realized, in 
principle, if the near-contact region contains a large 
number of other extended defects, under the condition 
that they favor formation of metal shunts penetrating into 
semiconductor bulk. 

4.5. Conclusions 

The results of experimental measurement and theoretical 
analysis of the temperature dependence of contact 
resistivity, ρc(T), of ohmic contacts to specimens made 
using lapped n-Si wafers indicated the mechanism of 
contact resistance formation, which is typical for contacts 
with a high dislocation density. It is supported by 
anomalous (growing with temperature) ρc(T) curves at 
sufficiently high temperatures as well as by the results of 
metallographic analysis indicating rather high dislocation 
density. 
 
5. Some features of temperature dependence of 

contact resistivity for ohmic contacts to n
+
-InN 

5.1. Introduction 

It should be also noted that degenerate InN is practically 
always used. So, when calculating, one has to take into 
account degeneracy for correct comparison of the results 
of calculations with experiment. As will be shown later, 
resistivity ρc of InN-based contacts in the temperature 
range of device operation is defined by the mechanism of 
current flow through metal shunts. Calculation of contact 
resistivity for this mechanism of current flow was 
performed in [10]. In this subsection, a theoretical 
approach to calculate temperature dependence of InN-
based nanowire resistance is proposed, and comparison 
of the developed theory with experiment is performed 
[24]. 

In recent years, indium nitride and InN-based solid 
solutions are one of the most intensely studied materials 
among the III−N compounds. The interest in them is 
aroused, in particular, by the prospects for their 
application when developing a number of active elements 
for optoelectronics, spintronics and microwave 
electronics [59-61]. The parameters of these materials are 
largely defined by their manufacturing technology. 

At present, there is no native substrate material for 
the III−N compounds, so InN and InN-based solid 
solutions are grown as heterostructures, and Al2O3, 
GaAs, Si and fianites serve as substrates. Because of 
lattice mismatch and distinctions between thermal 
expansion coefficients of InN film and substrate (e.g., 
Al2O3), intrinsic stresses appear in heterostructures. 
Relaxation of those stresses leads to generation of 
dislocations (with the density from 108 up to 3·1011 cm–2) 
[62]. It has an impact on parameters of the corresponding 
devices, primarily ohmic contacts to them. 

It was shown in Refs. [10, 21, 22] that both the 
value of contact resistivity ρc of ohmic contacts to 
semiconductors with high dislocation density and 
temperature dependence ρc(T) may depend essentially on 
dislocation density. The dislocations serve for 
penetration of a contact-forming metal (alloy) into a thin 
near-contact semiconductor layer in the course of ohmic 
contact formation. As a result, metal shunts associated 
with dislocations appear in that layer. In that case, it was 
found that the dependence ρc(T) may be growing at 
sufficiently high temperatures. 
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Gol’dberg et al. (see, e.g. [10]) ascribed the 
growing ρc(T) curves to temperature dependence of metal 
shunt resistance. Their explanation, however, does not 
describe behavior of the ρc(T) curves over a rather wide 
temperature range. To illustrate, at sufficiently low 
temperatures, either decreasing or independent of 
temperature ρc(T) curves are realized. 

For nondegenerate semiconductors with high 
dislocation density, the behavior of experimental 
dependences ρc(T) over sufficiently wide temperature 
range obtained complete explanation in [21, 22], where 
shunt resistance as well as that appearing at electrons 
passage from semiconductor to the shunt ends were taken 
into account. It was shown that, owing to high electric 
fields at the shunt end−semiconductor interfaces, there 
are accumulation band bendings in the semiconductor 
near-contact region. The diffusion theory of current flow 
is realized in a nondegenerate semiconductor in that case, 
with current directly proportional (and resistivity 
inversely proportional) to electron mobility. It explains 
the behavior of ρc(T) curves over a rather wide 
temperature range. It was also shown in [21, 22] that, at 
sufficiently strong semiconductor degeneracy, the contact 
resistivity ρc practically does not depend on temperature. 
In that case, however, the current flow mechanism is 
thermionic rather than the tunneling one. 

There are two groups of researchers [62-65], who 
studied the properties of such ohmic contacts to n-InN in 
the temperature range 223–398 K [63, 65] as well as at 
the temperature 300 K [64] and in the temperature range 
4.2–400 K [66]. They observed growing temperature 
dependences of resistance in ohmic contacts to highly 
degenerate n-InN with the doping level over 1020 cm–3. 
The dependences ρc(T) were determined using the 
transmission line method [63, 65]. First in [66], a 
nanosized wire was made of highly degenerate n-InN, 
then temperature dependences of the total resistance of 
nanowire and two identical contacts were measured. (No 
contact resistivity was determined separately in that 
case.) The results obtained in Refs. [63, 65, 66] will be 
discussed later. 

Next, we studied experimentally the ρc(T) 
dependence of ohmic contacts to n-InN layers in the 
temperature range 4.2–300 K. The structures under 
investigation were grown on Al2O3 substrates with a 
gallium nitride buffer layer; the dislocation density was 
over 108 cm–2. The results obtained were explained 
within the framework of approach developed in [21, 22]. 
 
5.2. The specimens and methods of investigation 

The ohmic contacts were made using successive 
deposition of palladium, titanium and gold onto the 
InN(0.6 µm)–GaN(0.9 µm)–Al2O3(400 µm) heterostruc-
ture heated to 350 °C. The Au(500 nm)–Ti(60 nm)–
Pd(30 nm)–n

+-InN ohmic contact was formed in the 
course of metal deposition and was not subjected to 
additional annealing. The InN–GaN–Al2O3 hetero-
structures were MBE-grown with plasma activation. 
Their parameters were similar to those of the structures  
 

 
Fig. 12. Surface morphology of Au–Ti–Pd–InN–GaN–Al2O3 
contact structure cleavage. 

 
studied in [65]. InN (0001) was grown on a GaN buffer 
layer preliminary formed on an Al2O3 substrate at Т = 
300 K. The electron concentration (mobility) in n-InN 
was ~2·1018 cm3 (~1300 cm2/V⋅s). 

For specimens with continuous metallization, we 
measured the dislocation density in the heterostructure, 
phase composition of contact metallization (using X-ray 
diffractometry) and concentration depth profiles of 
contact metallization components (using Auger electron 
spectrometry). It was determined that the density of 
screw (edge) dislocations in n-InN was ~2.3·108 cm–2 
(~3.4·1010 cm–2). Titanium, gold and Au0.919Ti0.081 
compound were detected in the contact metallization. 
Palladium and its compounds were not detected because 
of their amorphous state. Presence of palladium was 
confirmed by the results of Auger electron spectrometry. 

Measurements of ρc(T) were performed for planar 
test structures in the temperature range 4.2–300 K by 
using the transmission line method. The contact width 
(length) was 75 µm (400 µm); the spacings between 
contact pads li were 150, 100, 80, 60, 40 and 20 µm. The 
test structures were mounted in a case to obtain the 
dependences ρc(T). 

The cleavages of Au–Ti–Pd–InN–GaN–Al2O3 
contact structures were studied with electron microscopy. 
A photomicrograph (Fig. 12) shows a columnar structure 
of both GaN buffer layer and InN film, with 
characteristic defects at the InN–GaN interface. The 
linear density of vertical defects in InN (GaN) was about 
104 cm–1 (~7·104 cm–1). 
 
5.3. The results of measurements and discussion 

The I−V curves of the contacts under investigation were 
linear and symmetric over the whole temperature range 
measured. It indicated ohmicity of the contacts. 

The experimental temperature dependence ρc(T) is 
presented in Fig. 13 (open circles). Its behavior differs 
considerably from ρc(T) curves typical for ohmic 
Schottky contacts. In the latter ones, ρc either does not 
depend on temperature (tunneling mechanism of current 
flow) or decreases with temperature (thermal-field 
mechanism of current flow). In our case, ρc grows with  
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Fig. 13. 1 – experimental (open circles) and theoretical 
(full curve) dependences ρc(T) of Au–Ti–Pd–n

+-InN 
ohmic contact, 2 – temperature dependence of shunt 
resistivity ρsh(T). 

 
temperature over the whole temperature range measured: 
at low temperatures (from 4.2 up to 30 K) ρc increases 
very slow, while ρc ~ Т at temperatures over 150 K. 

When performing theoretical modeling of the 
experimental dependence ρc(T) for an ohmic contact to 
n

+-InN presented in Fig. 13, we take into account 
semiconductor degeneracy. Let us suppose that current 
flows through metal shunts associated with the so-called 
conducting dislocations. To calculate ρc(T), we apply the 
expressions from Ref. [21] that are valid for degenerate 
semiconductor. 

In a general case, the expressions for ρte are 
described by formulae (6)–(13). 

In the case of degenerate semiconductor, the 
resistance of all metal shunts is connected in series with 
ρtw. So, the total resistivity of ohmic contact in the 
semiconductor with a high dislocation density is 

shtwc ρ+ρ=ρ ,    (25) 

where 1)( Dshsh NTR=ρ , 2
0 )()( rdTTR Dsh πρ=  is a 

metal shunt resistance, ρ0 – metal resistivity, dD – 
dislocation length, and r – shunt radius (in calculation, all 
shunts were considered to be identical). It is assumed that 
the current flowing between dislocations can be 
neglected in comparison with the current flowing through 
the metal shunts associated with conducting dislocations. 
It is provided by high potential barriers between 
dislocations [21]. 

