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1. Introduction 

The main problem of physical kinetics is construction of 

a well-grounded kinetic equation and solution of it to 

obtain non-equilibrium distribution function (see, for 

example, [1-4]). The second step is to evaluate kinetic 

coefficients (see [5-9]). The first problem has no well 

satisfactory solution up to date. The main trouble is 

related with the specific form of kinetic equation (that is 

an integer-differential equation with specific derivatives). 

Today, there is no reliable way to find analytically 

precise solution of it, and in practice one has to construct 

and use some suitable approximations. One typical way 

is to neglect e-e-collisions of band charged carriers, but 

this way sometimes is not confident. Investigation shows 

that these collisions can be especially important for 

complex system of different types of band carriers (for 

example, system different of band-valleys). 

 
2. One-particle density matrix for non-equilibrium 

many-particle system of charged carriers  

Design by the symbols А, В etc. some quantum numbers 

that characterize states of separate particles, which make 

up a system of charged band carriers. For uniform space, 

we assume the notation AkA
r

→ , where Ak
r

 is the wave-

vector. If the system of charged carriers is separated by 

several distinctive parts, we design these parts by the 

chosen symbols p or g that belong to the used set of 

numbers: (p or g) = a, b, c etc. 

Let the values )(r
p

A

r
Ψ  or )(r

g

A

r
Ψ  are basic one-

particle wave-functions. In what follows, the spin 

variables and spin quantum numbers are not applied, 

with account of processes of spin overturn they are not 

considered here. 

The one-particle density matrix for p-carriers is 

defined in the following way: 

 

)()()()( tatatt
p
A

p
B

p
AB

pp
AB

+=ρ≡ρ . (2.1) 

 
The cross-particle density matrix is as follows: 

 

)()()( tatat
p
A

g
B

pg
AB

+=ρ . (2.2) 

 

Here, t is time, 
p

Aa
+

 and p
Aa  are operators of generation 

and annihilation of band p-particles, the state of which is 

marked as A. The averaged value of density matrix (2.1): 

 

〉〈=〉ρ〈= +
)()()()( tatattf

p
A

p
B

p
AB

p
AB . (2.3) 

 

Averaging procedure  is presented by angle brackets; 

formally it is performed using the non-equilibrium 

statistical operator related to all the band carriers and to 

external scattering system together. The latter is 

presented by external accidental microscopic fields and 

macroscopic electrical field E
r

 (see [1-5]). 
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Now write the set of equations for one-particle 

density matrices )(tp
ABρ  relating to the chosen p-

particles. As the start point, one uses the standard motion 

equations for operators )(t
p
ABρ  at Heisenberg 

representation (see, for instance [3]): 

 

[ ]≡ρ=
∂

ρ∂ tot
p

p
AB

p
AB Ht
t

t
i ˆ,)(

)(
h  

).(ˆˆ)( tHHt
p
AB

tot
p

tot
p

p
AB ρ−ρ≡  (2.4) 

 

Here, the total Hamiltonian 
tot
pĤ  of considered p-system 

is the sum of four parts:  

 

∑+++=
g

pgpSSp
tot
p HHHHH ˆˆˆˆˆ

. (2.5) 

 

Here, the Hamiltonian pĤ  concerns carriers non-

interacting with microscopic scattering fields, individual 

Hamiltonian SH  relates to external scattering system of 

impurities and phonons (see, for instance [6]), and 

Hamiltonian SppS eH ϕ=  describes interaction of p-

carriers (farther we call them for simplicity as electrons) 

with external scattering system, Hamiltonian pgĤ  

represents the mutual p-g-interaction. The macroscopic 

electric field is directed along z-axis: ( )zEE ,0,0=
r

. 

