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1. Introduction

The main problem of physical kinetics is construction of
a well-grounded kinetic equation and solution of it to
obtain non-equilibrium distribution function (see, for
example, [1-4]). The second step is to evaluate kinetic
coefficients (see [5-9]). The first problem has no well
satisfactory solution up to date. The main trouble is
related with the specific form of kinetic equation (that is
an integer-differential equation with specific derivatives).
Today, there is no reliable way to find analytically
precise solution of it, and in practice one has to construct
and use some suitable approximations. One typical way
is to neglect e-e-collisions of band charged carriers, but
this way sometimes is not confident. Investigation shows
that these collisions can be especially important for
complex system of different types of band carriers (for
example, system different of band-valleys).

2. One-particle density matrix for non-equilibrium
many-particle system of charged carriers

Design by the symbols 4, B efc. some quantum numbers
that characterize states of separate particles, which make
up a system of charged band carriers. For uniform space,

we assume the notation A — k,, where k, is the wave-

vector.

If the system of charged carriers is separated by
several distinctive parts, we design these parts by the
chosen symbols p or g that belong to the used set of
numbers:

(porg)=a,b,cetc.

Let the values ¥,”() or W¥,%() are basic one-particle

wave-functions. In what follows, the spin variables and
spin quantum numbers are not applied, with account of
processes of spin overturn they are not considered here.

The one-particle density matrix for p-carriers is
defined in the following way:

Phz () =pip) =ag” () af(®). .1
The cross-particle density matrix is as follows:
gD =agp* (Naf(®). 22)

Here, 7 is time, a,” and af are operators of generation

and annihilation of band p-particles, the state of which is
marked as A. The averaged value of density matrix (2.1):

() =(phs()) =(ag’ (1)al @®)). (2.3)

Averaging procedure < > is presented by angle brackets;

formally it is performed using the non-equilibrium
statistical operator related to all the band carriers and to
external scattering system together. The latter is
presented by intrinsic accidental microscopic fields and

macroscopic electrical field E (see [1-5]).

Now write the set of equations for one-particle
density matrices pf,(r) relating to the chosen p-

particles. As the start point, one uses the standard motion
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equations for operators Heisenberg

php® at
representation (see, for instance [3]):

ot (D) I:IZ”]EP/'{B(I) HY A ph(1) -

2.4)

Here, the total Hamiltonian H Z)r of considered p-system

is the sum of four parts:

HY=H,+H;+H +2Hpg, 2.5)
8

A

Here, the Hamiltonian H , concerns carriers interacting

with macroscopic external fields, individual Hamiltonian
Hg relates to external scattering system of impurities
and phonons (see, for instance [6]) and Hamiltonian
H,s =e,@g describes the interaction of p-carriers

(farther we call them for simplicity as electrons) with

A

external scattering system, Hamiltonian H e Tepresents

the mutual p-g-interaction. The macroscopic electric field
is directed along z-axis:

E=(0,0,E,).
The first term in the right part of (2.5) is

I:IP =Z(I:Ip )Agazpag =
AB
=>lay),,
AB

= Z[SQBSAB ~e,E, (| azraf 2.6)
AB

+ (I:I;E) )AB] ayap =

Hamiltonian of Coulomb interaction of band
carriers has the following form (see [10]):

7 _ P8 +p o +8 8
H, = ZVABA gy Ay Ay, 2.7
ABA'B'
where
VI, :——‘[d Flatrwy i A “Pg(r YL (7).

2.8)

Hamiltonian H ps has the form concerning the scattering

potential:

_ A<S>) P _ (A<S>) P
H _ep2(¢ asd4 dp _epz @ " )asPsa -
AB AB

2.9)

Below, we omit the term that simply shows a shift
of origin for counting out the kinetic energy. As a result,
one obtains total Hamiltonian in the form

ﬁmt - Z {(I:I ) +el7(¢(S))AB }ISZA +
+Z ZVABAB[pBA’[SZi’L'l'FIS,

g ABA'B'

(2.10)

Here, [C,D], =(1/2)(CD + DC).