According to [67, 68] the temperature dependence 
ρsh(T), with allowance made for temperature dependence 
of the contact forming metal (palladium), behaves in the 
following way. At Т = 0 K, the resistance of normal 
metal is equal to the residual resistance Rs. As the 
temperature grows, the resistance increases like to T

 5 
(see Fig. 13, curve 2) because of electron scattering by 

phonons [15]. Then a transition region with growth ∼T 
n 

is realized, with n decreasing rapidly. And, at last, at 
T ≥ TD (TD is the Debye temperature), n = 1, i.e., metal 
resistance grows linearly with temperature. 

The theoretical dependence ρc(T) (Fig. 13, curve 1) 
was calculated using Eq. (5). When calculating, the data 
on InN parameters given in [58, 69, 70] were used. One 
can see from Fig. 13 that there is good agreement 
between the calculated contact resistivity ρc and the 
experimental data. It was achieved by using the 
following parameters: ND ≈ 5⋅109 cm–2, r = 5⋅10–8 cm, 

dD ~ 0.1 µm. One should note that, since 2rdR Dsh ∝ , 
there exists some ambiguity in determination of dD and r 
values (as dD grows, r grows, too). 

The total density of screw and edge dislocation 
found by us is quite enough for realization of the 
mechanism considered. One can see from Fig. 13 that in 
our case the value of contact resistivity ρc at Т = 300 K is 
about 3⋅10–5 Ω⋅cm2. 

Let us return to discussion of the results obtained  
in Refs. [62, 64, 65]. In the works [62, 64], the value ρc ~ 
2⋅10–7 Ω⋅cm2 was obtained for InN with doping level 
>1020 cm–3, and the ρc(T) curves were growing. The 
estimations show that, taking into account the high 
effective density of conducting dislocations, the results 
obtained in [62, 64] could be explained by the 
mechanism considered in the present work. However, a 
narrow temperature range for measuring ρc in the cited 
works made it impossible to determine ρc values in the 
region where ρc dependence on temperature is weak or is 
absent at all. Therefore, by using the results obtained in 
[62, 64] one cannot distinguish exactly a contribution 
related to semiconductor resistance from that related to 
the total shunt resistance. 

In [71] nanowires with the diameter of about 
100 nm were made on the basis of highly degenerate InN 
(doping level of 5·1020 cm–3). The temperature 
dependences of total resistances of contacts and nanowire 
were measured. An attempt was made to explain the 
growing (linear) character of the dependences under 
investigation of metallic behavior inherent to highly 
degenerate InN. 

It should be noted that physics of conduction 
formation in metal and highly degenerate semiconductor 
related to scattering of charge carriers by optical phonons 
at sufficiently high temperatures is different. In metals 
(as was noted before), the resistivity grows with 
temperature: ∼T 

5 at very low temperatures and linearly at 
temperatures over the Debye one. For degenerate III−V 
semiconductors, at low temperatures, the electron 
mobility µn does not depend on temperature and is 
determined mainly by scattering on impurities, [72] (at 
high dislocation density, by scattering on dislocations, 
too). At sufficiently high temperatures, µn decreases (in 
general, nonlinearly) because of electron scattering by 
optical phonons. In this case, resistance of a degenerate 
semiconductor grows nonlinearly. 

To solve finally the problem of a close to linear 
decrease of electron mobility in highly degenerate 
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electron gas at sufficiently high temperatures, let us 
calculate the electron mobility µn for the above case. For 
a degenerate semiconductor in the temperature region 
where the Fermi energy EF is much higher than the 
thermal energy kT, the equilibrium distribution function 
can be approximated by the Heaviside unit function 

( )EE −θ F . If the doping level is sufficiently high, then 
the Mott transition in the impurity band has occurred and 
all donors are ionized, no matter what is the temperature. 
In other words, the impurity band and conduction band 
overlap. It means that the electron and donor 
concentrations are determined by the Fermi momentum 

pF: ( )323 3 hπ== Fd pNn . It is convenient to describe 
nonparabolicity of the conduction band with a model 
[73]: 

( ) 



 −+= 11)( 2

2

s
s pp

m

p
pE ,   (26) 

where ps is the characteristic momentum: 22
ss mEp = . 

In this case, gs EE ≈ , where Eg is the bandgap width. To 

avoid confusion, we note that the relation between the 
Fermi momentum and Fermi energy is ( ) FF EpE = . 

By applying kinetic equation in the low-field 
approximation for calculation of conduction σ and 

presenting electron mobility as 
qnn

σ=µ , we obtain the 

following expression for mobility of degenerate electron 
gas: 

( ) ( )2
FF 1 smn ppmEq +τ=µ ,    (27) 

where ( )FEmτ  is the momentum relaxation time 
calculated for the Fermi energy. The partial contributions 
of different mechanisms of electron momentum 

relaxation ( ) ( )∑ −− τ=τ
j

jmm EE F
1

F
1  are summated in the 

same way as the partial contributions of mobilities: 

( ) ( )∑ −− µ=µ
j

j EE F
1

F
1 . For the methods for calculating 

the corresponded relaxation times τi(E), τD(E), and τopt(E) 
see, e.g. [35, 74]. 

In what follows, there are the expressions for 
corresponding electron mobilities. At relaxation due to 
electron interaction with charged impurities, 
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the Thomas−Fermi screening length. At relaxation due to 
electron interaction with dislocations, 
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Here, a is the lattice parameter, NDc – effective density of 
the so-called conducting dislocations (those normal to the 
contact–semiconductor interface), NDs – effective density 
of the so-called scattering dislocations (those parallel to 
the contact–semiconductor interface). Φc,s – 
corresponding angular factor: 

[ ] 33 84)4sinh(3)2(sinh aAAAc −+=Φ , where 

hTFF2 λ= pa  and aA =)sinh( ; 

[ ] 633 84/)4sin(3/)2(sin baBBBs +−=Φ , where 

21 aab +=  and bB =)sin( .  
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Fig. 14. Electron mobility in degenerate InN as a function of: 
(a) doping level at room temperature (the experimental data are 
taken from Ref. [22]); (b) temperature at different doping 
levels: 1 – 2·1018 cm–3, 2 – 5·1018, 3 – 5·1020 (the mobility 
values are normalized to that at T = 300 K). 
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Optical phonon (as perturbation) leads to local 
variation of the electric polarization vector. With 
allowance made for electron scattering by optical 
phonons, the mobility is [34]: 
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where ( ) 22
FF /1 sjsj pmpp ω±+=ξ±

h , optωh  is the 

optical phonon energy, εd (εs) − dynamic (static) 
semiconductor permittivity and N(x) – Planck blackbody 
radiation distribution function. 

Shown in Fig. 14 are the dependences of electron 
mobility µn in degenerate InN calculated (a) for absolute 
values µn(Nd), (b) for relative values µn(T)/µn(300 K) 
using the expression 

( ) 1111 −−−− µ+µ+µ=µ optDin .   (31) 

The following values of material parameters were 
used: the effective electron mass m = 0.07m0, static 
permittivity εs = 15.3, dynamic permittivity εd = 7.5, 
optical phonon energy meV73=ωopth , nonparabolicity 

parameter of the conduction band Es = 0.5 eV. One can 
see from Fig. 14 that the higher is doping level, the closer 
is the law of mobility decrease at sufficiently high 
temperatures to the linear one. 

When using the parameters of highly degenerate 
InN, the above equations for mobility of degenerate 
electron gas give for doping levels (up to 1021 cm–3) the 
values that are very close to the experimental ones (see 
Fig. 15). At the doping level 5·1020 cm–3, the calculated 
electron mobility is sufficiently close to the maximum 
possible value of 50 cm2/V⋅s obtained by using ρs = 
2.5·10–4 Ω⋅cm and presented in [71] (with allowance 
made for error in ρs). 

The doping level is a parameter of the calculated 
curves in Fig. 14b. One can see from Fig. 14b that, at the 
doping level of 5·1018 cm–3, a decrease of mobility 
dependences (normalized to µn(300 K)) at T > 100 K is 
closer to linear than in the case of doping level 
2·1018 cm–3. And at T > 150 K, the linear approximation 
of electron mobility decrease for the case of doping level 
of 5·1020 cm–3 is sufficiently good. It is natural that close 
to linear mobility decrease corresponds to close to linear 
growth of resistance of a highly degenerate 
semiconductor: ( ) ( )( )00 1 TTRTR eff −α+= . However, 

linearity of the quantities considered occurs, at best, with 
a graphical accuracy only, while accurately calculated 
slope of mobility curve still remains weakly dependent 
on temperature. 
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R
, 
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Fig. 15. Temperature dependence of nanocontact resistance: 
full squares – experimental data from Ref. [71], curve – 
calculation. 

 
Thus, one should not assert that for highly 

degenerate semiconductors dependence R(T) is of 
metallic character. Besides, the temperature resistance 
coefficient αeff(Т) for highly degenerate semiconductor 
(contrary to the case of metals, where the typical α value 
is close to 1/273 K–1) goes down as the electron mobility 
value µ(T = 0) decreases, and the effective electron mass 
m increases. As a result, at high degeneration αeff value 
for semiconductors is about an order below that for 
metals. 

