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1. Introduction 

Investigation of the state of a many-particle system, in 

most cases, is carried out by numerical simulation by 

using multidimensional differential equations. Besides, 

the equally popular method is one-particle 

approximation. However, in fundamental and applied 

researches of processes occurring in physical systems, 

integral equations corresponding to the wave function of 

a particle system are a powerful, effective means to 

obtain results. Therefore, in recent years, interest to the 

integral form of the equations of quantum mechanics has 

increased [1-7].  

The form of the Helmholtz equation can be given to 

the stationary Schrodinger equation for a single particle 

in the case of negative energy as follows: 
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mass, E1, WP1 – energy and potential energy of the 

particle, respectively.  

The integral equation of the Fredholm [8, 9] type 

corresponds to Eq. (1.1):  
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The integral equation of the Volterra [10] type 

corresponds to the one-dimensional case of the equation 

(1.1), when 
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where φ01 is the solution of the homogeneous one-

dimensional equation (1.1). 

The aim of this work is to generalize the integral 

equation (1.3) for one particle in the case of a particle 

system, and to build an equation that can be attributed to 

the class of equations of the Volterra type for the wave 

function of the stationary bound states of the particle 

system. 
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2. Setting the task 

In this work, we used the method of inverse differential 

operator. We can construct the equation as an illustration 

of this method (1.4). 

For the operator inverse to the operator 

1x∂

∂
, we 

would choose the following two possible representations: 
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The action of operators (2.1) and (2.2) to the power 

m on some function f
 
(x1), according to the formula for 

multiple integration, will be:  
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From one-dimensional equation (1.1), it follows that 
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Let us expand the inverse operator in the right side of 

expression (2.5) into a power series by the operators 

(2.1): 
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Substituting the inverse operator (2.6) into the equality 

(2.5), one can find: 
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The resulting equality (2.7) coincides with the 

equation (1.4).  

Let’s denote by N the number of particles in the 

system, by xj – coordinates of the particles, where 

j = 1, 2, …, 3N, by µj – masses of the particles (with taking 

into account the equality of particle masses for the indexes 

of its three coordinates). 

We introduce the weighted coordinates of the 

particles zj according to the rule: 

 

jjj xz µ= . (2.8) 

 

If in the stationary Schrödinger equation for a 

system of particles in the bound state to go from the 

ordinary coordinates to the weighted ones, then it can be 

represented as a multidimensional Helmholtz equation: 
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3N-dimensional integral equation of the Fredholm type 

must match to Eq. (2.9) as follows: 
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The task of the work is as follows: using the direct 

and inverse Fourier transforms to find the kernel of the 

integral equation (2.10) and using the method of 

inversion of differential operators to build the integral 

equation from the class of Volterra type equations 

corresponding to Eq. (2.9).  

 
3. Construction of integral equations 

The function ( )ξ−=
rr

zGN  must satisfy the differential 

equation: 
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where ( )ξ−δ
rr

z  is the Dirac delta-function. 

Using the direct and inverse Fourier transforms of 

the Dirac delta-function, the function ( )ξ−=
rr

zGN  can be 

represented as an integral: 
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With direct substitution, one can be assured that the 

function (3.2) is the solution of Eq. (3.1). 

When introducing auxiliary integration by the 

parameter λ, the right part of Eq. (3.2) can be represented 
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in the form of an integral from the product of 

independent integrals that are taken explicitly: 
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Taking the integrals (3.4) and substituting them into 

Eq. (3.3) and integrating by parameter λ, one can find the 

function GN. 

If the number of particles in the system is odd, that 

is N = 2m + 1; m = 0, 1, 2, ..., then 
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When m = 0, in the case of one-particle system the 

function (3.5) coincides with the well-known function 

(1.3). 

If the number of particles in the system is even, as: N = 

2(m + 1), then 
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From Eq. (2.9) it follows: 
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Expanding the inverse operator in Eq. (3.10) into a 

series in the Laplacian powers, and introducing auxiliary 

integration by parameter λ, one can represent the inverse 

operator in the form of an integral from product of 

independent differential operators: 
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Let’s expand the operators (3.12) into the Taylors 

series. The inverse factorials that are constant multipliers 

at partial derivatives can be considered as the result of 

Laplace inverse transformation of complex arguments pj 

in corresponding power with the arguments yj of the 

original functions equal to unity:  
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It gives an opportunity to represent the operators 

(3.12) in the form of integral operators product: 
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Using the expressions (3.11), (3.14), (2.3), (2.4) and 

inverse Laplace transforms with the argument of original 

functions equal to unity: 
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Then, from the equality (3.10) one gets the integral 

equation: 
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To verify the obtained equation (3.18), one can 

consider its one-dimensional case that looks like this: 
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Taking the integral part in the right part of 

Eq. (3.21) and adding and subtracting the selected term, 

it is simple to obtain the equation (1.4). 

4. Conclusions 

For the wave function corresponding to the bound state 

of a particle system, we have obtained the kernel of the 

Fredholm type integral equation that is defined by the 

expressions (3.5) to (3.9). In the case of one particle, the 

found expression coincides with the known kernel for the 

one-particle function (1.3). Using the method of inver-

sion of differential operators, we have constructed the 

equation (3.18) that in one-dimensional case coincides 

with the well-known Volterra type equation (1.4). The 

obtained integral equations allow expanding the possi-

bilities to model nanostructure formation, to determine 

their energy spectrum and spatial distribution of particles. 
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