Substituting Eqgs. (2.8)—(2.10) to Eq.(2.3) and
performing necessary commutation procedures, one
obtains the following equation:

%P S 7 ) PLO=PleolE, ), | +

ot
e, [t . 0)ea) J+

S [0°0) 0] -
c
+ZZ{VIgB'A'ki'B'([)’pr ([)L “V&w k’gc (’)’Pi’B’(I)L}

C AB
(2.11)
Transform the density matrix pf,(r) and external
scattering potential g into the sum of averaged values

and corresponding fluctuations:

= fap () +3plp (),
=((05(0) 45) + 005 (1) 15

Phs (D)
((pS (t))AB

Then, we obtain the following equation for the one-

particle density matrix f =(p%,):
afl 4 ,
n L2y =inse . an)

Here,

] (at B> A), (2.13)

N=3l4,) -8,

SUEL () =St, s fL O+ St FL0), 2.14)
8

(595145 -305.0)), )
~((505 )51 30%,0)).)

b}

Stp—S ff{)(t) = (ep/lh)z
B

(2.15)
V:;BA'<(8p Sop (0,0p 54 (t))+> -
S P (1) =(1/in
C g fi (/z ); z VBPAgBA <(8p§'A'(t)’5pﬁB(t))+>
(2.16)
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3. Matrix elements of Hamiltonian H,

In this article, for the following calculations we use the
system of plane waves and accept the quantum number A
as the corresponding set of three components of wave

vector k (and so on):

A_>]€A :(kAx skay akAz)» (3.1)
W) =, (D= [¥kam =L explika,m).
(3.2)

Here and farther, w=x,y,z and —L/2<w<L/2.We

suppose that every linear dimension L of the considered
system exceeds utmost every characteristic length and
tends to infinity. The functions W,(r) are proper

functions for the operator of momentum p = /k and

for the operator of kinetic energy £ (lg ) :

_iVW‘P(kAW;W)= kAw‘P(kAW;W) (33)
and
& W (F) =€ (k)P.(F) . (3.4)

where €” (k) is dispersion law for p-carriers.

Eq. (2.6) shows that Hamiltonian H , evidently

depends on potential spatial coordinates. In spite of all
points in the 7 -space are equivalent, this Hamiltonian

containing the field-dependent term H ;E) is not

arbitrary invariant in space. Therefore, a specific problem
appears for solution of this kinetic equation. Usually,

when calculating the collision integral St f];p , the field

term H® s simply omitted in this collision integral
(and we call that way, see, for instance, [2, 3] and [7-9],
as the “standard variant”). In this paper, we also consider
another one called as “non-standard variant” (see [11]

and [15]), for which the field term (FI ““)AC in Stf is

retained. Below, inside the collision integral we use the
following designation

2 N 220 7y (E)
@), =), +2lae),. (5
Here,
x =0 for the standard variant, (3.6)
% =1 for the non-standard variant. 3.7

Now, we take into consideration that functions (3.4)
are invariant to the shift of argument w on the de Broglie

wavelength A4, =27/ky,, :

W (w+hy,)=L "2 expliky,(w+r )] =¥,(w).
(3.8)

It is easy to convince that the matrix element of
coordinate w is proportional to the Kronecker symbol:

L2
IWT*(kAW;w)T(kBW;w) dw = (W) 4404 5
—Li2

(W) ap =
3.9

To calculate the value (w),,, we use in the

formulae (3.9) the shifted space of integration
L,,(=)<w<L,,(+). Then, we obtain:
LAW(JF)
(W) aa = J‘W‘I‘*(kAW;w)‘P(kAW;w)dw. (3.10)
Law (=)
Here,
LAw(+):L/2+}\’Aw’ LAW(_):_L/Q'JF}\'AW' (3.11)
As a result, we find:
Ly ()
(W) g = J.W‘P*(kAW;w) ‘P(kAW;w) dw =
Ly, (—)
Ly (+)
=L j wdw =X, =27/k, (3.12)
Ly (=)
(W)gp = (2n/kAw)6AB : (3.13)

A

Represent the matrix element of Hamiltonian H »

by the following form (see (3.5)):

k

Z

o _ _ 2ze E,
(Hp )ap = gijé‘A,B = hw:é‘A,B = (8/1; _l#j 5A,B'
(3.14)

Using the designations IEA —k and IEB —>I€—Z], one
obtains the formulae

(3.15)
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" (k,k—g)=2ne, E.q. k. (k. ~q.). (3.16)
Farther, in this article we accept for p-carriers the

dispersion law of the following form (see, for instance,
the formulae (7.3)):

o =eg/h = (n/2m)kD"k , E=(0,0,E,). (3.17)
Let us introduce the new designations:
DP=B? .B?,k=kB", Q" =GB" . (3.18)

