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MODERN ASPECTS OF PROBIOTIC 
MICROORGANISMS' MICROENCAPSULATION
Numerous studies in recent years have shown that the gut microbiome plays an important role in maintaining various physi-
ological processes in the body, including digestion, metabolism, immune system function, defense against pathogens, biosyn-
thesis of unique metabolites, elimination of toxins, and regulation of the function of the gut-brain axis. Th e gut microbiota is 
infl uenced by the way of birth, child’s feeding, genetic background, and lifestyle, including diet, exercises, medication, stress, 
and general host’s health. Intestinal microbial populations can vary signifi cantly from person to person, including healthy 
individuals. Unfavorable changes in the microbial composition and in its functions are characteristic of dysbiosis and indicate 
pathological disorders in the body [1]. Th e introduction of pro-, pre-, synbiotics and their other derivatives into the body, as 
well as transplantation of fecal microbiota, can restore the disturbed microbiota of the gastrointestinal tract (GIT). Th ere is 
now a growing interest in functional innovative foods as ideal carriers for probiotics. However, many commercial probiotic 
products are ineff ective because the benefi cial bacteria they contain do not survive food processing, storage, and passage 
through the upper GIT. Th erefore, modern eff ective strategies are needed to improve the stability of probiotic microorganisms. 
One of the such strategies is a modern microencapsulation method. Using this technology in the manufacture of functional 
foods allows maintaining the stability of probiotic microorganisms during storage, protects them from the aggressive condi-
tions of the GIT, and promotes their colonization on the mucous membrane of the large intestine. To achieve better protection 
and controlled release of probiotics, alginate microgels are most widely used as microcapsule shells.
Keywords: probiotic microorganisms, intestinal microbiota, microbiome, encapsulation, functional foods.
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In recent decades, interest in the development 
of functional foods containing probiotic micro-
organisms has increased. However, the stability 
and viability of these microorganisms in various 
food products that can be used as carriers are 
limited by their properties (pH, type of packag-
ing, storage requirements, etc.). In addition, the 
acidic environment of GIT negatively aff ects the 
survival of probiotic bacteria. Innovative meth-
ods of probiotics’ microencapsulation off er a 
new approach to the development of functional 
foods containing probiotic microorganisms with 
increased viability and stability [2]. Modern ap-
proaches make it possible to increase not only 
the shelf life and viability but also the activity of 
probiotic microorganisms by various encapsula-
tion methods in various compositions.

Many studies have shown the importance 
of the gut microfl ora in maintaining human 
health. Dysbiosis is a violation of the microbio-
ta’s quantitative and qualitative composition of 
the human large intestine, which is associated 
with various chronic and acute diseases, includ-
ing infl ammatory bowel diseases, allergies, obe-
sity, diabetes, autism, rheumatoid arthritis, and 
even cancer [3, 4]. Numerous strategies to cor-
rect the gut microbiota’s composition have been 
developed. Th us, fecal microbiota transplanta-
tion has been proven to be an eff ective treatment 
for Clostridium diffi  cile infection, infl ammatory 
bowel disease, and some other gastrointestinal 
diseases [5, 6]. However, it is not a convenient 
method for general use, and researchers are ex-
ploring alternative approaches to managing the 
gut microbiota, including oral delivery of pre-, 
pro-, syn-, postbiotics and their derivatives, as 
well as functional foods enriched with probiotic 
microorganisms [7, 8].

Th ere is some concern that many commercial 
probiotic products are ineff ective because the 
benefi cial bacteria they contain do not survive 
food processing, storage, and passage through 
the upper GIT [9]. Moreover, even if they do 
reach the colon, they cannot establish themselves 

as part of the gut microbiome and may simply 
pass out transiently with the stool.

Most modern probiotic microorganisms belong 
to the genera Lactobacillus or Bifi dobacterium, 
which are particularly sensitive to the aggressive 
conditions of the human intestine. Potential can-
didates for the next generation of probiotics are 
Akkermansia muciniphila and Faecalibacterium 
prausnitzii. However, these species are also ex-
tremely sensitive to oxygen, hydrochloric acid, and 
bile salts, which limit the eff ectiveness of their use 
to improve human health [10]. Th erefore, modern 
eff ective strategies to improve the stability of pro-
biotic microorganisms in food are needed. One 
of the such strategies is microencapsulation as an 
eff ective means of protecting probiotics from the 
aggressive conditions of the human GIT [11].