It should be noted that for the case considered in 
[71] (where only total R value was measured) 

2
2

s

ss
c

r

L
RR

π

ρ
+= .   (32) 

Here, Rc is the contact resistance, ( ) 1−µ=ρ ns nq  – 
resistivity of a degenerate nanowire and rs (Ls) –its radius 
(length). Some additional information on the Rc and 
Rs = ρsLs /πrs

2 values may be obtained when taking into 
account that, at T ≥ 300 K, the following interrelations 
are valid: 

( )[ ]000 1 TTRRR mcc −α++= ,   (33) 

( )[ ]00 1 TTRR effss −α+= ,   (34) 

where 2
0 stwc rR πρ= , Rm0 is the total resistance of all 

metal shunts associated with dislocations at Т = Т0, and 
Rs0 – nanowire resistance at Т = Т0. 

For Т > 150 K and considering that Т0 = 300 K, one 
can write down 

( ) Ω=++ 21502 000 smc RRR ,    (35) 

( ) 14
00 K107.42 −−⋅=α+α smeff RR .   (36) 
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As a result, we have two equations with three unknowns: 

Rc0, Rm0 and Rs0. Bearing in mind that 2
00 ssss rLR πρ=  

(where ρs0 is the nanowire resistivity), only two 
unknowns remain in Eqs. (33), (34). The preliminary 
estimations show that Rm0 << Rc0 and Rm0 << Rs0, so it is 
possible to neglect Rm0 value to a first approximation. 

After substitution of nanowire parameters and  
the lower value of ρs0 (according to Ref. [71], it is  
2.5·10–4 Ω⋅cm) into the expression for Rs0, we obtain 
Rs0 = 1548 Ω. Then, by substituting Rs0 into Eqs. (35) and 
(36), we get 2Rc0 ≈ 600 Ω. On the other hand, the Rc 
value can be determined from the expression 

2
0 stwc rR πρ= . By using the values of 5·1020 cm–3 and 

5·1011 cm–2 for the doping level and density of metal 
shunts, respectively, when calculating ρtw from Eq. (25), 
we obtain that 2Rc0 ≈ 600 Ω, this corresponds to the 
above value. At the doping level of 5·1020 cm–3, the 
calculated slope of µn(T) curve is very close to the value 
of 4.7·10–4 K–1 given in Ref. [11]. 

Shown in Fig. 15 are the experimental dependence 
R(T) taken from Ref. [71] (full squares) and theoretical 
curve built from Eqs. (27)-(35), with allowance made for 
the abovementioned. The base of nanocontact is a 
nanowire made of n-InN (Nd = 5·1020 cm–3), 7 µm in 
length and 120 nm in diameter. One can see sufficiently 
good agreement between the theoretical and experimental 
results. In this case, the contribution from contact 
resistance Rс of both contacts to the total resistance R is 
about 28%, so the R value is determined mainly by the 
nanowire resistance. Recalculation of resistance 
Rс(300 Ω) to contact resistivity gives about 3·10–8 Ω⋅cm2. 
It should be noted that the contact resistivity value of 
1.09·10–7 Ω⋅cm2 given in Ref. [71] corresponds, as a 
matter of fact, to the product of the total resistance of 
nanowire and two contacts by the contact area. 
 
5.4. Conclusions 

1. We obtained experimentally (as in Refs. [8, 10, 
11]) growing temperature dependences ρc(T) of contact 
resistivity ρc in degenerate ohmic contacts to InN. It is 
shown that they are explained by current flow through 
metal shunts associated with dislocations. 

2. Based on the estimations made, it is shown that 
the above mechanism can also explain the growing ρc(T) 
curves in ohmic contacts to InN with the doping level 
over 1020 cm–3 that were observed in Refs. [62, 64]. 

3. It has been confirmed that linear character of 
temperature dependence of total resistance of a nanowire 
and two contacts to highly degenerate InN (obtained in 
[71] is practically related to the linear temperature 
dependence of nanowire resistance). We explained this 
dependence within the framework of the mechanism of 
electron scattering by optical phonons. It is also shown 
that the value of contact resistivity ρc estimated using the 
data from [71], taking into account that contact resistance 
Rc is much lower than the nanowire resistance Rs0 [76] is 
close to 3·10–8 Ω⋅cm2. 
 

6. The temperature dependence of contact resistivity 

for ohmic contacts to n-Si with an n
+
-n doping step 

6.1. Introduction 

At present, there exists a fixed notion of the mechanisms 
of current flow in ohmic metal–semiconductor contacts 
as well as the processes of minimization of contact 
resistivity and their contribution to the parameters of 
semiconductor devices and integrated circuits [19]. This 
notion asserts that contact resistivity ρс should be 
minimal and demonstrate thermal and electrical stability, 
and I−V curves of ohmic contacts must be linear and 
symmetric. As a rule, ρс of such contacts is described 
within either field emission (ρс does not depend on 
temperature) or thermal-field emission (ρс decreases with 
temperature). 

However, recent investigations [10, 21, 22, 77, 78] 
showed that in some cases ρс does not demonstrate the 
above behavior. To illustrate, for ohmic contacts to wide-
gap semiconductors with high dislocation density it was 
shown in [10, 21, 76, 77] that ρс increases with 
temperature. Such growing dependences ρс(Т) were 
obtained in [22, 78] for ohmic contacts to lapped as well 
as polished n-Si, at presence of high density of structural 
defects in the Si near-contact region. In that case, 
calculation of the number of defects from etching pits 
made for lapped silicon gave ~107 cm–2. According to the 
model proposed in [21, 22], this value turned out to be 
sufficient for description of growing dependence ρс (Т). 

Along with the above-mentioned, some other 
conditions of ohmic contact formation may lead to ρс 
growth with temperature. For instance, usually used as an 
ohmic contact is an isotype n

+
-n junction (n+

-n doping 
step) or p

+
-p junction – analog of metal–semiconductor 

contact, in which degenerate n
+-semiconductor (or р+-

semiconductor) acts as a metal. In this case, we deal 
practically with a Schottky diode without a potential 
barrier [35]. In what follows, we consider the model of 
this ohmic contact and its experimental testing. 
 
6.2. Model of the ohmic contact with a doping step 

Let us consider a model of ohmic contact with an n
+
-n 

doping step in the near-contact region, with electrons in 
the heavily doped n

+-layer being degenerate. This 
situation is realized in the manufacturing technology for 
silicon devices, in particular, IMPATT diodes. In that 
case, the thickness Wn+ of the heavily doped region with 

electron concentration +
1n  exceeds the Schottky layer 

thickness Wsh, and the doping level is over the effective 
density of states Nc in the conduction band. Just this 
situation means that electrons in the heavily doped region 
are degenerate. 

In this work, we made an analytical calculation of 
the ρc(T) curve for Si-based ohmic contacts with an n+

-n 
doping step in the limiting case, when the contact band 
diagram is of the form shown in Fig. 16. One can see that  
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Fig. 16. Dependence of potential of ohmic contact with an n+-n 
doping step, n+ ~ 5·1020 cm–3, n ~1016 cm–3, Wn+~ 0.01 µm. 

 
the thickness Wn+ of the heavily doped region with 

electron concentration +
1n  exceeds the Schottky layer 

thickness Wsh(Wn+ > Wsh), and the doping level exceeds 
the effective electron density of states in the conduction 
band Nc (n1

+ > Nc). It means that electrons in the heavily 
doped region are degenerate. 

Figs 17а and 17b present band diagrams for 
contacts to Si with a doping step, at two values of heavily 
doped layer thickness Wn+: 5 and 10 nm. In our calcu-
lations, we used the following values: n2 = 1016 cm–3, 

+
1n  =  2·1018, 5·1018, 1019, 2·1019 and 5·1019 cm–3. To 

obtain the band diagrams, we solved the Poisson 
equations for the heavily doped and lightly doped regions 
(both with allowance made for electron degeneracy) of 
the form 

)(
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2
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s
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Here, Ea ≈ 0.005 eV, θ(x) is the Heaviside function. 
The barrier height at the contact (or, more exactly, 

the diffusion potential φc) was preset as 0.4 V. The 
electrostatic potential was considered to vanish for x→∞. 
The solutions of the Poisson equation in the heavily and 
lightly doped regions were matched at the boundary 
x = Wn+, that is to say, the values of potentials, as well as 
their derivatives (i.e., the electric fields), were matched, 
respectively. 
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Fig. 17. Dependences of potential of contacts with a doping 
step for Si at two thickness values of heavily doped layer Wn+: 
5 nm (a) and 10 nm (b); n+: 5·1019, 1020, 2·1020 and 5·1020 cm–3 
at n2 = 1016 cm–3. 
 

Naturally, all the +
1n  values taken for calculation 

obeyed the inequality cNn >+
1 . However, since the 

Schottky layer thicknesses in the heavily doped region 
met the condition Wn+ < Wsh at all doping levels, there 
was no portion of φ(x) independent of the coordinate x 
shown in Fig. 16. 

One should note that, depending on the behavior of 
potential φ(x) in the near-contact region, the contact will 
be either rectifying (in the case of monotonic dependence 
of φ on the coordinate x) or ohmic (in the case of a 
strongly pronounced non-monotony of φ(x)). In the latter 
case, the contact resistivity may be presented as a sum of 
two terms (corresponding to series resistances): 

21 ccc ρ+ρ=ρ .   (39) 
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Fig. 18. Theoretical ρc2(T) curves built using Eq. (4) (solid 
curves) and with allowance made for low-temperature freezing-
out of electrons (dashed curves; n2, cm–3: 1 – 1014, 2 – 1015,  
3 – 1016). 