For small vectors ¢, farther we use the approximated
form:

0" (k,k—g)=2me, E.q./k, (k. —q,) >
—2me, E.q,/k? —2me, E.q.[(k2) =

thl/z(n)

=4ne, E.BLQ? =e¢ E.QFHEP _
e EB0r T ~ orEOe s G-19
where N =¢€y/kgT and
&P = 4nh(D2)? F,,(n)/mkgT Fy;, (M), (3.20)
o >
F,()= i (3.21)

F(r+1)-([1+exp(w—n) '

In what follows, we will use the simplified form (see
Eqgs. (3.15)—(3.20))

6}5’]; oy -f 5TXep EPE.QF. (3.22)
4. Collision integrals
When using the Laplace transformation (see [8])
c(w) = TG(I)GXP(I'(DI) dr
] ooti0
s =5 jc_,((o)exp(—icot)d(o , 4.1)
—oo+i0)

Eq. (2.12) accepts the form

—indp § (t =0) + Hwdp’ p(w) = (eﬁ —&h )Sp Fp(@)+

g =17l 68%)  + 3D Vic 0 @] . @2

g AB

Introduce the following designations:

I8 =1L

iphp(t=0) .
’ h(cJ—E/ﬁ’B +i0)

37" () =
Pl 0—® +i0

M fp(w) =

Then, we find the lowest term in the set of perturbations
theory:

/s (@) =3phs” (@) +

60 @)  + 3V 80 (@) |

g AB

+M1%, ((D)[e
“4.3)

Due to uniformity of time, the correlator of

fluctuations 5(p(S)(co) can be written as

(805 (@) 80 (0) = 2B+ )37, ) =

= / - 2
=020 ZS(OHOJ)I 4%G[(b;) as <8‘P<ZS>>Q,;, L (4.4)
Here,
bi sy =I‘PZ(7)eXp(ié7)‘PB(7)d37. (4.5)

In the second order of simplified theory of perturbation
(see, for instance, [5])

(3p%5(=0) 8% (1 =0)) > 8,058,158, £ (- r2).
4.6)

As a result, the collision integral for an equilibrium
external scattering system has the form (A — k 4 and

B—>I€B)

P _ )
Stp-sfa =723 zJ‘d ks 5<P<s>>m,, i,

ok,

Alrel-sphesili-sp )]tanh[ G

]“‘fA -1
“@.7

For the elastic scattering

<5‘P<S>> o <5 <s>> Yo (4.8)
w0y ks—kp Ka—kp A-kp

then it follows from Eq. (4.7):

Stp—S( AU):
2

= jd3k3

s’ L )<8(p(zs)> Kok 8(0)/2 kB)' (4.9)

The collision integral for p-g-scattering can be
presented by the form
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B 4e* d*j | 2 2
Stpef4 = PEYE BAZBJ q4‘8(c_0XB,Zj)‘2l(bé)AB‘ ‘(bé)A'B" %
XS(C_OXB _E)i'B')X

<[rpl= 2 )rsl=rs)- £l 22 )rsli- r2)]. @0

Now show the several correlators for different
external scattering potentials (see Refs. [5, 6]). They have
the simple forms

(80%s)), =) (@)/g" (“.11)

For the system of charged impurities with the

concentration n; (used here is the simplified dielectric
function: 1/¢; (F)XB, 6)—> (1/£L )ﬁ(q —q,)[13, 15])

@ (CI)(Q) =® (01)19(61 - Clo): 321’ et ﬁ(q — 4o )/Si >
v(CI)=4 (4.12)

(here, n¢; is the density of charged centers).
For the piezoelectric scattering by longitudinal
acoustic phonons

@ 11)(9) =Py = ChgT' . vID) =2, (4.13)

at high temperatures (7, <<kgl) for the quasi-

elastic scattering by polar optical phonons one can use
the expression

D oo (@) =P oy =87 kT [e*, V(Opt)=2, (4.14)

at the quasi-elastic scattering by acoustic phonons
(hsq <<kgT)

D40y (q) = P4y = 2ME; kT [e?ps® , v(Ac)=0
(4.15)

for neutral impurities (see [13])

24 (3)

D) (@) =Dy, =87’ 31 p) [1+ex;{—77+770)]71 . V(NI)=0

(4.16)

(here, N =¢p/kgT , Np =€p/kgT , € is Fermi energy,
and the value €, <0 represents the energetic level of

donor).

