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1. Introduction 

Quantum cascade lasers (QCLs) firstly invented and 
demonstrated more than 20 years ago at Bell 
Laboratories [1] are the semiconductor electrically 
pumped laser sources that use electron transitions 
between the subbands in the conduction band of a 
multiple-quantum-well heterostructure. Injected electron 
makes a small by energy intersubband transition within 
the quantum well during its motion between tunnel-

coupled quantum wells of multilayer heterostructure 
emitting light in each cascade. While the position of 
energy levels within a quantum well is mainly 
determined by one-dimensional confinement, i.e., by the 
thickness of the layers, rather than the material, the 
emission wavelength of QCLs spreads over a wide 
spectral range of infra-red diapason even in the same 
material system. Recently, QCLs of the mid infrared 
(MIR) frequency range demonstrate a record high 

wallplug efficiency (WPE), high continuous wave (CW) 
output power, single mode operation, and wide tunability 
[2]. A WPE value of 53% at 40 K is already reached. 

Very high peak power close to 190 W has been obtained 
from a broad area QCL of ridge width 400 µm [2]. Now, 

QCLs can generate high CW power output up to 5.1 W at 
room temperature, and cover the spectral range from 3 up 
to 300 µm by simple varying the material components. 
Broadband heterogeneous QCLs with the broad spectral 

range from 3 to 12 µm, wavelength agile QCLs based on 

monolithic sampled grating design, and on-chip beam 
QCL combiner are being developed for the next 
generation tunable mid-infrared source [3, 4]. The far-IR 
(terahertz) QCLs are now presented by a new class of 
light sources with room temperature operation in the 
terahertz (THz) spectral range, with nearly 2 mW of 
optical power and significant tunability [5-7]. These 
developments open up the terahertz region of the 
spectrum for a wide range of applications in biological 
imaging, medical imaging, security, spectroscopy, and 
communications [8-11]. 

However, further development of new QCL sources 
and optimization of their operation needs also adequate 
theoretical maintenance. Recently, theoretical models 
based on Monte Carlo simulations [12], on non-
equilibrium Green functions [13, 14] are widely used for 
calculation of carrier transport and prediction of intersub-
band gain. As a rule, these models require substantially 
large computational efforts. An alternative approach 
combines a one-dimensional system of rate equations 
with the three-dimensional calculation of intersubband 
scattering times [15], thus significantly reducing the 
numerical time. Beside the computing time limitation, it 
has to be taken into account that QCLs are based on 
multiple-quantum-well heterostructures with complex 
subband structure needed to supply sufficient gain for 
lasing. Calculation of this structure has to be performed 
including its bias dependence and location of charge as 
well as the non-parabolicity of the band structure, 
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scattering effects, and the optical mode confinement. 
Also, the substantial scattering of the values of 

parameters such as the layer thicknesses, composition 
fluctuations, interfaces, unavoidable for multiple-

quantum-well heterostructures influence the lasing 
properties of QCLs. Therefore, sufficiently compact and 

straightforward models are necessary, in particular for 
design purposes and QCL optimization for a given 
wavelength, which, at the same time, predict the gain 

maximum as well as current densities with reasonable 
accuracy. Recently, such compact model for the efficient 

simulation of the gain characteristics in THz QCLs based 
on the self-consistent solution of the Schrödinger and 

Poisson equations in the framework of a one-dimensional 
scattering-rate approach has been developed [16]. In this 
model, the total intersubband scattering rates were 

factorized into the squared modulus of the respective 
dipole matrix elements and an energy-dependent factor, 

which were used as an approximation for the various 
scattering processes. It has been shown that the model 

allows the efficient calculation of the gain characteristics 
and current densities due to a substantial reduction of 
numerical effort in case of various THz QCLs based on 
either the bound-to-continuum design or the resonant-
longitudinal-optical-phonon design. Further, this model 
has been extended to MIR QCLs by including the energy 
dependence of the intersubband scattering rates for the 
energies higher than the longitudinal optical phonon 
energy [17]. This energy dependence was obtained from 
a phenomenological fit of the intersubband scattering 
rates based on published lifetimes of a number of MIR 
QCLs. In the developed model, the total intersubband 
scattering rate was written as the product of the overlap 
integral for the squared moduli of the envelope functions 
and a phenomenological factor that depended only on the 
transition energy. The model was successfully applied to 
calculation of low-temperature current-voltage, power-
current, and energy-photon flux characteristics for a QCL 
emitting at 5.2 µm. In view of successful application of 
our phenomenological scattering-rate model [17] for low-
temperature MIR QCLs, in this paper we perform 
factorization of individual intersubband scattering rates 
which are longitudinal optical phonon, roughness 

interface, and acoustic phonon scatterings entering the 
total intersubband scattering rate, thus extending the 
model for a wide temperature range. This factorization is 

a peculiar mathematical procedure that can be further 
applied for efficient calculation of the current densities 
and gain characteristics in quantum cascade lasers even 
for room temperature.   
 

