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Abstract. In this mini-review, we address the importance of specific interactions in core-

shell structures composed with intrinsically conducting polymers (ICPs) as a shell and 

various nanoparticles used as a core. These interactions that can appear during the 

polymerization process of corresponding monomers or in the course of subsequent 

treatments of already formed core-shell nanocomposites play a crucial role in determining 

their structure and unique physical properties. They also lead to significant differences in 

molecular weight, structure, oxidation state, electronic properties, thermal stability and 

other properties of synthesized ICP shells in comparison to their pure state when 

polymerization proceeds without a template. This work was reported on the joint 

Ukrainian-Japan workshop in the V. Lashkaryov Institute of Semiconductor Physics, NAS 
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1. Introduction 

Since the first publication by Shirakawa, MacDiarmid, 

Heeger et al. [1], which introduced intrinsically 

conducting polymers (ICP) to scientific community 41 

years ago (followed by awarding the Nobel Prize in 

Chemistry in 2000), the field of these interesting 

polymers has developed in a broad diversity of novel 

applications including computer displays, light-emitting 

diodes, solar cells and field-effect transistors, materials 

for EMI shielding, antistatic and anti-corrosion 

protection, batteries, catalysis and electrocatalysis, 

sensing and membrane systems, biomedical and 

bioelectronic devices and many others [2-6]. One can 

confidently assert that these interesting polymers are 

among the most successful and important discoveries in 

modern polymer physics, chemistry and material science. 

Due to the presence of long conjugated chains in their 

structure, these polymers in most cases are 

photosensitive, exhibit semiconducting properties and are 

capable of participating in charge generation processes, 

when being photoexcited and, moreover, can be p-doped 

and, in some cases, n-doped.  

However, ICPs are not free of serious drawbacks, 

namely: brittleness, infusibility and insolubility, which 

cause their poor processibility and hinder some practical 

applications. These problems can be bypassed through 

development of composites and nanocomposites; 

application of special dopants; functionalization of the 

monomer or polymer fractions, as well as via synthesis of 

nanoparticles of conducting polymers [7]. Naturally, each 

of these approaches has advantages and disadvantages 

and can be chosen depending on the task that should be 

solved. Sometimes, a simultaneous use of all or part of 

the approaches can be the most effective, especially in 

the case of preparation of ICP (nano)composites. In 

particular, these materials can be prepared by mixing ICP 

with another component or by polymerization of the 

corresponding monomer (aniline, thiophene, pyrrole or 

their derivatives) in the presence of another component 

[7-9]. If in the first approach synergism of the physical 

properties can be observed only in limited cases, in the 

second approach it prevails due to formation of intimate 

contacts and specific interactions between all participants 

of the polymerization process. Obviously, this specifi-

city is most noticeable  in the case  of nanocomposites or 
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Fig. 1. Scheme of formation of (nano)composites with core-

shell morphology, in which the core has polymeric or inorganic 

nature, and the shell is the ICP layer deposited on the surface of 

the nanoparticle due to polymerization of the corresponding 

monomer under the action of an oxidant. 

 

 

composites with core-shell morphology, in which the 

core has polymeric or inorganic nature, and the shell is 

the ICP layer up to several tens of nanometers thick, 

deposited on the surface of the nanoparticle due to 

polymerization of the corresponding monomer under the 

action of an oxidant (Fig. 1).  

In general, polymerization proceeds through two 

main steps: 1) adsorption of the monomer on the surface 

of nanoparticles dispersed in the reaction medium, and  

2) its activation under the action of a suitable oxidant  

[7-10]. This process is completed with formation of 

hybrid particles with the ICP shell and core composed by 

another component. Formation of this morphology and 

its dependence on interactions between the components 

in hybrid (nano)particles was confirmed for various 

shells: polyaniline (PANI), polypyrrole (PPy), poly(3-

mehylthiophene) (P3MT) as well as cores of different 

size and origin (poly(vinylidene fluoride) (PVDF), 

polycarbonate (PC), poly(vinyl chloride), Fe3O4 and 

SnO2, TiO2 rutile and anatase, multiwalled carbon 

nanotubes (MWCNT), etc.) [10-33]. Undoubtedly, a 

precise control of specific interactions between the 

components during the polymerization process is a key 

issue offering additional possibilities in creating new 

materials of this type. Such control allows a directed 

synthesis of the ICP shell with predetermined structure, 

morphology and desired properties. 

