
 ISSN 1560-8034, 1605-6582 (On-line), SPQEO, 2019. V. 22, N 2. P. 201-205. 

© 2019, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 

201 

Hetero- and low-dimensional structures 

Electrostatics of the nanowire radial p-i-n diode 

V.L. Borblik 

V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 

41, prospect Nauky, 03680 Kyiv, Ukraine 

E-mail: borblik@isp.kiev.ua 

Abstract. In this paper, the electrostatic theory of the nanowire radial core-shell p-i-n 

homojunction has been considered. The carried out calculations show that, in contrast to 

planar p-i-n diode, the built-in electric field of the nanowire radial p-i-n diode proves to be 

inhomogeneous. This field reaches its maximum in the region of the i-layer adjoining to the 

core. When moving away the i-layer from the nanowire center, the degree of field 

inhomogeneity decays, and both edge values of the field in the i-layer reach eventually the 

magnitude, which takes place in analogous planar p-i-n diode. This magnitude can be both 

higher and lower than the maximal field in the nanowire p-i-n diode (depending on doping 

conditions). Simultaneously, the capacitance of the nanowire p-i-n diode can both increase 

and decrease in its value, going, at the same time, to weak voltage dependence inherent to 

the planar p-i-n diode. 
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1. Introduction 

In the recent time, a great interest of the investigators is 

attracted to semiconductor nanowires, especially to the 

multilayer ones, whose layers are either doped in 

different ways or form a heterostructure. On the base of 

these objects, principally new constructions of the core-

shell devices are created, which use both transverse 

(radial) transport of the current carriers (radial solar cells 

[1], radial photodiodes [2], radial light emitting devices 

[3]) and their longitudinal transport (field-effect 

transistor [4], high electron mobility transistor [5]). 

Cylindrical symmetry inherent to these 

nanostructures introduces a number of peculiarities to 

their electrophysical properties. In particular, depletion 

widths of the radial p-n junction depend on its radius in a 

rather nonstandard way: as radius of the p-n junction 

decreases, depletion width of the core increases [6], but 

that of the shell, on the contrary, decreases [7, 8]. As a 

result, in the devices where the heterostructure p-n 

junction is used, this fact results in changing the relative 

contribution to the device performance characteristics 

from different constituent materials. Namely, the lesser 

radius of the heterostructure p-n junction, the larger is 

contribution from the core material. 

In the radial p-n junction, the dependence 1/C
2
 

versus U (C is the barrier capacitance, U – applied 

voltage) proves to be nonlinear [6, 8]. Furthermore, 

strong asymmetry in injection from the core to shell and 

from the shell to core appears [9].  

These studies concern nanowire p-n junction 

structures. At the same time, radial nanowire structures 

use often not p-n but p-i-n junctions [10-14]. In 

particular, this makes it possible to broaden the region of 

strong electric field in the junction, which is additional 

advantageous in materials with short minority carrier 

diffusion lengths [15]. Electrostatics of these structures 

was not studied so far. In this paper, electrostatics of the 

radial p-i-n homojunction has been investigated 

theoretically. 

 
2. Theory 

Schematic view of the structure under consideration is 

presented in Fig. 1. Here rp is the depletion region 

boundary in the core, rn – depletion region boundary in 

the shell, and i-layer is located between r1 and r2. 

In the depletion approximation, we have Poisson’s 

equations 

 

( )
S

AqN
rE

dr

d

r ε
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1
, 1rrrp ≤≤ , (1a) 
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Fig. 1. Schematic view of the nanowire structure under 

consideration.  
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where q is the electron charge, εS – dielectric constant of 

the semiconductor, NA and ND are the concentrations of 

acceptors and donors, respectively. Solution of these 

equations gives the electric field distribution in the 

structure 
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where A is the integration constant. 

Matching the electric fields at r1 and r2, we obtain 
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whence it follows 
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The second integration of Eq. (2) gives the 

potentials 

 

( )
























+

−

ε
=

r

r
r

rrqN
rV

p

p

p

S

A ln
22

2
22

,   1rrrp ≤≤ , (5a) 

( ) ( )( )constln +−= rArV , 21 rrr ≤≤ , (5b) 

 

bi
n

n
n

S

D V
r

r
r

rrqN
rV +





















+

−

ε
−= ln

22
)(

2
22

,   nrrr ≤≤2 ,  

 (5c) 

 

where the following boundary conditions are used 

 

( ) 0=prV , ( ) bin VrV = , (6) 

 

Vbi is the built-in potential of the junction. Matching of 

the potentials at r = r1 and r = r2 allows us to exclude 

const  and obtain equation 
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Equations (4) and (7) have to be solved jointly in order to 

obtain rp and rn. All the rest quantities are expressed 

through them. 