2. Rate equations approach 

Following [18], the rate equations that describe the 
electron dynamics in QCLs can be written as  

( ) ( )∑ ∑
≠ ≠

−+−=
ij ij

s
i

st
ij

s
j

st
ji

s
iij

s
jji

s
i nWnWnRnR

dt

dn
. (1) 

Here, s
in  is the electron sheet density of subband i which 

arises due to energy quantization in one dimensional 
quantum well whereas the in-plane electron motion is 

free. Rij stand for the rates of relaxation transitions 
caused by scattering due to interaction of electrons with 

phonons, electrons, impurities, and defects in the 

semiconductor heterostructures. 
st

ijW  denotes the rates of 

the stimulated optical transitions between the Ei and Ej 

energy levels which are in resonance with the frequency 

of optical field h/jiij EE −=ω=ω  and are proportional 

to the optical intensities in the corresponding lasing 
modes [19]. While the QCL is typically modeled as a 

biased periodic heterostructure the simulation can be 
restricted to a single representative period far away from 
the contacts, complemented by the periodic boundary 

conditions [15]. In this case, the effects like the 
fabrication tolerance, local fluctuations of the light 

intensity, domain formation [20], etc. are excluded. For a 
representative period indexes i, j in Eq. (1) run over 

1, .., N, where N is the number of subbands in each 

period, and Ri,j, 
st

ijW  include the transitions to all 

equivalent levels in the different periods. The 
intersubband scattering rates Ri,j can be self-consistently 
determined using the corresponding Hamiltonian [21, 
22]. This approach is based on well known material 
parameters such as the effective mass. It can be 
considered as a compromise between needed accuracy, 
on the one hand, and relative numerical efficiency, on the 
other hand, for simulation of QCLs. 

 

2.1. Factorization of the scattering rate caused by LO 

phonons 

In case of lightly doped semiconductors used in QCLs, 

we have ( ) eiik TkEE B
F >>−  and the Fermi–Dirac 

distribution approaches a classical Maxwell–Boltzmann 

distribution ( ) ( ) ee TkmTkmkkf BB
*222

MB 2exp ∗−= hh , 

where kB, m*, and Te are the Boltzmann constant, 
effective mass and temperature for electrons, 
respectively. 

The transition rate 
s
ijR  for a particular intersubband 

scattering mechanism s in QCLs can be written as in 
[22]: 

( ) ( )∫
∞

=

0

MB kfkRkdkR
s
ij

s
ij  . (2.1.1) 

Here, ( )kR
s
ij  is the total transition rate of electron from a 

state with momentum k in the initial i-th subband to the 
states in the j-th subband.  

For scattering by longitudinal optical phonons, the 

function ( )kR
s
ij  has the form [21]: 

( ) ( ) ( )
2

0

1
, zijzijzLO
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ij KGKkFdKkR ∫

∞

α= , (2.1.2) 
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and the form factor for phonon wavevector Kz is defined 

as 

( ) ( ) ( ) ( )∫
∞

∞−

∗ − zziKezdz=KG izjzij ψψ . 
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
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em

h
, Θ  is the 

Heaviside step function, and LOji
LO
ij EEE= m−∆ . 

The LO phonon branch ( )ωLOE  is considered as 

dispersionless, ( ) LOLOLO EE ω≅=ω h , ∞ε  and sε  are 

the high- and low-frequency permittivities of the 
semiconductor, respectively;  

( )[ ] 1
B 1exp

−−ω= lLOLO TkN h  
is the LO phonon occupation number in the emission 
(sign “+”) and absorption (sign “–”) processes, Tl is 
lattice temperature. 

Inserting Eq. (2.1.2) into Eq. (2.1.1), one gets 

( ) ( ) ( )

( ) ( ),

,

2

0

MB
12

∫

∫ ∫
∞

∞−

∞

∞−

∞

α=

=













α=

zijzijzLO

zijzijzLO
LO
ij

KQKGdK

kfKkdkkFKGdKR

(2.1.3) 

where 

( ) ( ) ( )∫
∞

=

0

MB
1

, kfKkdkkFKQ zijzij . (2.1.4) 

After integration over k in Eq. (2.1.4), the function 
Qij(Kz) turns to: 

( ) ( )aa
K

KQ
z

zij erfcexp
2

)(
πµ

= , if 0≥∆LO
ij ,  (2.1.5a) 

with 
l

Tkm B
*2 2h=µ , 

2*
2 h

LO
ijmb ∆= , and 

( )( )22 2 zz KbKa +µ=  or 

( ) ( )baa
K

KQ
z

zij µ−
πµ

= erfcexp
2

)( , if 0<∆LO
ij . (2.1.5b) 