5. Static kinetic equations

This system has the form (see Eq. (2.12))

e 3fp
- E5 =St, f! +§Stpgf,§ :
(p.g=1,2.3,..) (5.1)
or (see also Egs. (4.9) and (4.10))
e aafap 2 64
LE Tk = PP (S)+ wrs,
h ok 8mh? e () 2n 3h“zg: k G2
Here (see (4.10), (4.11), (3.20)),
PI(S) = J'd3k £r-rk )<6(p(5)>]€ . a(ro]g§,):
Jd ( s )<5(P<s> ( i ) (5.3)

ng J.dSkJ.a;qﬁ(q Clo)s(apg(lgv];,"i))/\pg(l;’l?v‘;)’

(5.4)
where (see (3.17))
arlek.g)=op +or,, -
=QPs %,E’,§)+xhgﬁ e,D? —egﬁg)a, (5.5)
Q”g(k,k',ﬁ): -q ml%’,k'w}:
=(h/m)|kB? —kB¢)5-3(D" +D)ij2) . 56
ﬁpp(]g’]g"a)zgpp("’ ""g):
~ (n/m)lk -k"-3)D"3, 5.7)
Ape (kK@) = 2 (= FfE (= fE) =
A== FE D (5.8)

k'+q

Now, let us separate the distribution function f}ZP

and the function A e (lg ,l;',c]) by equilibrium and non-

equilibrium terms (there M =€ /kpT ):
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p_ £O0p 1p .. »
L= f/E + le , Now, the coefficient PE (S) accepts the form (see
0 -1 1 (4.11) - (4.16))
£ ={1+exp[(eg /kBT)—n]} = (1+C£T ,
0 1
- —crfi+cr) . 59 Pr§=2 (- o fae? 1362 [Rle? )-xenle, ED” x
- =, olr = - N 7 - O =slenrr _\r —zIDPk — 2735
A 6K G)= AQ (6,85 )+ A, (6,%7,3). .10 Xj.%)(q)q D7k - (€ ~g)pr [k -l
(5.15)
0 ’ = 0 0p )0 0
AR .G)= £ (1= ) (- ) _
Op( ) og( ()g Farther, let us consider the matrix D” to be
1- f 1- f = diagonal; try also to approximate the integral from the
_ 1 right part of the expression (5.15). Then, the result is as
=(1+le_q) (1+C/f) (1+C/f) (1+C,f+q) X follows (see also the forms (3.17), (3.18) and (7.3a)):

xcres(i-cr. c,f+q/c,fc,§,)=

z( T (af]?(p)/aeK )(aff(g)/aei)x jé(s)(q)q‘v<5)§5[]€51’]€ - (/; - 67)5”(]; - Z])d3é =
x(1-cf. Cf+q/C1§’C,§)» a1 = MER 0P, . (5.16)
A(l) (];’Ig,’zl)zf}f-(l—fpp)f«o,g_(l—flgo,g)— Here,
fon flpfkofq (1 ng )+f0p (1 fOp)fk +q( f];()g )_ (S) ‘ ‘ [3/5 r(D_ )]V(S)/ZB_I

fOP (1 f()i?)ng flg f1P(1 fonq)fgg(l—f,gig)")' ”(c1)(K):75Y/K’
+

S W A P

P+i i i+ Hseen (9 =m2)* S ! S 4 —y(s)], (5.17)
b,
4
Y =(1/2)In [48L,/8kBThFlz m/emnE,mF, /2(11)] .
Below, one supposes the non-equilibrium function (5.18)

1 S .
f;p as small amendment to the equilibrium function

Note that M~ =1 at Dp =1 , the value

f;p . Farther our investigation will be restricted by (COR

linear terms (relatively to the external electrical field E
only). In this paper, we use the following model for flzl P Y =(1/2)ln [48 m/SkBThFlz (T])/ eZ\ImTEFSZ(T])F_l /2(M)