The first term in the right part of (2.5) is 

 

( ) ==∑ +

AB

p
B

p
AABpp aaHH ˆˆ

( ) ( )[ ] =+=∑ +

AB

p
B

p
AAB

E
pABp aaHH

)()0( ˆˆ

( )[ ] p
B

p
A

AB

p
ABzpAB

p
AB aazEe

+∑ −δε= . (2.6) 

 

Hamiltonian of Coulomb interaction of band 

carriers has the following form (see [10]): 

 

∑ ′
++=

''
'''

ˆ

BABA
B

p
B

g
B

g
A

p
A

pg
BABApg aaaaVH , (2.7) 

 

where 
 

×
−

ΨΨ
ε

−= ∫ ∫ ∗∗

'

1
)'()('

2
'

33
2

''
rr

rrrdrd
e

V
g

A
p

A
L

pg
BABA rr

rrr

)()'( rr
p

B
g
B

rr
ΨΨ× ′ . (2.8) 

 

Hamiltonian pSĤ  has the form concerning the scattering 

potential: 
 

( ) ( )∑∑ ρϕ=ϕ= +

AB

p
BAAB

S
p

p
B

AB

p
AAB

S
ppS eaaeH

)()( ˆˆˆ
.(2.9) 

Below, we omit the term that simply shows a shift 

of origin for counting out the kinetic energy. As a result, 

one obtains total Hamiltonian in the form 
 

( ) ( ){ }∑ +ρϕ+=
AB

p
BAAB

S
pABp

tot
p eHH ˆˆˆˆ )(

[ ] S

g

pg
AB

gp
AB

BABA

pg
BABA HV ˆˆ,ˆ

''

'' +ρρ+∑ ∑ +′′ . (2.10) 

 

Here, ))(2/1(],[ DCCDDC +=+ . 

Substituting Eqs. (2.8)−(2.10) to Eq. (2.3) and 

performing necessary commutation procedures, one 

obtains the following equation: 
 

( ) ( )[ ] +ρ−ρ=
∂

ρ∂
∑
C

CBp
p
AC

p
CBACp

p
AB HttH
t

t
i ˆ)()(ˆ)(
h

( )[ ] ( )[ ]∑ +






 ϕρ−ρϕ+

++
C

CB
Sp

ACp
p
CBAC

S
p ttette )(ˆ),()(,)(ˆ )()(  

[ ]∑∑
′′

+′′′′

 −ρρ+

C BA

p
CB

g
BA

pg
ABAC ttV )(),(

[ ]


ρρ−

+′′′′ )(),( ttV
g

BA
p
AC

pg
BACB . (2.11) 

 

Transform the density matrix )(t
p
ABρ  and external 

scattering potential Sϕ  into the sum of averaged values 

and corresponding fluctuations: 
 

,)()()( ttft
p
AB

p
AB

p
AB δρ+=ρ

ABSABSABS ttt )()()( δϕ+ϕ=ϕ . 

 

Then, we obtain the following equation for the one-

particle density matrix 〉ρ〈= p
AA

p
Af : 

 

p
A

p
A

p
A ff
t

f
St)(ˆ =Ζ−

∂

∂
. (2.12) 

 

Here, 
 

( ) ( ) ( )[ ]∑ −=Ζ
C

p
ACCBp

p
CBACp

p
A fHfHf ˆˆˆ  (at AB → ),(2.13) 

 

∑+= −
g

p
Apg

p
ASp

p
A tftftf )(St)(St)(St , (2.14) 

 

( ) ( )( )∑ 


−δρδϕ=
+−

B

p
BAABSp

p
ASp ttietf )(,)()(St h

( ) ]
+

δρδϕ− )(,))(( tt
p
ABBAS , (2.15) 

 

( ) ( )∑∑
′′

+′′′′ −


δρδρ=

g BAB

p
BA

g
BA

pg
ABAB

p
Apg ttVitf )(),(1)(St h

( ) ]
+′′′′ δρδρ− )(),( ttV

p
AB

g
AB

pg
ABBA

. (2.16) 
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3. Matrix elements of Hamiltonian Hp  

In this article, for the following calculations we use the 

system of plane waves and accept the quantum number A 

as the corresponding set of three components of the wave 

vector k
r

 (and so on): 

 

( )AzAyAxA kkkkA ,,=→
r

, (3.1) 

 

=Ψ=Ψ=Ψ ∏
w

AwkA wkrr
A

)()()(
rr

r

∏ −=
w

AwwkiL )exp(
2/1

. (3.2) 