Th e purpose of this review is to analyze recent 
advances in the development of optimal systems 
for the probiotic microorganisms’ oral delivery 
to the digestive tract, specifi cally designed to 
increase their viability and metabolic activity in 
functional foods.

Aggressive conditions aff ecting the effi  -
ciency and viability of probiotic microorgan-
isms. Th e development of an eff ective probiotic 
delivery system depends on understanding the 
nature of the harsh conditions to which it is ex-
posed before and aft er ingestion. A number of 
physicochemical factors aff ect the viability of 
probiotics during the production of functional 
foods based on them, as well as their storage, 
transportation, and passage through the GIT. 

During passing through the GIT, the main 
aggressive conditions for probiotic microorgan-
isms are:

■ in the oral cavity: mineral ions, mucin, en-
zymes (amylase), chewing process;

■ in the stomach: hydrochloric acid (pH 1—3), 
mineral ions, enzymes (lipase, protease, pepsin);

■ in the small intestine: bile acids, enzymes 
(lipase, protease, amylase), peristalsis;

■ in the large intestine: intestinal microbiota, en-
zymes, anaerobic conditions, peristalsis [12—34].
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Consider in more detail the features of the 
infl uence of each of the stress factors presented 
above.

Production, storage and transportation of 
functional food products. Th e main environ-
mental factors that negatively aff ect the viability 
of probiotics during the production, storage and 
transportation of functional foods are oxygen, 
relative humidity (RH), temperature, osmotic 
stress and pH. High oxygen levels, relative hu-
midity, osmotic stress and temperature are det-
rimental to many types of probiotics. Microor-
ganisms as representatives of the human intes-
tinal microbiota are mainly microaerophiles or 
anaerobes, so exposure to high oxygen levels 
can compromise their viability. Th e absence of 
an electron transport chain in intestinal bacte-
ria leads to an incomplete reduction of oxygen 
to hydrogen peroxide. Th e accumulation of toxic 
oxygen metabolites in cells eventually leads to 
the cell death, which is called oxygen poisoning. 
Moisture is also a huge problem for probiotic 
products, as moisture activates bacteria and, in 
fact, starts the process of their degradation. Gut 
microorganisms are evolutionarily adapted to 
the temperature in a given biotope of the human 
body, so they can die when exposed to elevated 
temperatures associated with the processing of 
many foods, in particular during pasteuriza-
tion, sterilization, dehydration, or heat treat-
ment during preparation [35]. Most commercial 
probiotic strains are inherently thermolabile 
and therefore must be protected from overheat-
ing. Th e exception is representatives of the genus 
Bacillus, which are resistant to negative environ-
mental infl uences [36].

Gastrointestinal tract. Once ingested, probi-
otics are exposed to harsh environmental con-
ditions in the upper GIT, especially the stomach 
and small intestine. In the mouth, they mix with 
saliva containing mucin, mineral ions, and amy-
lase. Aft er a few seconds, they are swallowed, pass 
through the esophagus, and reach the stomach. 
Probiotic microorganisms are usually able to sur-

vive in the pH (6—7) conditions that exist in the 
human colon [37]. However, gastric pH is usually 
very low (between 1 and 3), which can signifi -
cantly aff ect the survival of many types of pro-
biotics. In particular, low pH values in the GIT 
cause a decrease in cytoplasmic pH in probiotic 
cells. High levels of hydrogen ions (H+) and re-
duced activity of glycolytic enzymes inside pro-
biotic cells aff ect the F1F0-ATPase proton pump, 
which is responsible for the survival of probiotics 
in acidic conditions [38]. Other potentially unfa-
vorable conditions in the stomach include high 
ionic strength, as well as digestive enzymes (pep-
sins), which aff ect the viability of some probiotics.