(see (5.9)): (5.19)
f_lp —e EDPkCP (1 +CP )_2 R(E[—]) / kT = is the natural logarithm for the ratio of averaged
k p k k K/l "B deBroigle wavelength to screen length.
=e, "ﬁPkR(gllg )(_ af,;Op /aglif ) (5.13) For E=(0,0,E,) it follows from (5.9) and (5.15)
—(5.18):
Here, R(SE ) is the model unknown function that will be
K » ( 0(p) <p))
find later. Then (see Egs. (3.20), (4.11), (5.3)) PP (CI) = (2myn @ cp)/ h) — 2P 9P |x
e ( b ): <[rlet)-x&nle, .02 Ki”)/ kPF, 520
k k=g k-4

= hS[ef el + Xhepiﬁﬁpc]}x
SARTAATAS A
> 3(or, Yor faer fuen-rler ) e, B4

(5.14)

PI(S #CI) = (2 5, /1) - 2P 362 )
x[R(e%p))—xéh]e E.D2P(2)* 9 x

P

(&) fa-ws)). (5.21)
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Now construct the other linear product:
8(§pg (]g’lg,’a))/\pg (lg’lg,"?)z
= 8lQre(E.kg)+ x&Ele, B — e, D i)
I N |
sl 1.3 %, [1..3)= sl .-
x(or27 faer Jor2s faes )iyt

x{egﬁﬁgc}[R(sg )— xhﬁ]— epﬁﬁpc}[R(eg)— xh&]}
(5.22)

Further, we put for simplicity

o = )
xCle, E(ﬁg ~D? I ali+cs)cax

Iq 19(61 qo)5[(kD” kDg)q q(D"+Dg) /2]

~2n—m€(W)(D ,D# ) _l/z(n)Y[—8f§”/98£][R(8£)—x“ﬁ]x

2 Y. mkgT) 23

Here, C.,(W)(ﬁp,ﬁg)zl if 5[7 =5g =1.

Farther, we use the approximated expression:

xe,E, (Dzi (5.23)

wrs = (2nm/h)F_l,2(n)Y[— AL [oer ][R(eg )— x&h]x

xe,E. (D% - D Jx [omkyT /022 )" (5.24)
Note that
WP =0, (5.25)
therefore,
Stppf];p =0 (5.26)

For the linear equation, one obtains with account of
the expressions (5.20), (5.21) and (5.24) the equation for

unknown function R(eZ ):

2
1/2 Bf(o)” e

e_pEsz(Dzz) 8 37/'12

hx oK
4 2

¢ pP
352 P ().

PP (S)+

(5.27)

6. Solution of Kinetic equation for simple system of
carriers

To solve the kinetic equation, one should find the non-

equilibrium distribution function flzlp . At the adopted

model of that (see (5.13)), there is the basic necessity to
find a function R(€) .

We shall consider in this section the solely system

of band carriers ( fEP - fE ) with the simple dispersion

law (see (3.17)). Due to the expression (5.24), the system
of equations (5.1) reduces to the only kinetic equation
(our consideration is limited by the first degree of
external electric field)

of”
7k
ho ok

=St, sf: . (6.1)

or (for the case S — CI')

1729, K(O) e’
K. (D) 9% _8 3h2P (S). (6.2)

Introducing here the forms (5.19) and (5.21), one
obtains:

an’p*ic
Ricr (&) =x&h=-—— e
em CI)(CI)Y(DZZ)

4,23
- 4 2h L /2 63)
8me m Iy Y(Dzz)1

R(S#CI)(EE)_X§h=
47E2h4KV(S)_1
= -
4-v(S) 2 2 /2
247 (Dzz) D (g2cn)

4.2..3
el _ (6.4)

- 2
4 2
8me " m ”(S¢C1)(Dzz)1

Here we have introduced the concentration of

“conditional scattering centers’:

47v(S¢CI)/21 +v(S#CI) 13,2 o

Nisycr) (K) = q’(sﬁ% K
x[4=v(s =cD). (6.5)

Then one obtains the non-equilibrium part of the
distribution function with the help of expressions (3.20),
(4.12), (5.13), (6.3) and (6.4):
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nh’D_eE, x_F,,, (M)
m (kgT)? Fy, (1) cosh? [(erc /kBT)—n/Z]

y W kgTe] Fyp (M) —yl=

facr = - X

=— nthzzeEszFllz(n) %

m (kgT)? Fy,, (1) cosh? [(erc JksT)- n/2]

| kT Fyp () (6.6)
32n2e4mﬁ(C1)D§Z/2F1/2 (m)

nhZDZZEEZKZFi/Z(n) X
m (kgT)? Fy/, () cosh® [(ak /kBT)—n/Z]

y W’ kgTi’e] Fy (M)
32m’e’m ”(S¢c1)(K)D§;2171/2(n)

fo(S#ChH~—

—X}, (6.7)

or for arbitrary mechanism of relaxation

nthzzeEszFl/z (T])
m (kT)? Fy,, (1) cosh? [(ek /kBT)—T]/Z]