 

Here and farther, zyxw ,,=  and 2/2/ LwL ≤≤− . We 

suppose that every linear dimension L of the considered 

system exceeds utmost every characteristic length and 

tends to infinity. The functions )(rA
r

Ψ  are proper 

functions for the operator of momentum kp ˆˆ
r

h
r

=  and for 

the operator of kinetic energy ( )kp
r
ˆε : 

 

( ) ( )wkkwki AwAwAww ;; Ψ=Ψ∇−  (3.3) 

 

and 

 

)()()(ˆ rkr k
p

k
p rrr

rr Ψε=Ψε  , (3.4) 

 

where )(kp
r

ε  is the dispersion law for p-carriers. 

Eq. (2.6) shows that Hamiltonian pĤ  evidently 

depends on potential spatial coordinates. In spite of all 

points in the r
r

-space are equivalent, this Hamiltonian 

containing the field-dependent term 
)(ˆ E

pH  is not arbitrary 

invariant in space. Therefore, a specific problem appears 

for solution of this kinetic equation. Usually, when 

calculating the collision integral 
p

k
f rSt , the field term 

)(ˆ E
H  is simply omitted in this collision integral (and we 

call that way, see, for instance, [2, 3] and [7-9], as the 

“standard variant”). In this paper, we also consider 

another one called as “non-standard variant” (see [11] 

and [15]), for which the field term ( )AC
EH )(ˆ  in kf

rSt  is 

retained. Below, inside the collision integral we use the 

following designation: 

 

( ) ( ) ( )AB
E

ABABe HHH
)()0( ˆˆˆ χ+= . (3.5) 

 

Here, 

 

0=χ   for the standard variant, (3.6) 

 

1=χ   for the non-standard variant. (3.7) 

 

Now, we take into consideration that functions (3.4) 

are invariant to the shift of argument w on the de Broglie 

wavelength AwAw kπ=λ 2 : 

 

[ ] )()(exp)( 2/1 wwkiLw AAwAwAwA Ψ=λ+=λ+Ψ −
. 

 

 (3.8) 

 

It is easy to convince oneself that the matrix element of 

coordinate w is proportional to the Kronecker symbol: 

 

( ) ( ) ABAA

L

L

BwAwAB wdwwkwkww δ=ΨΨ= ∫
−

∗ )(;;)(

2/

2/

.  (3.9) 

 

Now we have to find the value AAw)( . For this 

case, one has to perform the sufficiently easy and 

acceptable calculation for the value (3.9). We construct 

here some artificial form for specific integral with the 

values w. Let the shifted space of integration is: 

 

)()( +≤≤− ww LwL  (3.10) 

 

and  

 

( ) ( ) dwwkwkww
w

w

L

L

wwAA ∫
+

−

∗ ΨΨ→

)(

)(

;;)(  . (3.11) 

 

Here,  

 

)(2/)( ww kLL λ+=+ ,  )(2/)( ww kLL λ+−=− , (3.12) 

 

ww kk /2)( π=λ . (3.13) 

 

Later we consider the specific way. Farther we 

address to a private case and consider the small changes 

of the wave vectors (at Coulomb scattering).  

As a result, we find: 

 

( ) ( ) =ΨΨ= ∫
+

−

∗
dwwkwkww

Aw

Aw

L

L

AwAwAA

)(

)(

;;)(

AwAw

L

L

kwdwL
Aw

Aw

π=λ== ∫
+

−

− 2

)(

)(

1
, (3.14) 

 

( ) ABAwAB kw δπ= 2)( . (3.15) 

 

Represent the matrix element of Hamiltonian pĤ  

by the following form (see (3.5)): 

 

BA

z

zpp
ABA

p
ABA

p
AABp

k

Ee
H ,,,

2
)ˆ( δ







 π
χ−ε=δω=δε= h . (3.16) 
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Using the designations kkA

rr
→  and qkkB

rrr
−→ , one 

obtains the formulae 

 

=ε−ε→ε−ε=ε
−

p

qk

p

k

p
B

p
A

p
AB rrr

( )qkk
pp

qk

p

k

rvv
rrr −Θχ+ε−ε=

−
, , (3.17) 