 
Here, ρc1 is the contact resistivity related to thermal-field 
passage of electrons through the barrier at the interface 
between a heavily doped semiconductor and metal, and 






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



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+=ρ
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Nk
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nTAq

Nk *
D

2
*2 1    (40) 

is the effective contact resistance of the lightly doped 
region in the limiting case of contact energy band being 
of the form shown in Fig. 16. Here, k is the Boltzmann 
constant, A

* – effective Richardson constant, µn – 
electron mobility in the lightly doped region, 

( ) 5.0
2

2
0D 2 nqkTL sεε=  – Debye screening length for the 

lightly doped region. It should be noted that Eq. (39) was 
obtained with allowance made for the results of [34] and 
[79, 80]: it takes into account both the diffusion and 
emission terms in the current flowing through the lightly 
doped region. 

Thus, if the inequality ρc2 > ρc1 holds, then contact 
is purely ohmic. In that case, band bending in the lightly 
doped region is accumulation rather than depletion, so 
the total voltage applied to the contact drops across the 
neutral bulk, thus ensuring contact ohmicity. The 
electron mobility µn in the region of light doping was 
calculated with allowance made for electron scattering by 
charged impurities as well as by intervalley and acoustic 
phonons [39]. It was assumed that dislocation density in 
the lightly doped region is sufficiently low and does not 
affect electron mobility. The expressions for µn 
calculation are given in [21]. 

Now let us dwell on an analysis of temperature 
dependence of contact resistivity ρc2. If the role of 
diffusion current is insignificant (that is to say, the 

inequality 1
*

D <










µ cn Nk

TAL
 holds), then one obtains (with 

allowance made for ( ) 2/3
0 K300)( TNTN cc = ) that 

 2cρ ∼ T , i.e., the contact resistivity grows with 

temperature as T . It was shown in [10] that the above 
inequality is valid at the doping levels n2 >> 1015 cm–3. 

At lower and intermediate doping levels, 1
*

D ≥










µ cn Nk

TAL , 

and (as analysis shows) the degree of ρc2 growth with 

temperature increases as compared with the law T . 
Fig. 18 presents the theoretical ρc2(T) curves built 

using Eq. (39) as well as low-temperature freezing-out of 
electrons. The doping level serves as a parameter of 
curves. At temperatures over 125 K, all the curves grow 
with temperature (see curves 1–3). For the curve 1 (that 
corresponds to the lowest doping level of 1014 cm–3), the 
exponent of the power dependence ρc2(T) at room and 
elevated temperatures is maximal (equal to 2). When the 
doping level increases, that exponent goes down: it 
equals 1.1 at n2 = 1015 cm–3 and 0.8 at n2 = 1016 cm–3. 

It should be noted that the above current mechanism 
(as well as that related to current flow through the metal 
shunts associated with dislocations – see [21, 22]) 
ensures purely ohmic contact behavior.  

Shown in Fig. 19 are experimental ρc(T) 
dependences for Si samples with the doping step. The 
step was created by diffusion of phosphorus to the depth 
0.2 µm. The dependences were measured in two 
intervals: from helium temperatures 10 up to 300 K and 
from nitrogen temperatures 170 up to 300 K. The figure 
shows good consistence of experimental curves in 
Т ≥ 170 K range. The theoretical curve is calculated by 
(40) taking into account freezing the carriers. There is a 
good coincidence of the theory with experiment. 
However, it should be noted that coincidence was 
achieved with 1.6·1013 cm–3 bulk concentration, while 
initial doping was ~1015 cm–3. As we assume, almost 2 
orders n2 decrease is due to silicon compensation in about 
micrometer layer by deep acceptors diffusion from the 
contact due to 450 °C heating. 
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Fig. 19. Experimental (dots) and theoretical (solid lines) ρc(T) 
dependences for silicon with the doping step. 
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6.3. Conclusions 

Thus, it has been shown (both theoretically and 
experimentally) for ohmic contacts formed to an n

+-n 
doping step of silicon that, in the case of electron 
degeneracy in the n+-layer and high-resistance n-Si bulk, 
the contact resistivity ρс increases with temperature (∼T

2) 
within the range 70–375 K. 
 
7. On the ohmicity of Schottky contacts 

7.1. Introduction 

From the content of the fourth and fifth subsections of 
the present review it follows that a contact will be ohmic 
at current flow through metal shunts associated with 
dislocations as well as in the case of a doping step 
presence because there is an accumulation band bending 
at the metal–semiconductor interface or at the boundary 
between heavily and moderately doped semiconductors. 
And to realize ohmic contact in the case of Schottky 
contacts (with a depletion band bending at the metal–
semiconductor interface), the criterion Rc < Rb has to be 
met (Rb is the resistance of semiconductor bulk). 
Therefore, it is necessary to specially study the problem 
of ohmic contact realization for Schottky contacts in 
which thermionic and thermal-field mechanisms of 
current flow take place. The results of this analysis for 
the case of silicon are given in the present subsection. 

Until recently, three characteristic mechanisms of 
current flow through metal–semiconductor ohmic 
contacts were known: thermionic [81, 82], thermally-
assisted field, and tunnel [19]. Gol’dberg et al. proposed 
another mechanism, which implies current flow through 
metal shunts matched with dislocations (see, e.g., [10]). 
In [21, 22, 83], this mechanism was supplemented by 
considering the supply of the current flowing in the near-
contact semiconductor region adjacent to the shunt ends. 
It was shown that, due to very small diameters of metal 
shunts, a very high electric field arises at their ends, due 
to which mirror-image forces change the sign of band 
bending at the semiconductor–shunt-end interface from 
depleting to enriching. This contact is ohmic at any 
temperatures, including those of liquid helium. General 
relations for the specific contact resistance of these 
contacts were derived in [21]. In the limiting case, where 
the current is restricted by the shunt resistance, the 
expressions reported in [19] are valid, whereas in another 
limiting case, where the current supply to the shunt ends 
is restricted, the relations given in [22, 83] hold true. 

A model experiment for silicon–metal contacts with 
a previously ground surface was performed in [22, 83]. 
These contacts were shown to be ohmic, in contrast to 
silicon–metal contacts with a polished semiconductor 
surface. They are characterized by a high dislocation 
density, sufficient for implementing current flow through 
dislocations matched with metal shunts. The theoretical 
and experimental results were found to be in good 
agreement. 

The question regarding the type of metal–
semiconductor contact with a ground semiconductor 
surface has been analyzed for a fairly long time. For 
example, ohmic contacts were formed both on a ground 
silicon surface [84] and on the ground surface of other 
semiconductors [85–87]. Moreover, it is well known that 
a necessary component of the technology of forming 
ohmic contacts in structures for Si-based power 
electronic devices is preliminary grinding of the silicon 
surface [88, 89]. 

Attempts were made [11, 90, 91] to explain the 
obtained results by a high carrier-recombination rate at 
the metal–semiconductor interface. It was stated that the 
carrier concentration at the metal–semiconductor 
interface in these contacts is close to equilibrium, and 
near-contact SCR is lacking. 

The influence of the surface recombination rate at 
the antibarrier rear contact of a p-n junction on its 
current–voltage (I–V) characteristic was analyzed in [92-
94], where the behavior of the contacts in structures with 
a p-n junction rather than in Schottky contacts was 
considered. 

In this paper, we report the following results. First, 
we derive general relations for the currents through a 
Schottky contact with a dielectric gap. Second, the 
criteria for Schottky-contact ohmicity are given. Third, 
we analyze the current flow through Schottky contacts 
within a generalized model and show that a small 
injection level, when the excess concentration of 
minority carriers (holes), ∆p, is low in comparison with 
the equilibrium electron concentration (n0) in 
semiconductor, does not ensure (in contrast to a p-n 

junction) ohmicity of Schottky contacts. 
It is assumed that the criterion of the absence of 

current-induced heating the main charge carriers 
(electrons) is satisfied: Eb < kT / qlp, where Eb is the 
electric field in the semiconductor bulk, and lp – electron 
mean free path.  

Hence, one can use Boltzmann statistics for 
electrons and holes with a temperature equal to the lattice 
temperature. 
 
7.2. General expressions for the current of majority and 

minority carriers through the Schottky contact with a 

dielectric gap  

Simulation of properties inherent to the antibarrier 
contact to a p-n junction in [92-94] was performed using 
the following drain boundary condition for the minority-
carrier (hole) current density in a lightly doped n-type 
region: 

)( dxpqSJ kp =∆= ,     (41) 

where d is the thickness of this region. Moreover, it was 
supposed that Sk, which is the surface recombination rate 
in the contact plane x = d, can be arbitrarily high. 

It should be noted that the relation (41) cannot be 
used to find the hole current density, because bands 
undergo bending in the x = d plane, whereas the drain 
boundary condition is valid only in the absence of band 
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bending, i.e., in a plane spaced from the x = d plane at a 
distance equal to the SCR thickness w [95]. 

Then, instead of (41), one must use the following 
relation as a boundary condition: 

)( wdxpqSJ effp −=∆= ,     (42) 

where ∆p(x = d – w) is the excess hole concentration in 
the x = d – w plane and Seff – effective surface 
recombination rate in the x = d – w plane, which is 
limited by the minority carrier supply to the x = d plane 
and cannot be arbitrarily high [95]. 

The energy-band diagram of a forward-biased 
Schottky contact with a dielectric gap is shown in 
Fig. 20. 