The complementary error function erfc(x) has an 

asymptotic representation for a large value of x [23]: 

( ) ( ) ( )

( )∑
∞

=

− −−

π
≈

0
22

!!121
erfc

2

k
k

kx

x

k

x

e
x . (2.1.6) 

The asymptotic series in Eq. (2.1.6) is not convergent, 

however, for large x the function erfc(x) can be 
substantially well approximated already by a few first 
terms of the series, say, 
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Taking this into account, we find that in the case of large 

value of Kz, when bK z >>2  and 42
zKa µ→ ,  

( )
2

1

z

zij
K

KQ → . (2.1.8) 

Thus, the integrand in Eq. (2.1.3) is a product of two 

rapidly decaying functions ( )
2

zij KG  and ( )zij KQ , if 

∞→zK . Turning back to calculation of transition rate 

LO
ijR , let’s split the interval of integration into two parts: 
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The second term in Eq. (2.1.9) tends to zero, whereas for 

calculation of the first term we apply the first mean value 
theorem for definite integrals. While the function 

( )zij KQ  is continuous on the interval [ ]lim,0 zK , and the 

function ( )| |2zij KG is an integrable function that does not 

change its sign on the same interval, then there exists the 

point zK  in the interval [ ]lim,0 zK  such that 
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For the large value of lim
zK , const→zK  and 

Eq. (2.1.10) takes the form 

( ) ( )
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This equation can be rewritten in terms of integral of 

overlapping for the electron wavefunctions, ijζ : 

( ) ( )

( ) ( ) .22
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ijijLOijijLO
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∞

 (2.1.12) 

 

2.2. Factorization of the scattering rates caused by 
acoustic phonons 

To calculate the acoustic phonon scattering rate, we take 
into account that the energies of acoustic phonons ωA are 

as usual significantly lower than the typical intersubband 

separations ijij EEE −=∆  which can be of several 

hundred meV by their value. Besides, the acoustic 

phonon branch can be approximated by a linear function 

of phonon wave vector module K, KSA υ=ω , where Sυ  
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is a velocity of a sound wave. In this case, the transition 

rate 
A
ijR  for acoustic phonon scattering can be written in 

accord with Eq. (2.1.1) as 

( ) ( )∫
∞

=

0

MB kfkRkdkR
A
ij

A
ij  .  (2.2.1) 

Here, ( )kR
A
ij  defines the rate for electron from a state 

with the momentum k in the initial i-th subband to transit 
into all states in the j-th subband with participation of 

acoustic phonons. Following Ref. [21], the function 

( )kR
A
ij  can be calculated using the expression: 
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( )

×
πυρ

=
2

2
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where DA is an acoustic deformation potential, ρc is the 
crystal density, NA is a phonon occupation number of a 

mode with the wave vector K
r

:  
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 and zK  are in-plane and perpendicular components 

of phonon wave vector;  
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.  

Let us take into account that for all but the lowest 
temperatures Eq. (2.2.3) can be approximated with [22] 
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≈+≈
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B1 , (2.2.4) 

 

and that due to inequality ijA E∆<<ωh  the phonon 

energy can be put zero in Eq. (2.2.2) (the quasi-elastic 
approximation). In this case, introducing the polar 

coordinates for the in-plane phonon vector xyK
r

, 

Eq. (2.2.2) can be reduced to the form as follows: 
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Performing integration over zK  and xyK  in Eq. (2.2.5), 

one gets: 

( ) ( ) ( )( )
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As can be seen due to step functions, ν1 and ν2 in the 
numerator of Eq. (2.2.6) have to be positive and ν1 > ν2. 

If ∆E < 0, ν2 < 0 and Eq. (2.2.6) reduces to 
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If ∆E > 0, ν1 and ν2 can be positive only in the case of 

0cos <ϕ  and ( )kR
A
ij  takes the form 
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Introducing new variable ϕ= siny , the integrand can be 

presented in the following form: 
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It follows from Eq. (2.2.8) and (2.2.10) that ( )kR
A
ij  

is zero if ikj EE >  in the quasi-elastic approximation and 

( ) ijA
A
ij kR ζπα= 22  otherwise. Inserting these results in 

Eq. (2.2.1) and integrating over k, we get: 

( )kRR
A
ij

A
ij = , (2.2.11) 

that coincides with the results by Jirauschek et al. [22], if 
both emission and absorption will be included by an 

additional factor of 2. 