 

( ) ( )zzzzzp
p

qkkqEeqkk −π=−Θ 2,
rvv

. (3.18) 

 

Farther, in this article we accept for some p-carriers 

the dispersion law of the following form (see, for 

instance, the formulae (7.3)): 

 

( ) kDkm
pp

k

p

k

rr
hhrr

~
2=ε=ω , ),0,0( zEE =

r
. (3.19) 

 

Let us introduce the new designations: 

 
ppp

BBD
~~~ ⋅= , pBk

~rr
=κ , pp BqQ

~rr
= . (3.20) 

 

For small vectors q
r

, farther we use the approximated 

form: 

 

( ) →−π=−Θ )(2, zzzzzp
p

qkkqEeqkk
rvv

=π→π→ 22 2/2 zzzpzzzp kqEekqEe

,
)(

)(
4

2/3

2/1
2

pp
zzp

B

p
z

p
zzzp QEe

TFmk

F
QBEe ξ=

η

η
π= h

h
 (3.21) 

 

where TkBF /ε=η  and 

 

)()()(4 2/3B2/1
2/1 ηηπ≈ξ FTmkFD p

zz
p

h , (3.22) 

 

∫
∞

η−++Γ
=η

0
)exp(1)1(

1
)(

w

dww

r
F

r

r . (3.23) 

 

In what follows, we will use the simplified form 

(see Eqs. (3.17)−(3.22)) 

 
p
zz

p
p

p

Q

pp

qkk
QEe ξχ+ω−ω→ω

−κκ−
rrrrrr

,
. (3.24) 

 

4. Collision integrals 

When using the Laplace transformation (see Ref. [8]) 
 

∫
∞

ωξ=ωξ
0

)exp()()( dttit , 

∫
+∞

+∞−

ωω−ωξ
π

=ξ
0

0

)exp()(
2

1
)(

i

i

dtit  , (4.1) 

 

Eq. (2.12) accepts the following form 

( ) +ωδρε−ε=ωωδρ+=δρ− )()()0(
p
AB

p
B

p
A

p
AB

p
AB ti hh

( ) ( )











ωδρ+δϕ−+ ∑∑

′′
′′′′

g BA

pg

BA

pg

ABABAB

S
p

p
A

p
B Veff )(

)(
. (4.2) 

 
Introduce the following designations: 

 

0

)0(
)(

)0(

i

ti
p
AB

p
ABp

AB
+ω−ω

=ρ
=ωδρ , 

( )0
)(

i

ff
M

p
AB

p
A

p
Bp

AB

+ω−ω

−
=ω
h

. 

 
Then, we find the lowest term in the set of perturbations 

theory: 

 

+ωδρ=ωδρ )()(
)0(p

AB
p
AB

( ) .)()()(
)(














ωδρ+ωδϕω+ ∑∑

′′

′′′′

g BA

pg
BA

pg
ABABAB

S
p

p
AB VeM

  

 (4.3) 
 

Due to uniformity of time, the correlator of 

fluctuations )(
)( ωδϕ S

 can be written as  

 

=δϕω′+ωπδ=ω′δϕωδϕ
ω

AB

S
S

BA
S

AB
2

)(
)()( )(2)(,)(

q
SABqAB bqd r

r
r

,

2
)(

232 )()()2(
ω

− δϕω′+ωδπδ= ∫ . (4.4) 

 
Here, 

 

( ) rdrrqirb BAABq

rrrrr
r 3)()exp()( ΨΨ= ∫ ∗

. (4.5) 

 
In the second order of simplified theory of perturbation 

(see, for instance, [5]) 

 

→=δρ=δρ ′′ )0()0( tt
g

BA
p
AB

( )p
A

p
BpgBABA ff −δδδ→ ′′ 1 . (4.6) 

 

As a result, the collision integral for an equilibrium 

external scattering system has the form ( AkA
r

→  and 

)BkB
r

→ : 
 

∫ ×δϕ
π

−=
−ω

−
BA

p
AB kk

SB
p

ASp kd
e

f rr

r

h ,

2
)(

3

23

2

8
St

( ) ( )[ ]












−+











 ω
−+−× p

B
p

A

p
ABp

A
p

B
p

B
p

A ff
T

ffff
Bk2

tanh11
h

.  

 (4.7) 
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For the elastic scattering 

 






ωδδϕ=δϕ

−−ω