We will derive an expression for the minority-
carrier current density through the Schottky contact with 
a dielectric gap proceeding from a more general 
boundary condition, assuming that the hole current flows 
through the semiconductor–insulator interface (x = 0) 
with nonzero band bending (see Fig. 20). In this case, 
according to [95], the boundary condition for the 
minority-carrier current density can be written as 

( )04 cc

p

pp pp
V

qJ −ϑ−= ,    (43) 

where pϑ  is the transmission coefficient of the dielectric 

gap for holes, Vp – mean thermal hole velocity, mp – hole 
effective mass, and pc and pc0 are, respectively, the 
nonequilibrium and equilibrium hole concentrations at 
the semiconductor–insulator interface in the metal–
semiconductor contact. 

Double integration of the hole current continuity 
equations over the x coordinate (i.e., in the direction 
perpendicular to the metal–semiconductor contact plane) 
in the nondegenerate case yields the following expression 
for the nonequilibrium hole concentration in near-contact 
SCR: 





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where y(x) = qφ(x)/kT is the dimensionless electrostatic 
potential (band bending), pw – nonequilibrium hole 
concentration at the boundary between SCR and quasi-
neutral volume in the plane x = w, and Dp – hole 
diffusion coefficient. 

The excess hole concentration at the SCR boundary 
x = w ∆pw = pw – p0, can be found from the generation-
recombination balance equation, which has the following 
form for thick (as compared with the diffusion length Ld) 
semiconductor: 
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where S is the effective surface recombination rate in 
semiconductor in the plane x = w. 

d
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Fig. 20. Energy-band diagram of a Schottky contact with a 
dielectric gap: Ec is the bottom of the conduction band and Ev is 
the top of the valence band in semiconductor; EFm is the Fermi 
level in metal; EFn is the quasi-Fermi level for electrons in 
semiconductor; φb is the barrier height, counted from the 
bottom of the conduction band; dd is the dielectric-gap 
thickness; w is the SCR thickness; and Vs the voltage drop in 
semiconductor. 
 

Using Eq. (43), provided that the criterion Ld >> LD 

holds true (LD is the Debye screening length), one arrives 
at the following expression for the hole current density: 

( )

dp

pe

kTqV
pe

p

LDS

V

epqV
J

s

/
1

1/
0

+
+

−
= .     (46) 

Here, Vpe = pϑ , Vp is the effective hole emission rate  

from semiconductor to metal, p0 – equilibrium hole 
concentration in the neutral bulk, yc – dimensionless 
nonequilibrium band bending at the interface x = 0, and 
Vs – part of the voltage V across the diode structure that 
drops in the semiconductor. 

If the criterion  

d

p

pe
L

D
SV +>>     (47) 

is satisfied, the hole current density is 

( )1/
0 −








+= kTqV

d

p
p

se
L

D
SqpJ .    (48) 

This value corresponds to the current density through an 
asymmetric p-n junction. 

Similarly, one can calculate the electron current 
density Jn. If the electron current has a thermionic nature, 
and semiconductor is not degenerate, then, according to 
[95], 

( )04 ccnnn nnV
q

J −ϑ= ,     (49) 
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where nϑ  is the transmission coefficient of the dielectric 
gap for electrons, Vn – mean thermal electron velocity; 
and nc and nc0 are, respectively, the nonequilibrium and 
equilibrium electron concentrations at the boundary 
x = 0. 

Double integration of the electron-current 
continuity equations over coordinate x (i.e., in the 
direction perpendicular to the metal–semiconductor 
contact plane) yields the following expression for the 
electron concentration in SCR: 





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0
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Here, Dn is the electron diffusion coefficient. 
Let us introduce the value 

dxeeDV

w

xyy
nnr

c ∫ −−=

0

)( ,    (51) 

the physical meaning of which is the velocity of electrons 
passing through SCR of semiconductor. 

When the electrostatic potential changes according 
to the Schottky law throughout the entire SCR, Vnr is 
equal to the electron drift velocity: Vnr = µn Ec, where µn 

is the electron mobility and Ec is the electric field in the 
contact plane. 

Substituting (50) into (49) (at x = 0), one obtains a 
relationship between the electron concentrations in the 
neutral bulk and at x = 0. The final expression for the 
electron current density through the contact, with 
allowance for (49), has the form 
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where 
kT

qV
yy s

cc += 0 . 

If the criterion nrnn VV <<ϑ
4

1
 is satisfied, electrons 

obey diode theory, and the expression for the electron 
current density is simplified and takes the form 

( )1
4

/
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0 −ϑ= kTqVy
nnn

sc eenV
q

J  .     (53) 

The pϑ  and nϑ  values will be considered below as 

parameters of the problem. When drawing plots, we will 
also assume that pϑ  = nϑ  and Vs ≅ V. The latter 

condition means that the variation in the voltage drop 
across the insulator (under voltage V across the entire 
structure) can be neglected in comparison with a change 
in the voltage drop in the near-contact semiconductor 
region. 

It was stated in [11, 90, 91], irrespectively of the 
structure type (p-n junction or Schottky diode), that 
“recombination” ohmic contacts are contacts with a high 
carrier-recombination rate at the metal–semiconductor 

interface. There are no objections that the so-called 
recombination contact to a p-n junction at x = d can be 
antibarrier (i.e., ohmic) [92, 93]. At the same time, we 
cannot agree that the “recombination” contact to a 
Schottky diode is also ohmic in the case of sufficiently 
high effective surface recombination rates S. The 
effective surface recombination rate S (see the expression 
(48)) may be rather high; however, it is limited, from 
above, by hole thermal velocity Vp. For the same reason, 
the condition pc ≅ pc0 cannot be implemented either when 
the nonequilibrium concentration of minority carriers is 
equal to the equilibrium concentration. 

In other words, the conditions for Schottky-contact 
ohmicity do not correspond to those for the ohmicity of 
contacts to a p-n junction. Therefore, we will analyze 
below the criteria for ohmicity to Schottky contacts. 
 
7.3. Criteria for Schottky-contact ohmicity 

Let us consider the case where the Schottky contact is 
based on a nondegenerate n-type semiconductor. First, 
we assume that the inequality Jn >> Jp is satisfied. Then, 
the current through the contact is determined by the 
expression similar to (46), which can be written as 
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4 0 ϑ+ϑ= , A is the 

contact area, 
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

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c exp00 , and φb – electrostatic 

potential at the semiconductor–insulator interface, 
counted from the bottom of the conduction band of 
semiconductor. 

According to [19], the contact resistance is 
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Substitution of (48) into (49) yields 

s

c
Iq

kT
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= .    (56) 

Let us now derive a criterion for Schottky-contact 
ohmicity in the case under consideration. To this end, we 
will write an expression for the current taking into 
account the bulk resistance Rb = ρd /A (ρ and d are, 
respectively, the semiconductor resistivity and 
thickness): 
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Expression (57) can be rewritten in the form 
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At I/Is << 1, Eq. (58) can be reduced (taking into 
account (54)) to the form 

b

c

b R

R
I

R

V
I −= .    (59) 

Thus, as follows from (59), the criterion for 
Schottky-contact ohmicity is the inequality Rc << Rb; i.e., 
in this case the contact resistance must be much lower 
than the bulk one. This criterion, in particular, coincides 
with the criterion reported in the monograph [3]. 

The same criterion for Schottky-contact ohmicity 
was obtained in [96] for the case where the main carrier 
current through a Schottky contact is defined by the 
thermally-assisted field current. The aforementioned 
situation can be implemented at sufficiently large φb 

values and (or) at fairly low temperatures. 
 

10
-3

10
-2

10
-1

10
0

10
-4

10
-2

10
0

10
2

10
4

10
6 a)

5

4

3

2ρ
c
, 

Ω
·c

m
2

υ
n

1

 
 

0.0 0.2 0.4
10

-4

10
-2

10
0

10
2

10
4

10
6

4

3
2

ρ
c
, 

Ω
·c

m
2

ϕ
b
, V

1

b)

 

Fig. 21. Dependences of the specific contact resistance ρс on (a) 
the transmission coefficient ∆n of the dielectric gap for 
electrons (φb = 0.01 (1), 0.1 (2), 0.3 (3), and 0.5 V (4)) and (b) 
barrier height φb (vn = 1 (1), 10–1 (2), and 10–2 (3)). The 
horizontal lines (5 in panel (a) and 4 in panel (b)) indicate the 
ARb value. 

Fig. 21a shows the dependences of ρc = ARc on the 
dielectric-gap transmission coefficient nϑ  (for the 

parameters of silicon). The curve parameter is the barrier 
height φb. The plots in Fig. 21 were constructed using the 
assumption that A = 1 cm2. 

We note that the specific contact resistance ρс and 
contact resistance Rc are numerically equal for this A 

value. The currents and current densities are also 
numerically equal. The figure shows that the criterion for 
Schottky-contact ohmicity with the parameters of silicon 
in use can be satisfied only at φ ≤ 0.1 V for a sufficiently 
large electron transmission coefficient nϑ  of the 

dielectric gap. When constructing plots in this and 
subsequent figures, it was also assumed that n0 = 
1015 cm–3, S =105 cm/s, d = 220 µm, and T = 300 K. 

Fig. 20b shows the dependences of ρc on φb. The 
curve parameter is the nϑ  value. It can be seen that the 

φb values, at which the criterion for Schottky-contact 
ohmicity is satisfied, decrease with a decrease in the nϑ  

value. It should be noted that the decrease in the gap 
transmission coefficient nϑ  is equivalent to an increase 

in barrier height φb. The criterion for contact ohmicity 
may be invalid even at small φb values (Fig. 21a, 
curve 2). This circumstance must be taken into account 
when analyzing experimental I–V characteristics. 
 