 

2.3. Factorization of the scattering rates caused by 
interface roughness  

In the mid-IR QCLs, the main origin of broadening is 
interface roughness, and it is well known that different 

transitions see different broadenings [24]. Interface 
roughness scattering (ifr) is caused by imperfections at 

 (2.2.10) 
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the interface between the barrier and well material in the 
heterostructure, resulting in a local deviation of the 

interface ( )yx,∆  from its average position. Normally the 

interface roughness is characterized by its standard 

deviation ∆  and the correlation length Λ. Following 
Refs. [22, 24], the total transition rate from an initial state 

Eik to all states of Ej is defined by the expressions: 

( )
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m
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n
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2

jψψ . Here, V0 is the average band 

offset, and the sum is taken over all the interfaces located 

at the positions zn. In the case ji EE > , ( ) 02 >ϕq  for all 

values of k and φ, whereas if ij EE > , ( )ϕ2q  is real only 

for all 2
0

2 qk >  and for all φ values. Under these 

conditions, integration over [0, π] by φ can be performed 
in Eq. (2.3.1), which leads to 
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 (2.3.2) 
where I0(x) is the modified Bessel function of the first 

kind [23].  
Inserting Eq. (2.3.2) into Eq. (2.1.1), the total rate 

for interface roughness scattering takes the form: 
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 (2.3.3) 

To integrate Eq. (2.3.3) over all the interval [0,+ ∞ ), one 
has to take into account the asymptotical behavior of the 
function I0(x) [23]: 
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According to Eq. (2.3.4), the function I0(x) equals 1 
for x = 0 and rapidly grows under x value increase 

staying all time positive. Nevertheless, the integrand in 
Eq. (2.3.3), taking into account Eq. (2.3.4) for large value 

of argument, can be reduced to  
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Thus, the integral in Eq. (2.3.3) is convergent under 

integration over all the interval ),0[ ∞ . Analytically, 

Eq. (2.3.3) can be solved in the case of 2
0

2 qk < . Taking 

0
2
0

2 kqqkk ≈+  in the argument of the Bessel function, 

one gets: 
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The integral in Eq. (2.3.6) belongs to the following type: 
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Applying Eq. (2.3.7) to Eq. (2.3.8), one can derive: 
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The problem is that in Eq. (2.3.6) the upper limit of 

integration tends ∞. It means that the condition 2
0

2 qk <  

inevitably becomes broken for large values of the wave 
vector k. Nevertheless, it occurs that the integrand in 
Eq. (2.3.6) differs noticeably from zero only within the 

interval (0, k0), where an effective value of k0 meets the 

condition 2
0

2
0 qk <  for practically the most important 

interval of ijE∆  meanings from 100 up to 500 meV. 

While integration from k0 to ∞ does not contribute to the 
total value of definite integral in Eq. (2.3.6), integration 

can be formally extended from 0 to ∞.   

By analogy in case of small x  values in Eq. (2.3.4), 

Eq. (2.3.3) will be written as 
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If x < 1, it is enough to retain only the terms with 2≤k  

in sum of Eq. (2.3.9) for a very good approximation to 

the I0(x) function. As a result the integration in 
Eq. (2.3.9) reduces to calculations of the integrals like 

( ) 1
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!exp
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µ=µ−∫
nn

ndyyy ,  where 0>µ . (2.3.10) 

Using Eq. (2.3.10), 
ifr
ijR  in Eq. (2.3.9) can be presented 

in the explicit form 
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with ( ) 22 21

B
2 Λ+=β

−∗
eTkmh  and 2

~
Λ=Λ . 

In the case when ij EE > , integration in Eq. (2.3.3) 

has to be performed from 0q  to ∞. That leads to zero 

contribution following the arguments given above.  
 

3. Conclusions  

Suitable factorization of the intersubband scattering rates 

has been performed for the temperature dependent 
electron transport model of mid-infrared quantum 
cascade lasers. In this case, the total intersubband 

scattering rate is presented as a sum of individual 
processes: longitudinal optical phonon, roughness 

interface, and acoustic phonon scatterings. The individual 
scattering rate is reduced to a product of the overlap 

integral for the squared moduli of the envelope functions 
and the temperature factor that depends on the transition 
energy and material. In this case, the rate equations 

written for electron in the state (i, k)  

∑ ∑∑
′

′′′
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
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



−=
k j

kjikik

j

ikkjkj
ki

RnRn
dt

dn
,,

,
   (3.1) 

reduces to the form 
 

( ) ( )[ ]∑ ρ−ρς=
j

ijijijijijji
i EnEn

dt

dn
, (3.2) 

 

where integration over wave vector k
r

 is already 

performed analytically. This presentation significantly 
reduces computational efforts in comparison with the 
ab initio models of full quantum transport in QCL 

preserving also good agreement between theory and 
experiment. 
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