p

kkkk
S

kk
S

BABABA
p
AB

rrrrrr
,

2
)(

,

2
)( , (4.8) 

 

then it follows from Eq. (4.7): 

 

( ) ×
π

−=− 23

2

8
St

h

e
f

p
ASp

( )∫ 




ωδδϕ−×

−

p

kkkk
S

p
B

p
AB

BABA

ffkd rrrr

r

,

2
)(

3 . (4.9) 

 

The collision integral for p-g-scattering can be 

presented by the form  

 

( )

( ) ( ) ( )
( ) ( ) ( ) ( )[ ].1111

,

4
St

22

2
4

3

32

4

g
A

g
B

p
B

p
A

g
B

g
A

p
A

p
B

g
BA

p
ABBAqABq

BAB p
AB

p
Apg

ffffffff

bb

qq

qd

L

e
f

′′′′

′′′′

′′

−−−−−×

×ω−ωδ×

×
ωε

= ∑ ∫

rr

r

r

h

 (4.10) 

 

Now show the several correlators for different 

external scattering potentials (see Refs. [5, 6]). They have 

the simple forms  

 
)(

)(
2

)( )( Sv
S

q
S qqΦ=δϕ

r
. (4.11) 

 

For the system of charged impurities with the 

concentration nCI (used here is the simplified dielectric 

function: ( ) ( ) ( )01,1 qqq L
p
ABL −ϑε→ωε

r
 [13, 15]) and 

 

( ) ( ) 2
0

23
0)()( 32)( LCICICI qqneqqq ε−ϑπ=−ϑΦ=Φ , 

4)( =CIv  (4.12) 

 

(here, nCI  is the density of charged centers). 

For the piezoelectric scattering by longitudinal 

acoustic phonons 

 

TGkq B)()( )( =Φ=Φ ΠΠ , 2)( =Πv , (4.13) 

 

at high temperatures )( B)( Tkph <<ωh  for the quasi-

elastic scattering by polar optical phonons one can use 

the expression  

 

*8)( B
2

)()( επ=Φ=Φ Tkq OptOpt , 2)( =Optv , (4.14) 

 

at the quasi-elastic scattering by acoustic phonons 

)( BTksq <<h  

 
22

B
2

)()( k2)( seTEq AAcAc ρπ=Φ=Φ , 0)( =Acv , (4.15) 

 

for neutral impurities (see [13]) 

 

( )[ ] 1)3(
)(

4
B

25
)()( exp18)(

−
η+η−+π=Φ=Φ DDNINI nreq , 

0)( =NIv  (4.16) 

 

(here, TkBFε=η , TkDD Bε=η , and the value 

0<εD  represents the energetic level of a donor). 

 
5. Static kinetic equations 

The static system has the form (see Eq. (2.12))  

 

,StSt ∑+=
∂

∂
−

g

g

kpg
p

kSp

p

kp
ff

k

f
E

e
rr

r

r
r

h
(p, g = 1, 2, 3, …)  

    (5.1) 

 

or (see also Eqs. (4.9) and (4.10)) 

 

.
2

)(
8 223

4

23

2

∑
επ

+
π

=
∂

∂

g

pg

k
L

p

k

p

kp
W

e
SP

e

k

f
E

e
rv

r

hh
r

r

h
     (5.2) 

 

Here (see (4.10), (4.11), (3.20)), 

 

( ) ( )=ωδδϕ−′−= ∫ ′′−′

p

kkkk
S

p

k

p

k

p

k
ffkdSP rrrrrrr

r

,

2
)(

3)(

( ) ( )∫ −−
ωδδϕ−= p

qkkq
S

p

qk

p
k ffqd rrrr

r

,

2
)(

3
, (5.3) 

 

( ) ( )( ) ( ),,,,,04

3
3

qkkqkkqq
q

qd
kd

W

pgpg

pg

k

rrrrrr
r

r

r

′Λ′Ωδ−ϑ′=

=

∫∫
    (5.4) 

 

where (see (3.17)) 

 

( )
( ) ( ) ,

~~
,,

,,
,,

qDeDeEqkk

qkk

g
g

p
p

pg

g

qkk

p

qkk

pg

rr
h

rrr

rrr
rrrrrr

−ξχ+′Ω=

=ω+ω=′Ω
+′′−

 (5.5) 

 

( )

( ) ( ) ( )[ ] ,2
~~~~