 
2. Physical-chemical aspects of the nanocomposites 

formation 

In order to find a way to realize such control, we 

monitored changes of the open circuit potential (OCP) 

and pH of the reaction media in the course of oxidative 

polymerization of aniline and heterocyclic monomers in 

absence and presence of other components. This 

approach enabled tracking changes in oxidation states of 

the conducting polymers forming the shells at the surface 

of the matrix (template) components [10-12]. Speci-

fically, OCP and pH profiles for aniline polymerization 

can reveal characteristic time points corresponding to  

the most important  stages  of this process.  In the case of 
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Fig. 2. Scheme of formation of different oxidation states of 

polyaniline during the polymerization (a) and OCP (upper 

curve), pH (bottom curve) and its first derivative (middle curve) 

profiles for polymerization in the presence of TiO2  

(TiO2/An weight ratio = 80:20) [10, 11, 14]. 

 

 

titania and MWCNT core materials, this formed a basis 

for estimation of kinetic parameters inherent to the 

polymerization process [13, 14]. In particular, in Fig. 2 

one can observe a characteristic induction period (tind). At 

the next stage, an increase of the potential in the OCP 

profile indicates appearance of pernigraniline oligomers 

(point tPN) and then of insoluble pernigraniline phase at 

the end of the second stage. Pernigraniline is the most 

oxidized state of polyaniline, which catalyzes at the third 

stage further polymerization process of aniline and 

accelerates the growth of the potential. Approximately at 

the midpoint of the third stage, partial reduction of the 

growing pernigraniline chains by the monomer takes 

place leading to appearance of emeraldine units. As a 

consequence, the potential growth slows down; it reaches 

a maximum (tmax) corresponding to the final content of 

pernigraniline and to the exhaustion of the oxidant in the 

polymerization mixture. Then, the pernigraniline phase is 

reduced by the monomer residues (tred), and the potential 

drops (tES) to a value reflecting the amount of polyaniline 

formed in its most stable form of emeraldine salt (Fig. 2). 

All these stages are accelerated in the presence of 

dispersed nanoparticles. An important practical result of 

this study is that the reciprocal values of durations of 

these stages depend linearly on the content of the 

dispersed phase [13, 14].   
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Fig. 3. The nanoparticles (a) and acid-dopant (b) influence on 

PANI molecular weight and yield. 

 
 

 

The presence of dispersed nanoparticles and various 

acids-dopants in the reaction medium not only 

significantly affect the kinetics of the aniline 

polymerization [10, 13, 14], but also determines the 

molecular characteristics and yield of the polyaniline 

product [14]. In particular, titania nanoparticles increase 

the molecular weight and yield of polyaniline by about 

40% (Fig. 3a).  

At the same time, polyaniline obtained in the 

presence of “large” surface-active lauryl sulfate acid 

(LSA) and dodecylbenzenesulfonic acid (DBSA) was 

characterized by about 2 times higher molecular weight 

and polymer yield as compared to the case of using the 

acids without surface activity (Fig. 3b). Apparently, this 

may be due to the fact that surface-active acids form 

micelles in solution, which absorb the monomer and, 

probably, nanoparticles, thus creating the effect of a 

micro-reactor with an increased concentration of 

participants [12, 14].  

3. Structure-property relationship of the nano-

composites 

Molecular level changes in the polymer shell of the 
nanocomposite particles are inevitably accompanied by 
changes in the structure, morphology, charge states, 
conductivity, sensing activity and other properties of both 
the shell itself and nanocomposites as a whole. For 
example, it was found that P3MT-Cl synthesized in the 
absence and presence of PVDF submicron (200 nm) 
particles revealed strong morphological, structural and 
spectral differences [31]. Specifically, one can 
distinguish three levels hierarchical morphology of pure 
P3MT-Cl in the TEM and SEM images (Fig. 4).  