7.4. Analysis of currents through the Schottky contacts 

with allowance for the minority-carrier current 

It was stated in [92-94] that a contact is ohmic, when a 
low injection level is implemented; i.e., when the 
criterion ∆p << n0 is satisfied. Below, we will show that 
this statement is invalid for Schottky contacts.  

When a voltage drop in the insulator can be 
neglected, the expression for the excess hole 
concentration ∆p takes the form 
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In this case, ∆p = ∆pw, which follows from the 
condition of constancy of the quasi-Fermi level for holes 
in near-contact SCR. 

Let us now consider the case where the total current 
I through the Schottky contact is the sum of electron and 
hole currents; i.e., I = In + Ip, where In = AJn and Ip = AJp, 
and the Jn and Jp values are determined by the 
expressions (51) and (45), respectively. As previously, 
we assume that the voltage drop in insulator can be 
neglected in comparison with the voltage drop in 
semiconductor. Then, the total current through the 
Schottky contact can be written as 
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Fig. 22. Dependences of the (1–3) electron and (4–6) hole 
currents on (a) the dielectric-gap transmission coefficient ∆n 

(φb = 0.2 (1, 4), 0.4 (2, 5), and 0.6 V (3, 6)) and (b) barrier 
height (∆n = 10–4 (1, 4), 10–2 (2, 5), and 1 (3, 6)). 

 
Fig. 22a shows the dependences of electron current 

In and hole current Ip (which are proportional, 
respectively, to the first and second additives in round 
parentheses in (61)) on the dielectric-gap transmission 
coefficient for electrons, nϑ , and (equal to it) gap 

transmission coefficient for holes, pϑ . The plots in this 

and subsequent figures were constructed using the 
assumption that the diffusion length Ld is 100 µm. This a 
typical value for silicon in terms of the order of 
magnitude [97]. The curve parameter is φb. It can be seen 
that for all φb values used to construct these plots (except 
for φb = 0.2 V), the hole current density is constant and 
depends neither on the gap transmission coefficient nor 
on the φb value. However, a decrease in nϑ  leads to a 
significant decrease in In. As a result, the hole current 
may exceed the electron current at small nϑ  values. 
When Ip > In, the Schottky contact behaves as a p-n  
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Fig. 23. Dependences of the excess hole concentration on the 
applied voltage for φb = 0.1 (1), 0.3 (2), 0.5 (3), 0.7 (4), and  
0.9 V (5). The horizontal line (6) indicates ∆n. 

 

junction, whereas at Ip < In its behavior is classical. A 
decrease in nϑ  leads to a decrease in the φb values, at 

which the condition Ip > In is satisfied. We note that, 
when nϑ  = 1, the condition Ip ≥ In (for the parameter 

values in use) is implemented if φb ≥ 0.71 V. 
Fig. 22b shows the dependences of the electron 

current In and hole current Ip on φb. The curve parameters 
for In and Ip are, respectively, the nϑ  and pϑ  values, 

which were assumed to be equal when constructing the 
plots. For the pϑ  values in use, the hole current Ip is 

independent of pϑ  and φb, beginning with φb > 0.2 V. At 

φb ≤ 0.2 V, the Ip value decreases with a reduction in φb. 
This decrease is related to the violation of criterion (47), 
due to which the Schottky contact does not transmit 
entirely the injected hole current. 

Fig. 23 presents the dependences of the excess hole 
concentration ∆p on applied voltage V, which were 
calculated using the formula (60). The curve parameter is 
φb. 

Finally, Fig. 24 shows the dependences of the total 
current through the Schottky contact on the applied 
voltage, calculated using the formula (61). As in Fig. 23, 
the curve parameter is φb. 

We note that the curves in both Figs. 23 and 24 
were plotted for the case where pϑ  = nϑ  = 1. As can be 

seen in Fig. 24, for the parameter values in use, the 
condition ∆p < n0 is satisfied for all φb values; i.e., the 
injection level is low. At the same time, as it follows 
from Fig. 24, all curves exhibit a pronounced portion of 
exponential dependence of the current on applied voltage 
at φb ≥ 0.3 V. This fact indicates that, in the case of 
Schottky contacts, implementation of a low injection 
level, in contrast to the cases considered in [92-94], is not 
sufficient to provide contact ohmicity. The choice of n0 
value equal to 1015 cm–3 is due, on the one hand, to the  
 



SPQEO, 2018. V. 21, N 1. P. 5-40. 

A.V. Sachenko, R.V. Konakova, A.E. Belyaev. Physical mechanisms providing formation of … (Review) 

31 

0.0 0.2 0.4 0.6
10

-11

10
-9

10
-7

10
-5

10
-3

10
-1

10
1

5

4

3

2

I,
 A

V, V

1

 
Fig. 24. Dependences of the current through the contact on the 
applied voltage at φb = 0.1 (1), 0.3 (2), 0.5 (3), 0.7 (4), and  
0.9 V (5). 

 
fact that in this case the inequality Ip > In is satisfied at 
attainable φb values for silicon, whereas at n0 ≥1016 cm–3 
the electron current dominates at all attainable φb values. 
On the other hand, the value n0 = 1015 cm–3 is typical (on 
the order of magnitude) for silicon solar cells and some 
Si-based transistor structures [97, 98]. It should be also 
noted that, despite the fact that a highly degenerate near-
contact layer provides contact ohmicity in the majority of 
cases, the specific contact resistance is generally 
determined by the high-resistivity region and can be 
fairly high [26]. 
 
7.5. Results and discussion 

The current through a metal–semiconductor contact 
depends on the effective surface recombination rate only 
when the minority-carrier current exceeds the majority-
carrier current; to this end, the Schottky contact should 
behave as a p-n junction. This may occur only at large 
barrier heights. However, the contact resistance also 
becomes high in this case, and the condition for contact 
ohmicity, Rc << Rb, is not satisfied. Correspondingly, the 
contact is non-ohmic. 

Although the nonequilibrium carrier concentration 
at the contact is close to equilibrium in this case, the band 
bending at the semiconductor–insulator interface is 
nonzero (which contradicts the statements of [11, 90, 
91]). Analysis shows that, under a forward bias V, the 
applied voltage first drops at near-contact SCR. The I–V 

characteristic of the contact is rectifying. Obviously, 
SCR will exist at V ≤ φb. 

Concerning the strong effect of the surface 
recombination rate S, which leads to a decrease in ∆p, it 
is not so strong in reality. With allowance for the fact that 
S ≤ Vp ≈ 107 cm/s [98], estimates show that, even at S ≈ 
107 cm/s, ∆p is about 1012 cm–3, provided that Jp = Jn and 
V = 0.6 V, whereas p0 ≈ 105 cm–3. Thus, the excess hole 
concentration in the x = w plane exceeds the equilibrium 

concentration by several orders of magnitude in this case. 
Recalculation of the hole recombination rate in the x = w 

plane, equal to S, to the value in the contact plane yields 
a value of Vp/4 (at pϑ  = 1). Therefore, the Seff value, 

determined using the relation of the (1b) type, cannot be 
let to run to infinity. 

We note that the thermionic current of majority 
carriers is independent of the recombination 
characteristics, in particular, surface recombination. A 
similar dependence is also lacking for the thermally-
assisted field and tunnel currents. This dependence exists 
for only p-n junctions.  

Our analysis was limited to the consideration of 
only the thermionic current of majority carriers in the 
Schottky contacts. It should be noted that the situation 
will not change radically when passing to the thermally-
assisted field mechanism of majority-carrier current in 
the Schottky contacts. A radical change occurs when the 
tunnel mechanism of current transport dominates in the 
Schottky contact. In this case, the semiconductor bulk is 
degenerate (the degree of degeneracy increases with an 
increase in the doping level). Therefore, the effective 
barrier height, counted from the Fermi level in 
semiconductor, decreases with an increase in the doping 
level. The barrier thickness also decreases under these 
conditions, due to which barrier transparency increases. 
Correspondingly, the contact resistance decreases as 
well, and the contact behaves as the ohmic one. 

As follows from the results obtained, the larger the 
dielectric-gap transmission coefficient for electrons, nϑ , 
the better the condition for Schottky-contact ohmicity 
(Rc << Rb) is satisfied. Since ( )dn dα−∝ϑ exp  [98], 
where α is a constant and dd is the dielectric-gap 
thickness, minimum possible dd values must be 
implemented to increase nϑ . The α value, in turn, 
depends on the insulator band gap Ed: it increases with an 
increase in Ed and decreases when Ed decreases. In the 
case of Si-based Schottky contacts, the Ed value is 
determined by the degree of stoichiometry of the SiOx 

oxide. The smaller the x value in comparison with 2, the 
smaller the Ed value is and, correspondingly, the smaller 
the α value is. 

Let us now discuss the approximation nϑ  = pϑ , 

which was used in our analysis. In general, this equality 
is invalid. However, when the barrier height φb is 
sufficiently large (>0.3 V), the hole current, at parameter 
values used in the calculation, is defined by the 
expression (48) and is independent of the dielectric-gap 
transmission coefficient for holes, pϑ , when the latter 

changes by several orders of magnitude. It, all the more, 
occurs when the inequality Ip > In is satisfied; i.e., when a 
p-n junction is implemented, because in this case the φb 

value is even larger. However, if the criterion (47) is 
violated, the hole current is proportional to pϑ . 

A Schottky contact is implemented at smaller φb 

values, because In >> Ip. In this case, the electron current 
Ip is proportional to ∆ n. The error introduced by the 
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replacement of pϑ  with ∆ n in the calculation of Ip, 

although leading to an incorrect Ip value, will barely 
affect the value of the total current I. 
 