In the small intestine, bile acids and digestive 
enzymes (lipase, proteases, amylase, etc.) infl u-
ence the viability of probiotics. One of the main 
functions of bile acids in the lumen is to enhance 
the digestion and absorption of lipids. However, 
they also have antibacterial properties, act as de-
tergents that destroy cell membranes, and also 
act as DNA-damaging agents. Some probiotic 
microorganisms are able to synthesize bile salt 
hydrolases (BSH), which hydrolyze bile acids in-
to unconjugated bile acids and glycine. Th e pres-
ence of high levels of bile acids in the small intes-
tine, especially aft er a fatty meal, can reduce the 
viability of many probiotics. Having reached the 
colon, probiotic microorganisms must compete 
for adhesion sites to the intestinal mucosa with 
bacteria from the intestinal microbiota, attach to 
the intestinal mucosa, and then colonize it and 
multiply [39]. For example, Lactobacillus rham-
nosus GG expresses an adhesive protein in the 
colon that promotes its binding to mucin and 
collagen on host epithelial cells [40].

Basic requirements for probiotic microor-
ganisms' delivery systems. Th e most important 
challenges in designing optimal probiotic deliv-
ery systems are as follows.

■ In the preparation process, the use of ingre-
dients or processes that adversely aff ect the via-
bility of probiotics (organic solvents, strong acids 
or bases, surfactants, excessive heat, intense me-
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chanical stress, and aeration) should be avoided. 
For many foods, heat treatment is used to inacti-
vate pathogens and spoilage organisms, but these 
processes can also inactivate probiotic microor-
ganisms. Th erefore, it is necessary to select or 
create heat-resistant strains of probiotic micro-
organisms for their further microencapsulation.

■ Many colloidal delivery systems designed to 
encapsulate small molecules (such as vitamins, 
nutraceuticals, colors or fl avors) cannot be used 
for probiotics because the particles are too small 
to contain bacteria. Microbial cell sizes typically 
range from 1 to 10  μM, while many colloidal 
delivery systems contain particles smaller than 
1 μM, such as microemulsions, nanoemulsions, 
and biopolymer nanoparticles. Moreover, the 
concentration of viable probiotic microorgan-
isms present in commercial products should 
typically be greater than 6—7  log10  CFU/g, 
which means that the loading capacity of any 
colloidal delivery system should be higher. Pro-
biotics can be encapsulated in tablets or cap-
sules that are large enough to encapsulate a large 
quantity of probiotics. However, probiotics in-
cluded in tablets or capsules may not enter the 
human colon in a viable form because they are 
too large to pass directly through the pyloric 
sphincter. Instead, they break down and release 
probiotic microorganisms in the stomach, where 
they are susceptible to degradation due to harsh 
conditions. Moreover, if probiotic microorgan-
isms are encapsulated in too large colloidal par-
ticles, they can adversely aff ect the sensory and 
textural properties of products.

■ Many delivery systems previously developed 
to encapsulate probiotic microorganisms do 
not provide adequate protection during storage 
and passage through the gut. For example, bio-
polymer microgels are highly porous and allow 
gastric acid and enzymes to enter where they de-
grade encapsulated probiotic microorganisms. In 
addition, many colloidal delivery systems devel-
oped in research laboratories are not suitable for 
commercial use due to their high cost, complex 

processing requirements, or the use of ingredi-
ents unsuitable for the food industry [41—62].

Finally, it should be noted that any probiotic 
microorganism delivery system must be de-
signed so that the probiotics are released in the 
colon to fully realize their health benefi ts. In ad-
dition, probiotic microorganisms must adhere 
to and colonize the colonic mucosa, otherwise, 
they will transit through the human body.

Microencapsulation of probiotic microor-
ganisms. A number of studies have shown that 
the viability of probiotics can be improved by 
encapsulating them in microgels or other types 
of microcapsules [41—43].

Microencapsulation (encapsulation) is a pro-
cess in which the smallest particles of a liquid, 
gaseous or solid ingredient are «packed» in a 
material that protects them from environmental 
infl uences. Microcapsules are miniature con-
tainers that protect the contents from evapora-
tion, oxidation, and destruction before they are 
released.

Microencapsulation of probiotics in poly-
meric microcapsules successfully protects them 
from the harsh and changing conditions of the 
GIT. Microcapsules deliver live cells of probiotic 
microorganisms without losing their function-
ality to the target biotope of the host organism. 
Microcapsules can protect them against envi-
ronmental hazards during transit through the 
GIT and promote their release at a controlled 
rate under certain conditions, usually in the co-
lon. Microencapsulation also protects probiotic 
cells during storage over a wide range of temper-
atures and can also signifi cantly increase their 
stability. In addition, microencapsulation of bio-
logically active substances, designed to improve 
their low bioavailability in the host body, masks 
the unpleasant taste and also expands the range 
of their application [12].