R kgTe] Fy 5 (1) _
327[264171 ﬁ(s) (K)Dgzlel/Z (T])

X

fa(S) =~

(6.8)

7. Solution of kinetic equations for the system of three
ellipsoidal valleys

As an example of complicated system of band charged
carriers, we consider three valleys shown as ellipsoids in
Figure. Transitions of carriers between distinct valleys
are farther omitted.

Let us introduce the following designations:

Ef =hmf =(h2/2mL)(I€5(P)I€), m; —m,

Y=my[my=m[my . (7.1)
h TR h T pni

0! =—kD"k , @f, =——k'D"k", e, —>e. (7.2)

ko 2m Ko 2m,
100 100 Yy 00

D=0 1 0|, DP=[0 vy 0|, D=0 1 0], (7.3a)
00 v 001 001

0 0 0
pe-pr=i=l0 1-y o0 |,
0 0 y-I
-y 0 0
Be-be=i=| 0 0 o |,
0 0 y-1
-y 0 O
pr-be=i=| 0 y-1 0| (7.3b)
0 0 0
Here,
Da :Dh :DC :D:3/Spur(5;1): 3/(2+’Y_1)9
‘D“ :‘Db‘:‘Dc =v. (7.3¢)

The system of kinetic equations is as follows (see

(5.2)):

e oM & Hwer +we)
—E—t=——P'S)+—E (7.4)
ook 8mh? () 2m’h’e?

e LYY & etwle +wie)

—E—k = Ph(§)+——K Kk 7 (7.5)
hoook smn? t 2mh’el

e _.af—oc &2 e4(W—Ch+W—m)

—E—k = PS(S)+—F— k7 (7.6)
ho ook 8nn? f 2m’h%e?

Using the expressions shown in Sec. 5, we find now

the factors R(al’g), containing in non-equilibrium

distribution functions f;lp (see the form (5.13)).

y
A

(b)

©) (a)

Fig. 1.
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Remember: pea,b,c and gea,b,c. Below, we use
the expression the concentration of carriers:

n=Zn(”)=3’Y

p

(kBTm)

mﬂ/z(n).

(1.7)

Inclosing the formulae (5.19) and (5.21) into the system
(7.4)—(7.6), we obtain:

PY(S #CI) = [omn 5, /(4 v($))k

-l foer )[rler) - agnle, £.D2kr (e )7
(7.8)

PP (S) =P (C)+ ZP,{’ (S#CI)=

)

= (caror foer |Rler)-x2n] e, E.D2x? %

x 64e’mm* [Yn(a) +n*(1<p )]/sih(K” )3 , (7.9)

where (see (6.5))

n*(x) = Zn(s)(l(). (7.10)

S#CI

In what follows, we use the approximate expression
(see (5.23))

wrs =2nTmF71/2(T])Y[_af£p/a€£}X

X[R (8£ )_ X&h] epEz (sz - DZI; )Kz X

x mkyT 0262 . (7.11)

Taking into attention the expressions (5.2), (5.23) and
(7.7)—(7.11), one can obtain (see (6.5)—(6.7)):

nh>DLeE x_F) (1) "
m (kg T )* Fy,, (M) cosh? [(eg/kBT)—n/z]

f}'cl (P)(CI) ~—

Prarle? Yeirusam .
32n%e*m (Yn(C,) +n*(K(p))+Y|Bp|”)(D£ )S/ZFl/z(n)
(7.12)

Here, n is the total density of band carriers and (see (7.7)
and (7.13))

B, :zBpg = F—l/Z(n)Z(ngz/Dz[; _1)/6753/2/F1/2m) .
8 8
(7.13)

Note also that

F (> D/F > -1,
F o nM>>1D/F,,m>>1)—2/3n,
Fip(-m>>1)/Fy(-m>>1) > 1,

F,,(M>>1)/Fy,(n>>1)—>5/2m. (7.14)