,,
,,

qDDqqDkDkm

qkk

gpgp

g

qkk

p

qkk

pg

rrrrr
h

rrr
rrrrrr

+−′−=

=ω+ω=′Ω
+′′−

 (5.6) 

 

( ) ( )
( )( ) ,

~
,,,,

qDqkkm

qkkqkk

p

pppp

rrrr
h

rrrrrr

−′−=

=′Ω=′Ω
 (5.7) 

 

).1()1(

)1()1(),,(

g

qk

g

k

p

qk

p

k

g

k

g

qk

p

k

p

qkpg

ffff

ffffqkk

rrrrrr

rrrrrr
rrr

+′′−

′+′−

−−−

−−−=′Λ

 (5.8) 
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Now, let us separate the distribution function 
p

k
f r  

and the function ( )qkkpg
rrr

,, ′Λ  by equilibrium and non-

equilibrium terms (there TkBFε=η  and Fε  is the 

Fermi energy): 

 
p

k

p

k

p

k
fff

10
rrr += ,  

( )[ ]{ } ( ) 11

B
0

1exp1
−−

+=η−ε+= p

k

p

k

p

k
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Below, one supposes the non-equilibrium function 
p

k
f 1
r  as small amendment to the equilibrium function 

p

k
f 0
r . Farther our investigation will be restricted by 

linear terms (relatively to the external electrical field E 

only). In this paper, we use the following model for p

k
f 1
r  

(see (5.9)): 
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Here, ( )p

k
R rε  is the model unknown function that will be 

find later. Then (see Eqs. (3.20), (4.11), (5.3))  
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Now, the coefficient )(SP
p

k
r  accepts the form (see 

(4.11) − (4.16)) 
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Farther, let us consider the matrix p
D
~

 to be 

diagonal; try also to approximate the integral from the 

right part of the expression (5.15). Then, the result is as 

follows (see also the forms (3.17), (3.18) and (7.3a)):  
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SM  at 1
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is the natural logarithm for the ratio of averaged 

deBroigle wavelength to screen length. 

For ),0,0( zEE =
r

, it follows from (5.9) and 

(5.15) − (5.18): 
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Now construct the other linear product:  
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Further, we put for the simplicity 
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Here, ( ) 1
~

,
~

)( =ς gp
W DD , if 1

~~ == gp
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Farther, we use the approximated expression: 
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Note that 
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therefore, 
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For the linear equation, one obtains with account of 

the expressions (5.20), (5.21) and (5.24) the equation for 

unknown function ( )pR κε r : 
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6. Solution of kinetic equation for simple system of 

carriers 

To solve the kinetic equation, one should find the non-

equilibrium distribution function 
p

k
f

1
r . At the adopted 

model of that (see (5.13)), there is the basic necessity to 

find a function )(εR . 

We shall consider in this section the solely system 

of band carriers (
k

p

k
ff rr → ) with the simple dispersion 

law (see (3.17)). Due to the expression (5.24), the system 

of equations (5.1) reduces to the only kinetic equation 

(our consideration is limited by the first degree of 

external electric field) 
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Introducing here the forms (5.19) and (5.21), one obtains: 
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Here, we have introduced the concentration of 

“conditional scattering centers”: 
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Then, one obtains the non-equilibrium part of the 

distribution function with the help of expressions (3.20), 

(4.12), (5.13), (6.3) and (6.4): 
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or for arbitrary mechanism of relaxation 
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7. Solution of kinetic equations for the system of three 

ellipsoidal valleys  

As an example of complicated system of band charged 

carriers, we consider three valleys typical for silicon. 