Th e main requirements for biopolymers used 
for encapsulation are: the biopolymer must be 
permeable for nutrients and metabolites in order 
to maintain cell viability and show no cytotox-
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ic and antimicrobial activity to ensure that the 
host and its microbiota are not aff ected. Th e ef-
fi ciency of encapsulation, as well as the delivery 
of probiotic microorganisms with the desired 
viability and bioactivity to the site of exposure, 
depends on the composition and structure of 
the microcapsule shell material and the correct 
choice of co-encapsulation technology.

Th e main biocompatible and food carriers for 
the encapsulation of probiotics are alginate [13], 
chitosan [14], pectin [15], gelatin [16], starch [17], 
gum arabic [18], whey protein [19], and lipids 
[20], as well as various mixtures of these materi-
als. Numerous studies have shown that the inclu-
sion of prebiotics (inulin, corn, trehalose, resis-
tant starch, etc.) as a shell material during encap-
sulation increases the stability and maintains the 
viability of probiotics under extreme conditions 
of the GIT [21—23]. Th e type of encapsulation 
technology is also important. Th e main methods 
for co-encapsulation of probiotic microorgan-
isms with bioactive substances in a single deliv-
ery format are: spray drying [24], freeze drying 
[25], spray cooling [20], emulsifi cation [26], ex-
trusion [27], and coacervation [28, 29].

Th ere are diff erent types of microcapsules:
■ ordinary microcapsules;
■ microcapsules with a double shell;
■ microcapsules in a microcapsule with diff er-

ent properties;
■ a plurality of coated microcapsules in one 

liquid medium.
Microencapsulation has a number of advan-

tages: it allows slowing down the release of the 
active principle, which leads to the prolongation 
of the drug action and more effi  cient use of it . 
Microcapsules allow a programmed release of 
probiotics under certain conditions.

An effi  cient microencapsulation system main-
tains the stability of probiotic microorganisms 
during storage, protects them from aggressive 
conditions in the upper GIT, releases them in the 
large intestine, and then promotes their coloni-
zation on mucosal surfaces [30]. Many modern 

reviews are devoted to various types of oral de-
livery systems designed to encapsulate probiotics 
[31—34]. However, many of these systems cannot 
adequately protect probiotics from degradation 
within the gut due to their inherent limitations 
(permeability for acids, enzymes, or bile salts).

Delivery systems for probiotic microorgan-
isms to improve their viability can be devel-
oped in a variety of ways. First, they can form 
a physical barrier that protects probiotics from 
any problematic environmental components 
(gastric juice, bile salts, and digestive enzymes). 
Second, they can be designed to co-encapsulate 
probiotics with specifi c nutrients (easily digest-
ible carbohydrates, dietary fi ber, proteins, lipids, 
minerals) that help probiotic microorganisms 
survive [44]. Th ird, they may contain additives 
that provide favorable conditions (antacids to 
control local pH) for probiotic microorganisms 
[45]. Finally, the microparticles may contain, in 
addition to probiotic microorganisms, products 
secreted by them that contribute to their surviv-
al. For example, some probiotic microorganisms 
secrete bile salt hydrolyzing enzymes that pro-
tect probiotics from bile salts in the small intes-
tine. Other additives are also used, for example, 
those that regulate the level of oxygen or osmotic 
stress inside microparticles [46—62].

Th ere are several types of microgels for the 
delivery of probiotic microorganisms.

Simple microgels usually consist of small 
spherical particles containing a network of 
crosslinked biopolymers inside, with pores 
fi lled with an aqueous solution [37, 54, 57, 58]. 
Th e materials used for the manufacture of mi-
crogels are mainly biopolymers (starch, algi-
nate, carrageenan, gelatin, xanthan gum) and 
proteins with good thermal stability, high bio-
compatibility, low toxicity, and low cost. It is 
also possible to use microgels based on polysac-
charides as probiotic delivery systems [63]. Th e 
most widely used for the creation of microgels 
is alginate, which is a polysaccharide isolated 
from seaweed. Such microgels are formed by 
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electrostatic binding of anionic carboxyl groups 
of alginate with calcium cations. Encapsula-
tion of Lactococcus lactis in alginate microgels 
improves its resistance to aggressive environ-
mental conditions, leading to an increase in its 
viability compared to the unencapsulated form 
[46]. Encapsulation of probiotics in alginate mi-
crogels has also been used to enable the co-ad-
ministration of probiotics and antibiotics [48]. 
To achieve better protection and controlled 
release of probiotics, alginate microgels con-
taining for example Bifi dobacterium BB-12 are 
also used, which are formed by emulsifi cation/
internal gelation followed by freeze drying [47]. 
Although alginate is the most widely used bio-
polymer for the manufacture of microgels, other 
biopolymers can also be used [48]. In addition, 
an increase in the thermal stability of probiot-
ics and stability under aggressive conditions of 
the GIT due to their encapsulation in microgels 
formed from starch with high amylose content 
has been proven [64]. Protein-based microgels 
(soy protein) have also been developed [44].