If we consider mutual scattering of band electrons
(for instance, p-carriers) and holes (g-carriers), we have
to change the form (7.13) to the expression

B,= F_1/2(n)2(engz/eﬁDz§ _1)/4n3/2/F“2(n)'
g

(7.15)

8. Other model of non-equilibrium distribution
function

Let us consider here the model of non-equilibrium
distribution function in the form of Fermi-function with
the “shifted” argument:

£, 6)={1+exple, (& - ¢ s -]} 8.1)

Here, the energy &7 =n’ (lgﬁplg)/2m=h2(1—<)2/2m and
the velocity v” =h " de? [k = (i/m)kD" — (n/m)RB" .

The vector Izop is related with the drift velocity v/
by the relation

kf = (m/n)D,'V§ (8.2)

Then,

e, (€ ~2)= (0 /2m)E - &0 )Br (& - iy )=

= (12 /2m)[? - @/ n)RB;' 50 + (/50 D50 ]
(8.3)

After linearization over the velocity \7({’ , one
obtains

£ =nki™” . o [oel )= ik, 0P (- o [de? )=
hk v2?
Z z

) 4k T cosh? (eg/szT—n/2) .

(8.4)

Let in this section S = CI. Then, comparing (8.4) and
(5.13), we have to perform the following action (see
(5.26)):

P?(CI) = 64me,n* - o [oer J&r -xen

XepEzDZ[,)zk;p)n4 Y (n(CI) + Bp”)/gih(k(p)f ) (8.5)
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where

R? =vYPhfe,E. =R . (8.6)

For the case considered here, the kinetic equation takes
the following form:

Rk P (- o/ agg)z
= e, B (-or " foet Jx
x{— (En+ D2R e () /8Ynm2e4 x

X| Ny +”F—1/2(H)Z(D§Z/D§ _1)/3YF1/2(11) ®.7)

8

The supplement of operator J.kzd % to the
equation (8.7) leads to (see also (3.20)):

mkgT Fs,, (M) %

0(p) —
v, P(Cly=e E
. P 21hF,;, (M)

4

DPh*etk kT

2Y1 *me

FMF5,M) %

(8.8)
“(rey +B ) [F,,

Here,

ky = 2/ A = (2kaT/ n )”2 :

Introducing (8.8) into (8.4), one finds

(8.9)

p _ k,mFy,(Me,E;

C gn Fy () coshz(sf [2kgT —n/2)

X

% D! n’eikpkgT F,(MF3,(M)
5124 2
2YR “me (nC, + Bpn) (FI/Z(n))

X (8.10)

For x =1, it follows from (8.4), (8.8) and (8.9) that:

kzmepEzF3/2(T|) %
8TF, ), (n)coshz(eg [2kgT —M/2)

— 3
L(P)

o Len |yl
%deBr

Here, the value XdeBr is the averaged deBroglie

lp _
k

(8.11)

7(P)
L(CI)

length of relaxation:

wavelength and can be named as an averaged

4DPAnh’e2 kT

- (8.12)
Yme*\n¢e; +B 0

(cn —

]1/3

Note that in the case Z((CPI)) =XdeBr the non-

§332] _[

equilibrium part flglp becomes zero and the distribution

£ So

.p:

i L ilibrium, i.e.,
function k” becomes equilibrium

the relation pr = f;p can be considered as super-

resistance.
9. Conclusion

It has been shown that in crystals with one band valley
the mutual scattering of carriers does not contribute to
the distribution function. Practically, we find the same
result for many-valley systems with not high
concentration of band charged carriers (n<ng):

interaction between these particles does not introduce
any essential contribution into the non-equilibrium

function of distribution flgl. But quite another situation

appears for inter-particle co-operation with many-valley
band structure and with a great number of band carriers.
In this case, for Bn >>ng the scattering by charged

impurities does not dominate noticeably in comparison
with the mutual scattering of band carriers.

Note also that the non-equilibrium distribution
function has the traditional form at great ratio of
relaxation length to average deBroglie wavelength (in
this case, we have to neglect the symbol y). If this ratio
rushes to unity, the shown above consideration requires
more careful approach.

We have to direct our attention to the limited
precision of shown here final formulae. One from the
reasons of that is related with traditional limited
exactness for regularization of integrals over the transfer
momentum at Coulomb scattering (see [16-18]).
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