The first level is presented in this TEM image by 
flake-like primary nanoparticles of sizes 20–60 nm. At 
the second level, these particles form aggregates of a few 
hundred nanometers. SEM image reveals the third level 
in the hierarchy, which involves P3MT-Cl nanoparticles 
in agglomerates from 2 up to 8 µm. By contrast, the 
P3MT-Cl in the composite shows only one level of 
organization represented by nanoparticles arranged in 
irregular shells surrounding the PVDF particles. 
Moreover, the size 20–40 nm and polydispersity of the 
nanoparticles of the P3MT-Cl phase are slightly lower 
than that of the pure P3MT-Cl particles.  

An impressive difference in morphology and the 
aggregation hierarchy of P3MT in the composite as 
compared to the same polymer in its pure state could be 
confirmed by photoluminescence (PL) spectra of 
dedoped samples. In particular, in the case of 
concentrated dispersion (0.5 mg/ml) in acetonitrile of the 
pure P3MTr (0.5 mg/ml, Fig. 5, curve 1) the observed 
emission peak revealed a vibronic structure with two 
maxima and several shoulders on the both sides [31].  

This peak was decreased and blue-shifted after 
dilution of the dispersion (curve 2). Moreover, a new PL 
peak appeared in the vicinity of 525 nm. The subsequent 
settling of this diluted dispersion for 2 hours was accom-
panied by dropping of the total emission intensity and by 
an additional blue shift of this maximum (curve 3). 
Furthermore, after sedimentation of the dispersion for the 
following 48 hours, the P3MTr emission above 600 nm 
strongly dropped, while the 525 nm peak remained at 
practically the same level and was similar to the 
nanocomposite one (Fig. 5, curve 4) [31].  

Based on the TEM and SEM images of the samples 
(Fig. 4), these changes in the emission due to dilution and 
sedimentation were interpreted as a manifestation of the 
influence of the size of the hierarchically arranged P3MT 
nanoparticles on their emission properties [31]. These 
results suggest that the low-energy maximum at 685 nm 
can be assigned, at least partially, to the largest 
agglomerates of the P3MTr particles. This assignment is 
supported by the coincidence of the PL spectra of the 
concentrated dispersion (Fig. 5, curve 1) and the P3TMr 
film prepared from this dispersion. In line with this sug-
gestion, one can assume that the PL spectra of the diluted 
and 2 hours settled P3MTr dispersions (curves 2 and 3) 
above 600 nm display emissions of aggregates with inter-
mediate sizes, while the individual (non-aggregated) 
nanoparticles  of the pure P3MTr emit at higher energies 
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Fig. 5. Photoluminescence spectra of the reduced P3MT 

(P3MTr) dispersion in acetonitrile (1), (2) ten-fold diluted pure 

P3MTr dispersion, (3) diluted pure P3MTr dispersion after  

2 hours of sedimentation, (4) diluted pure P3MTr dispersion 

after 48-hour sedimentation, (5) PVDF/P3MTr dispersion. 

Adapted from [31]. 

 

 
with the peak at about 525 nm. The latter peak became 
the only observed peak after 48 hours of sedimentation of 
the P3MTr dispersion (curve 4). 

Moreover, and even more important, this peak is 
similar to the peak of the composite located at about 
516 nm (curve 5). The blue shift of this PL peak of the 
composite, as compared to that of the pure P3MTr, 
agrees with different state of the P3MT nanoparticles in 
the composite shells. It should be emphasized here that 
the vibronic structure of the PL peak both of the pure and 

composite P3MTr confirms the above discussed ordering 
of the P3MTr fractions. The observed ordered phases 
appeared probably due to π–π-stacking interactions 
between P3MT’s backbones and formation of molecular 
aggregates typical for P3ATs [31].  