The barrier capacitance 
dU

dQ
C

p
= , where Qp is the 

electric charge concentrated in the depleted p-region of 

the junction. This charge is given by  

 

( )LrrqNQ pAp
22

1 −π=  (8) 

 

where rp is voltage-dependent and L is length of the 

nanowire. Inasmuch as  

 

( )pnpA

Sp

rrrqNdU

dr

ln

1ε
= , (9) 

 

the capacitance per unit area of the p-i-n junction is  

 

( )pn

S

rrr
C

ln

1

1

ε
=

. (10) 

 
3. Numerical results 

For numerical solution of Eqs. (4) and (7), the parameters 

of silicon at room temperature have been chosen. Three 

doping situations have been considered: NA = ND, 

NA >> ND, and NA << ND. The calculation results for the 

electric field distribution in the structure are presented in 

Fig. 2. The characteristic feature of these distributions is 

inhomogeneity of the field in the i-layer, which sharply 

differs from the case of planar p-i-n diode, where electric 

field in the i-layer is homogeneous [16]. The field 

inhomogeneity is especially strong when NA = ND or 

NA >> ND and diminishes with thickening of the i-layer. 

In any case, the electric field is maximal near the 

nanowire core. 
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Fig. 2. Electric field distribution in the nanowire p-i-n diode at 

NA = ND (a), NA >> ND (b), and NA << ND (c); numbers near the 

curves are radial coordinates of the i-layer showing its extent, 

dashed lines corresponds to the i-layer of zero extent (p-n 

diode). 
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Fig. 3. Electric field distribution in the nanowire p-i-n diode 

depending on radial position of the i-layer at NA = ND (a), 

NA >> ND (b), and NA << ND (c); dashed lines shows to what 

magnitude both edge values of the field in the i-layer go, when 

the nanowire p-i-n diode becomes the planar one. 
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Fig. 4. Voltage dependences of the nanowire p-i-n diode 

capacitance at NA = ND (a), NA >> ND (b), and NA << ND 

(c) as a function of the distance between the i-layer and 

the nanowire center. 
 

 

It is of interest to study dependence of the electric 

field distributions on radial position of the i-layer in this 

nanowire. Fig. 3 represents such dependences for three 

doping situations at the same thickness of the i-layer 

equal to 20 nm. It is seen that, as the i-layer moves away 

from a center of the nanowire, inhomogeneity of the 

electric field distribution becomes more and more weak, 

i.e., the field goes to homogeneous one inherent to planar 

p-i-n diodes.  

The dash lines in these figures demonstrate 

asymptotical confluence of both edge values of the field 

in the i-layer, when r1 goes to infinity, i.e., the nanowire 

curvature becomes ignorable. It is seen also that the 

maximum electric field in the i-layer of nanowire proves 

to be higher than that in an analogous planar diode at 

NA = ND and NA >> ND and, on the contrary, is lower at 

NA << ND.  

Fig. 4 represents the voltage dependences of the 

nanowire p-i-n diode capacitance given by the formula 

(10) for three doping combinations as a function of the 

distance between the i-layer and center of the nanowire at 

the same value of the i-layer thickness equal to 20 nm.  

As it follows from these figures, the capacitance of 

the nanowire p-i-n diode decreases with moving away the 

i-layer from the nanowire center at NA = ND and 

NA >> ND and, on the contrary, increases at NA << ND. In 

any case, the voltage dependence of the capacitance 

diminishes as it has to be in planar p-i-n diode [16].   

 
4. Conclusions 

Being used as solar cells or photodiodes, the nanowire 

radial p-i-n diodes have certain advantages as compared 

with the planar analogs. In particular, at Ncore = Nshell or 

Ncore >> Nshell, the maximal built-in electric field in the i-

layer proves to be higher than that in planar p-i-n diode 

under other equal conditions. But one has to keep in 

mind that the highest electric field is localized in the 

region of the i-layer adjoining to the core. It should be 

also noted that the capacitance of the nanowire p-i-n 

diode can be both larger and smaller than that of its 

planar analog at the same parameter values. 
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