7.6. Conclusions 

Thus, based on the results of our analysis and taking into 
account the data of [10, 21-23], we can draw the 
following conclusions. 
(i) A Schottky contact is ohmic when the inequality 
Rc << Rb holds true. The smaller the transmission 
coefficient nϑ  for majority carriers in the Schottky 
contact, the worse the condition for contact ohmicity is 
satisfied. Calculations showed that Si-based Schottky 
contacts are ohmic at temperatures of ≥300 K, if the 
barrier height (counted from the bottom of the 
conduction band) is ≤0.1 V and the nϑ  value is close to 
unity. 
(ii) The condition of injection-level smallness (∆p < n0) 
does not provide Schottky-contact ohmicity. 
(iii) The “recombination” Schottky contacts (i.e., the 
contacts in which the minority-carrier current dominates) 
are rectifying at any attainable values of the 
recombination rate S. 
(iv) The explanation of formation of an ohmic contact 
after grinding the semiconductor surface is beyond the 
scope of the model under consideration. This effect can 
be understood only within the concepts developed in [10, 
21-23]. 
 
8. A new mechanism for realization of ohmic contacts 

8.1. Introduction 

Fabrication of ohmic contacts was for a long time 
associated with great difficulties, and the mechanisms of 
their formation are being refined even now. In this study, 
the analysis of one mechanism promoting realization of 
ohmic contacts is performed. This mechanism includes 
incomplete charge screening by surface states at a high 
doping level. We speak about a metal–semiconductor 
contact with a dielectric gap. To date, the analysis of 
current-flow mechanisms in this contact has been 
performed only under the assumption that the distribution 
law of surface states along the coordinate perpendicular 
to the surface is described by the δ-function [19]. At the 
same time, it is known that the concentration of surface 
states lowers when moving into the semiconductor depth 
according to an exponential law with the characteristic 
damping parameter ls [7, 99]. According to the data [100, 
101], a typical value of ls for such semiconductors as Si 
and GaAs is 10–7 cm. Therefore, when the SCR thickness 
w becomes by the order or smaller than ls, it should be 
noted that approximation of the δ-function will be 
invalid, and the Poisson equation should be solved taking 
into account the distribution of surface states along the 
coordinate x. We solved the problem in this study 
precisely in this approximation. 
 

8.2. Problem statement 

In the case when inequality qEc F>ϕ , where φc is the 
barrier height and EF – Fermi energy, is fulfilled at high 
semiconductor doping levels, in the presence of an 
insulating interlayer, the magnitude of the contact barrier 
is determined by solving the integral neutrality equation 
taking into account charges accumulated in metal, at 
surface states, and in semiconductor, which has the form 
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Here, εd is the dielectric constant of the insulator,  
d – thickness, φms – contact potential difference  
between metal and semiconductor, kTqy cc ϕ= , 

( )( )[ ] 1exp1)( −−−+= gidcii EnNykTEEf  – Fermi 

distribution in the equilibrium case for a surface level 
with the energy Ei. This energy is counted from the band 
gap middle of semiconductor at the interface with 
insulator, Nd – donor concentration, ( )gi En  – charge-

carrier concentration in the intrinsic semiconductor, the 
magnitude of φc is counted from the conduction-band 
bottom in the neutral bulk, and other notations are 
generally accepted. It is assumed in expression (1) that 
discrete surface levels are arranged at the interface 
between the semiconductor and insulator; it is also 
assumed that the distribution of charges localized at 
surface states can be described by the δ-function. It 
means that the thickness of the localization region of 
surface states ls is considerably smaller than the SCR 

thickness w, where ( ) 5.0
D2 cyLw = . This condition is  
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Fig. 25. Dependence of the thickness of space charge region in 
Si on the doping level Nd. 
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fulfilled in the region of low doping levels. However, the 
calculation shows that this inequality is violated at high 
doping levels. Fig. 25 shows the dependences of w on the 
doping level plotted for parameters of Si, when the 
effective density of states in the conduction band Nc = 
2.8·1019 cm–3, φms = 0.5 V, εs = 11.7, d = 4·10–8 cm, and 
εd = 2 [19]. Herewith, we considered for simplicity that 
only acceptor surface states with the concentration Nsa = 
2.7·1013 cm–2 are present in semiconductor. We note that 
according to the data [19], a high peak of the density of 
states with an energy higher than the valence-band edge 
by 1/3 of the bandgap width is present in most covalent 
semiconductors. 

According to this fact, we accepted that Ea =  
–0.23 eV in the case of Si. We note that this approach 
can be used in the case of not only discrete surface levels 
but surface zones as well. The authors of [102] showed 
that the energy characteristics of surface states, which 
comprise the surface zones, could be described by 
efficient surface levels in most cases. It is seen from 
Fig. 25 (curve 1) that inequality w << ls is fulfilled in a 
region of moderate doping levels, and we can assume in 
the calculations that the distribution of surface states is 
described well by the δ-function. However, the SCR 
thickness becomes smaller than ls at Nd > 1.42·1020 cm–3. 
It is noteworthy that the curves 2 and 3 in Fig. 25 
correspond to the characteristic thicknesses of the 
localization regions of surface states, which equal 10–7 
and 3·10–8 cm. In this case, the distribution of charges 
localized at surface states cannot be described by the δ-
function but should be determined from solution of the 
Poisson equation. According to the data [103], surface 
states on the actual surfaces of semiconductor appear 
because of the presence of defects or foreign atoms. 
According to [99], the wave function of the ground state 
of an electron center localized on a semiconductor sur-
face can be written in the form ( )1exp)( slxxAx −=ψ . 
Taking into account normalization of the wave function, 
the distribution of surface states along the coordinate x 
and their filling with electrons is described by the law 
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where 

( )( )[ ] 1)(exp1),( −−−+= gidaa EnNxykTExEf , 

kTxqxy )()( ϕ= , and )(xϕ  is the dependence of the 
dimensionless electrostatic potential on the coordinate x. 

The authors of [100, 101] assumed that the spatial 
dependence of the distribution of surface states along the 

coordinate x has the form 







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exp . Taking into 

account the function of surface state population with 
electrons, 
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In the cases under consideration, we can derive an 
expression for φc by solving the Poisson equation for 
semiconductor, taking into account the charge of surface 
states. Using the conditions: (a) equality of electric biases 
at the surface of semiconductor and insulator, (b) 
continuity of the potentials, and (c) reducing the electric 
field and electrostatic potential to zero, we derive a set of 
two equations for finding quantities w and φc. Let us limit 
ourselves by consideration of the case of absence of 
charge-carrier degeneracy in semiconductor. Herewith, 
the following equations are valid for the SCR thickness w 
and barrier height φc. 
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8.3. Analysis of results 

It is seen from expressions (63)–(65) that, in general, 
when solving the Poisson equation, it is necessary to take 
into account not only the spatial distribution of the 
density of surface states, but the dependence of their 
degree of population on the coordinate x as well. The 
analysis shows that the contact potential φ initially 
increases with increasing Nd, then passes through a  
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Fig. 26. Dependence of the barrier height φc on the doping level 
Nd at φms = 0.5 V. The used parameter ls, cm: 10–8(2, 2'), 5·10–8 

(3, 3'), 1·10–7 (4, 4') and 2·10–7 (5, 5'). Curve 1 is found when 
realizing Eq. (62). 
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Fig. 27. Dependence of the barrier height φc on the doping level 
Nd at φms = 0 V. The used parameter ls, cm: 10–8(2, 2'), 5·10–8 

(3, 3'), 1·10–7 (4, 4') and 2·10–7 (5, 5'). Curve 1 is found when 
realizing Eq. (62). 
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Fig. 28. Dependence of the degree of filling of the surface level 
f (Ea, 0) with and energy of –0.23 eV on the doping level Nd at 
φms = 0.5 V. The used parameter ls, cm: 10–8(2, 2'), 5·10–8  

(3, 3'), 1·10–7 (4, 4') and 2·10–7 (5, 5'). Curve 1 is found when 
Eq. (62) is valid. 

 

maximum, and then decreases (Figs. 26 and 27). If the 
following criteria are fulfilled: (i) slw <<  and (ii) 

f
 (Ea, 0) � 1 at w ≤ ls, when solving Eqs. (65) and (66), 

we can neglect the dependence of f
 (Ea, x) on the 

coordinate x. Fulfillment of the criterion (i) means that 
approximation of the δ-function is valid for the 
distribution of surface states, while fulfillment of the 
criterion (ii) evidences that if the surface layer is 
completely filled at x = 0, it will also be completely filled 
at x ≠ 0. 