Structure differences between the conducting 
polymer in pure and composite states were confirmed for 
different (nano)composites [16, 17, 19, 23, 25, 26, 29, 
30-33]. For example, from the XRD-spectra of doped 
polyaniline and its nanostructured composite with 
polycarbonate (PC), we found that its degree of crys-
tallinity  in the pure state  was about 3 times lower,  and 

Fig. 4. TEM (top row) and SEM (bottom row) illustrations of the morphological specificity of pure P3MT-Cl and PVDF/P3MT-Cl  

core-shell nanocomposite. Adapted from [31]. 
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Fig. 6. XRD evidences of the structure differences between the 

conducting polymers in pure and composite states (core-shell 

composites): a) the degree of crystallinity and size of 

crystallites of the doped PANI in pure state and in the shells on 

the surface of the PC particles (adapted from [25]); the 

crystallinity changes in doped PANI (b) or PPy (c) phases in 

nanocomposites with MWCNT (adapted from [29, 35]). 

 

 

the average crystallite size was 3 times higher than that in 

the composite (Fig. 6a) [25]. Moreover, in the case of 

nanocomposites of carbon nanotubes with polyaniline 

(Fig. 6b) and also polypyrrole (Fig. 6b) an increased 

crystallinity of ICP in the nanocomposite, especially at 

its low contents, was observed [29, 35]. 

It is obvious that, similarly to molecular charac-

teristics, these differences in the structure of conducting 

polymers in the shells are the result of specific 
interactions between the components of the nano-

composite. In particular, it was proved that amino groups 

of PANI in the shells formed hydrogen bonds with PC 

[25] or PVDF matrix (core) components in the case of 

the PVDF/PANI and PC/PANI nanocomposites. It was 

confirmed by the shifts of vibrations of H-bonded N–H 
groups of polyaniline in pure and composite states, as 
well as by the shifts of vibrations of C–F and C=O bonds 

in the matrix polymers, respectively.  

Interactions of ICP in the shell with the matrix 

component also lead to a change in its oxidation state. 

Specifically, it was found from Raman spectra of 
PC/PANI composites that the number of quinonoid units 

in PANI, reflecting its oxidation level, is noticeably 

lower in the composite than in the pure state [25]. This 

variation in the PANI oxidation level inevitably affected 

its electronic structure. Consequently, the calculated 

number of polarons was smaller, and the number of 
bipolarons was higher for the pure PANI as compared to 

the PANI phase in the composite [25].  
Based on the higher mobility of polarons as charge 

carriers in PANI, we assume that conductivity of the 
doped PANI phase in the composite can be higher than 
that of the pure doped PANI. Indeed, it was found for the 
cold-pressed pellets of PC/PANI composites that 
conductivity of the pure PANI doped by toluene sulfonic 
acid (TSA) was about three times lower than 
conductivity of the PANI-TSA composite phase in a 
composite with polycarbonate [25]. In the case of the 
titania nanocomposite, the phase of PANI doped by 
dodecylbenzenesulfonic acid (DBSA) also had higher 
conductivity than pure PANI-DBSA [28] (Table). 

The data for PANI (nano)composites [25, 28] were 
confirmed for other ICP based materials. For example, 
according to Raman spectra of poly (3-methylthiophene) 
(P3MT) and its nanocomposite with PVDF [31], one can 
estimate that the number of charge carriers, i.e. polarons 
and bipolarons, are, respectively, 25 and 35% higher in 
the pure P3MT-Cl as compared with the P3MT-Cl 

located in the nanocomposite shell. This, in general, 

indicates a lower doping and conductivity of the 
composite P3MT-Cl phase.  