Transitions of carriers between distinct valleys are farther 

omitted.  

Let us introduce the following designations: 
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The system of kinetic equations is as follows (see 

(5.2)): 
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Using the expressions shown in Sec. 5, we find now 

the factors ( )p

k
R rε  included to the non-equilibrium 

distribution functions 
p

k
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1
r  (see the form (5.13)). 

Remember: cbap ,,∈  and cbag ,,∈ . Below, we use 

the expression for the concentration of carriers: 
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where (see (6.5)) 
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In what follows, we use the approximate expression 

(see (5.23)) 
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Taking into attention the expressions (5.2), (5.23) and 

(7.7)−(7.11), one can obtain (see (6.5)−(6.7)): 
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Here, n is the total density of band carriers and (see (7.7) 

and (7.13))  
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If we consider mutual scattering of band electrons 

(for instance, p-carriers) and holes (g-carriers), we have 

to change the form (7.13) to the expression 
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coefficient 0=β p . 

 
8. Another model of non-equilibrium distribution 

function 

Let us consider here the model of non-equilibrium 

distribution function in the form of Fermi-function with 

the “shifted” argument: 
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After linearization over the velocity pv0

r
, one 

obtains:  
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Let in this section S = CI. Then, comparing (8.4) 

and (5.13), we have to perform the following action (see 

(5.26)): 
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For the case considered here, the linear kinetic equation 
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The supplement of operator ∫ kdkz

r
3

 to the 

equation (8.7) leads to (see also (3.20)) 

 



SPQEO, 2019. V. 22, N 2. P. 139-149. 

Boiko I.I. Influence of inter-electron scattering on the form of non-equilibrium distribution function of band carriers 

148 

( ) [ ]
.

)(

)()(

2

)(2

)(
)(

2

2/1

2/32

42/5

B
322

2/1

2/3B)(0













χ−
η

ηη

β+π

ε
×

×
ηπ

η
=

F

FF

nnmeΥ

TkkD

F

FTmk
EeCIv

pCI

TL
p
zz

zp
p

z

h

h

 (8.8) 

 

Here, 

 

( ) 2/12
BdeBr 22 hTmkkT =λπ= . (8.9) 

 

Introducing (8.8) into (8.4), one finds 
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For 1=χ , it follows from (8.4), (8.8) and (8.9) that: 
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Here, the value deBrλ  is the averaged deBroglie 

wavelength and the value 
)(
)(

p
CIL  can be named as an 

averaged length of relaxation:  
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Note that in the case deBr
)(
)( λ=p

CIL  the non-

equilibrium part 
p

k
f

1
r  becomes zero and current of band 

carriers disappear. 

 
9. Conclusion 

It has been shown that in the crystal with one band for 

ellipsoidal valley the mutual scattering of carriers does 

not contribute to the distribution function. Practically, we 

find the same result for many-valley systems with the 

low concentration of band charged carriers ( CInn ≤ ): 

interaction between these particles does not introduce 

any essential contribution into the non-equilibrium 

function of distribution 1
kf
v . But quite another situation 

appears for inter-particle co-operation with many-valley 

band structure and with a great number of band carriers. 

In this case, for CInn >>β   the scattering by charged 

impurities does not dominate noticeably in comparison 

with the mutual scattering of band carriers. 

Note also that the non-equilibrium distribution 

function has the traditional form at great ratio of 

relaxation length to average deBroglie wavelength (in 

this case, we have to neglect the symbol χ). If this ratio 

rushes to unity, the shown above consideration requires 

more careful approach. 

We have to direct our attention to the limited 

precision of shown here final formulae. One from the 

reasons of that is related with traditional limited 

exactness for regularization of integrals over the transfer 

momentum at Coulomb scattering (see [16-18]. The most 

interesting case is approach of length of relaxation to 

middle deBroglie wavelength. Earlier, we have 

performed approximated calculations. It is quite possible 

(that is to be done to investigate it farther) that two 

shown lengths bring nearer asymptotically. Farther one 

waits in addition the investigation of intervalley 

collisions for band carriers. 
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