Estimations show that, at the parameters used for 
calculation, the criterion (i) is fulfilled at 2·1018 cm–3, 
while the criterion (ii) is fulfilled in the Nd range from 
1·1019 up to 5·1019 cm–3 depending on the magnitude of 
ls. It is seen from Fig. 28, in which the dependences of 
the degree of filling the surface layer with the energy  
–0.23 eV on the doping level Nd are presented. At 
intermediate values of Nd, we should take into account 
both the dispersion of the density of surface states and 
the dependence of filling the density of surface states on 
the coordinate x. However, taking into account the spread 
of the density of surface states turns out to be more 
substantial in calculation. Figs. 26 and 27 show the 
dependences of the contact potential φc on the doping 
level of semiconductor for Si, which were found using 
Eq. (62) (curve 1), and the dependences derived 
including the charge of surface states into the Poisson 
equation, when using relationships (63)–(66). When 
plotting Fig. 26, we assumed that the contact potential 
difference was φms = 0.5 V, while when plotting Fig. 27, 
we assumed φms was equal to zero. When calculating 
Figs. 26 and 27 as well as subsequent ones, we assumed 
that the values of ls were equal to 10–8, 5·10–8, 10–7, and 
2·10–7 cm, respectively. Curves 2 to 5 that were plotted 
when using the law (64), are solid, while the curves 2' to 
5' that are valid for realization of (63), are dashed. It is 
seen from Figs. 26 and 27 that the dependences φc(Nd), 
which are presented by the curves 3–5 and 3'–5', descend 
with increasing Nd from 1017 to 1021 cm–3 more rapidly 
than the dependence presented in curve 1. At the same 
time, the dependences presented by the curves 2 and 2' 
for the case when ls = 10–8 cm are rather close or coincide 
with the dependences presented by the curve 1. It is seen 
from Fig. 26 that the value of φc for the curve 5 is 0.1 V 
at Nd = 1020 cm–3, while the value of φc found in the δ-
function approximation is 0.53 V. The difference 
between the values of φc found in the δ-function 
approximation and when using the expression (63) is 
even larger in the case when φms = 0 V, i.e., the work 
functions for metal and Si are equal to one another 
(Fig. 27). It should be noted that the largest decrease in 
the barrier height φc, as compared with the case when the 
δ-function approximation is used, occurs in the region 

Nd > 1019 cm–3, when the degree of filling of surface 
states with electrons is close or equal to unity. 

We note that a larger decrease in the contact 
potential for the curves 3–5 and 3'–5' presented in Figs. 
26 and 27 in fact means that the efficient density of 
surface states participating in charge screening decreases. 
It is illustrated by Figs. 29 and 30 that represent the 
dependences 

∫=

w

ss dxxNN

0

* )( .       (67) 

When plotting Figs. 29 and 30, we used the same 
values of ls as when plotting Figs. 26 and 27. It is seen 
from Figs. 29 and 30 that the efficient density of surface 
states participating in charge screening can significantly 
decrease in the region of rather high doping levels (more 
than by an order of magnitude). 
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Fig. 29. Dependences of the efficient density of surface states 
Ns

* on the doping level Nd at φms = 0.5 V. The used parameter 
ls, cm: 10–8(2, 2'), 5·10–8 (3, 3'), 1·10–7 (4, 4') and 2·10–7 (5, 5'). 
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Fig. 30. Dependences of the efficient density of surface states 
Ns

* on the doping level Nd at φms = 0. The used parameter ls, 
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Estimations in a more general approximation, which 

emerges from the limits of realization of the Schottky 
contact show that the sign reversal of the contact 
potential is possible at φms < 0. The higher the modulus 
quantity φms, the lower the values of Nd, at which the 
transition from the case of the Schottky contact to the 
case of realization of enriching band bending occurs. 
This situation resembles the case of Mott theory for a 
dense contact [1] when inequality φms < 0 automatically 
means realization of enriching band bending. The 
difference lies in the fact that the sign reversal of the 
contact potential occurs in this case when the efficient 
density of surface states decreases rather strongly. It is 

also noteworthy that the smaller the value of φms, the 
smaller the value of ls, at which a rather large decrease in 
φc associated with the mechanism under consideration 
occurs (Fig. 27, curves 5, 5'). 

It should be noted that the difference when using 
relationships (63) and (643) for the distribution of surface 
states along the coordinate x is nonessential, although 
when using (63), the decrease in the values of φc and 
with increasing Nd is larger than when using (64). 

The most substantial result following from the 
analysis is the possibility of sign reversal of the contact 
potential, i.e., the realization of enriching band bending 
instead of the depletion type. In our opinion, this 
mechanism was implemented in [104] for contacts of Si 
with W in the region Nd ~ 1020 cm–3. Proof of this fact is 
the contact resistivity increase with increasing the 
temperature, which is possible only in the case of 
enriching band bending. According to [28], the criterion 
of contact ohmicity is the condition Rc < Rb, where Rc is 
the contact resistance and Rb is the semiconductor 
resistance. The magnitude of Rb in the actual region of 
doping levels decreases like to the case of increasing Nd. 
At the same time, with the used values of parameters 
φms = 0 and ls = 10–7 cm it decreases probably more 
rapidly. Therefore, the contact is ohmic in the case under 
consideration at Nd ≥ 1·1019 cm–3 and ds = 10 µm, where 
ds is the semiconductor thickness. 

Estimations show that a dielectric gap of  
(4…5)·10–8 cm in thickness for the Si–SiO2 system has a 
tunneling transparency coefficient substantially smaller 
than unity. Herewith, the mechanism of formation of 
negative charge in semiconductor via tunneling from 
metal, which is considered in [105], becomes impossible. 
Taking this mechanism into account is not required 
because the required value of negative charges provided 
by the intrinsic surface states of semiconductor. 

To date, the effect of decreasing the contact 
potential due to incomplete charge screening by surface 
states at rather high doping levels has not been analyzed. 
At the same time, it can provide the realization of ohmic 
contacts, which is usually prescribed to the manifestation 
of a tunneling mechanism of current passage in the 
presence of the doping step [19]. It is for this reason that 
it requires the most careful theoretical and experimental 
investigation. 
 
8.4. Conclusions 

The dependences of the contact resistance and efficient 
density of screening surface states on the doping level of 
semiconductor for the metal–semiconductor contact with 
a dielectric gap, if taking into account the spatial 
distribution of surface states, are found and analyzed. It 
has been shown that it leads to a stronger decrease in the 
contact potential with increasing the doping level, which 
in the δ-function approximation provides a decrease in 
the density of surface states screening the charge. The 
larger the characteristic damping parameter of surface 
states ls and the smaller the contact potential difference 
φms, the larger the effect is. This effect promotes 
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realization of ohmic contacts under conditions of low 
degeneracy of the semiconductor bulk, i.e., is a 
competitor for the tunneling mechanism of current 
passage, which is realized in the presence of a doping 
step. 
 
9. General conclusions 

Ohmic contacts may be separated into two groups 
according to the features related to temperature 
dependences of contact resistivity. The first group 
includes ohmic contacts based on the Schottky structures 
with a depletion layer in the space charge region. They 
are characterized by decreasing the contact resistivity 
with temperature (at thermionic and thermal-field 
mechanisms of current flow) and temperature 
independence of tunnel mechanism of current flow. 

The second group includes ohmic contacts based on 
the structures with an accumulation layer in SCR. There 
are several ways to realize accumulation layers in the 
contact region. One of them is analyzed in detail for the 
case of contacts with high dislocation density. As a rule, 
in that case dislocations are associated with metal shunts, 
sizes of which are close to atomic ones. As it takes place, 
the image force potential is so high that it ensures the 
charge sign change at the shunt ends in semiconductor 
(from depletion to accumulation). 

Another case is presence of a doping step. In this 
case, contact resistivity is determined by series 
connection of two resistances. One of them is contact 
resistance related to potential barrier penetration by 
electrons (in accord with the thermal-field or field 
mechanisms) at the boundary of heavily doped 
semiconductor and metal, while another is efficient 
contact resistance of weakly doped region at the 
boundary with the heavily doped one. Usually the first 
contact resistance is much lower than the second one 
(realized in the semiconductor region accumulating the 
majority charge carriers) that just determines value of the 
resulting contact resistance. 

The third case is related to realization of 
accumulation band bending in SCR of semiconductor on 
condition that the metal work function is less than the 
semiconductor work function. This case (unlike the Mott 
theory) may be realized in contacts with high density of 
surface states at high levels of semiconductor doping due 
to reduction of surface states charge. The latter is related 
to its incomplete screening at SCR thicknesses less than 
the characteristic attenuation length of surface state 
concentration. 

It is very important that ohmic contacts of the 
second type remain ohmic down to helium temperatures. 
At the same time, contacts of the first type (except tunnel 
contacts) inevitably become non-ohmic at helium 
temperatures. It should be noted, however, that contacts 
of the second type may become non-optimal. It takes 
place, because operating temperature of many 
semiconductor devices may be much over the room 
temperature. 

To avoid undesired influence on the characteristics 
of semiconductor devices, the ohmic contact resistance 
has to be sufficiently low. Now the achieved values of 
ohmic contact resistivity Rc are about (10–6–10–8) Ω/cm2 

[10]. As the doping level grows, Rc value decreases as 
1−

dN  for ohmic contacts of the first type only. As to 

ohmic contacts of the second type, decrease of Rc in them 
is achieved by varying other factors. For example, in the 
case of current flow through shunts associated with 
dislocations, the higher is the dislocation density, the 
lower is Rc. In the case of doping step, Rc value, as a rule, 
does not depend on the concentration of majority charge 
carriers in heavily doped region; it is defined by the 
doping level in weakly doped region. In the case of 
mechanism related to reduction of surface states charge, 
Rc value is defined primarily by relation between the 
metal and semiconductor work functions. At realization 
of the above mechanism, φms value is negative; the 
higher is its magnitude, the lower will be Rc value. 

The results of theoretical analysis of formation 
mechanism for ohmic contacts (with the allowance made 
for reduction of surface states charge at high doping 
levels) presented in this review expand essentially the 
notion of possibilities to obtain ohmic contacts. They 
may be used for practical realization of ohmic contacts as 
well as for optimization of their properties. 
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