Obviously, this specificity of ICP nanocomposites 

at the molecular level affects their practically important 
macro-properties, too. In particular, as one can see from 
thermograms of the pure doped P3MT-Cl and dedoped 

P3MTr as well as their nanocomposites with PVDF, 
thermal stability of P3MT (doped or dedoped one) is 

lower as compared to its nanocomposites (Fig. 7a) [31]. 
The initial temperatures of thermal degradation of 

the phases of doped P3MT-Cl and dedoped P3MTr in 
nanocomposites are shifted toward higher temperatures 
by about 20 and 40 °C as compared to the pure nanocom-
posite and specific interactions of P3MT and polymers. 
Although the mechanism of these changes is not clear 

yet, according to the said earlier they may indicate that 
the increase in the thermal stability of P3MT is caused by 

both its specific properties in the PVDF. 
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This conclusion agrees with the influence of the nature of 

oxide nanoparticles on the thermal stability of their 
stability nanocomposites with PANI. In particular,  
one can see in their thermograms within the range 
280…450 °C that weight losses decrease in the row: tin 
oxide > rutile > anatase (Fig. 7a). 
 

 
 

 
 

 
 

 
 

 
 

A striking confirmation of the improved molecular 
characteristics of conducting polymers in core-shell 
composites is their sensing properties. Specifically, as 

one can see in Fig. 8 the sensor responses of the 
PVDF/P3MT-Cl (c) nanocomposite are stronger in cases 

of acetone,  chloroform  and n-heptane than those  of the 

Table. PANI conductivity in the pure and (nano)composite states. 

Sample σ0, S/cm Method of preparation 

Pure PANI-TSA 1.6 Cold pressed pellets [25] 

PC/PANI-TSA 5.2 Cold pressed pellets [25] 

PC/PANI-TSA 0.1 Compression molded (at 240 °C) films [25] 

Pure PANI-DBSA 0.4 Cold pressed pellets [28] 

TiO2/PANI-DBSA 0.6 Cold pressed pellets [28] 

Fig. 7. Thermograms of PVDF/P3MT (a) (adapted from [31]) and TiO2(SnO2)/PANI-DBSA nanocomposites (b). 

Fig. 8. a) Calibration curves of the sensor responses of the pure P3MT-Cl (p) and PVDF/P3MT-Cl nanocomposite (c), adapted 

from [31]; b) response magnitudes comparison of the TiO2/PANI-dopant nanocomposites and pure PANI-dopant synthesized 

materials at 10 ppm of ammonia, adapted from [26]. 
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pure P3MT-Cl (p) [31]. However, the responses of the 

nanocomposite and pure P3MT-Cl to vapors of 

unsaturated hydrocarbons (toluene and 1-heptene) are 

almost the same. Such influence of the nature of the 

analyte on the sensor responses of the materials was 

assigned to the relationship between the work function of 

P3MT-Cl and electronegativity of the analyte [31]. 

Synergistic enhancement of sensor responses was 

also observed in the case of hybrid core–shell nano-

composites of other conducting polymers – PANI and 

PPy. A particularly strong effect is achieved for titania 

and PANI nanocomposites, in which the response to 

ammonia exceeds that of pure PANI by ~ 7 times (in the 

case of the dopant DBSA) and ~ 90 times (in the case of 

the dopant LSA). This strong effect can be associated not 

only with the specific properties of the polyaniline shell 

in the nanocomposite, but also with formation of a p-n 

junction between polyaniline and TiO2.  

 
4. Conclusions 

Concluding this brief review, we would like to 

emphasize the importance of specific interactions 

between components of the nanocomposites with core-

shell morphology, in which the core is overcoated with 

the ICP shell (or nanolayer) deposited by polymerization 

of the corresponding monomer. Finding the ways to 

control these interfacial interactions will open significant 

perspectives in creating new multifunctional (nano)-

composite materials with specified properties. It is clear 

that the effectiveness of such control depends not only on 

the choice of the core and shell materials, but also to 

higher extent on variation of the structure and properties 

in the polymer shell associated with both conditions of its 

formation and a vicinity of the core substrate. Therefore, 

clear understanding of peculiarities of structural 

organization of ICP in the shell and interfacial 

interactions responsible for these peculiarities are 

crucially important and should be a subject for further 

studies in the field. 
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