Th e ability of microgels to improve the sur-
vival of probiotics depends on their size. If the 
microgels are large, they can adversely aff ect the 
organoleptic characteristics (mouthfeel) of com-
mercial products, as well as make them diffi  cult 
to pass through the gastric biotope. Conversely, 
small sizes do not allow probiotics to be encap-
sulated or decompose too quickly due to the 
large open surface area [48]. It has been experi-
mentally shown that microgels should have a di-
ameter of less than 200 μM to ensure good pas-
sage through the GIT [65]. Other studies have 
shown that they should have a diameter of about 
500 μM [3, 48].

Core-shell microgels. Th e performance of 
microgels can be improved by coating them 
with one or more layers of biopolymer. Chitosan 
is one of the most commonly used polysaccha-
rides for this purpose because it has a positive 
charge whereas most other polysaccharides have 
a negative charge. Core-shell microgels, consist-

ing of a calcium alginate core and a chitosan 
coating, improve the viability of encapsulated 
probiotic microorganisms in the GIT [66]. Such 
alginate-chitosan systems are promising for the 
delivery of probiotics to the large intestine, since 
chitosan and alginate are degraded by the mi-
crofl ora of the large intestine, thereby releasing 
probiotics in this biotope. In addition, the chito-
san coating aff ects the viability of bacteria, since 
chitosan is an eff ective antimicrobial agent [67].

Core-shell microgels, consisting of a cellulose 
core and a calcium alginate shell, retain probiot-
ics in the stomach and then release them in the 
small intestine [68]. Th e survival rates of pro-
biotic microorganisms increase when they are 
encapsulated in alginate microgels coated with 
zein [69], as well as when they are enclosed in 
microparticles with a polyalginate core coated 
with multiple layers (layer thickness 20 nm) of 
polyelectrolyte [48]. Another type of micropar-
ticles is based on whey protein and alginate with 
a diameter of 107 to 222 μM [53].

Biopolymer complex microgels. It is possi-
ble both to use one biopolymer to create micro-
gels and to combine two or more biopolymers to 
improve their stability or functionality. Micro-
gels can be made by combining biopolymers us-
ing complex coacervation (mixing a negatively 
charged biopolymer with a positively charged 
one). Th e positive aspects of complex coacerva-
tion are: high cell capture effi  ciency, improved 
performance, and good scalability. Th e follow-
ing complex microgels are used: whey protein/
gum arabic [70], whey protein/-carrageenan, 
whey protein/gum arabic/alginate, gelatin/gum 
arabic [71], gelatin/alginate [43], and starch/al-
ginate [54]. For example, encapsulation of pro-
biotics in alginate-gelatin microgels formed by 
electrostatic complexation improves the viabil-
ity of L. salivarus Li01 during high-temperature 
treatments, long-term storage, and passage 
through the GIT [43]. Th e protective proper-
ties of these microgels are explained by the facts 
that: (i) gelatin is a protein with some buff er-
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ing capacity, which can increase the stability of 
probiotics in the stomach; (ii) the biopolymer 
network in the alginate-gelatin microgel eff ec-
tively slows down the molecular diff usion of 
digestive enzymes into the gel [43]. Alginate-
starch microgels used to increase the viability 
of Lactobacillus casei in the GIT have also been 
demonstrated [54]. Another type of microcap-
sule with probiotics was developed using the 
enzyme transglutaminase with the formation 
of intra- and intermolecular covalent bonds be-
tween two amino acid residues of gelatin, which 
signifi cantly improves the persistence and vi-
ability of Lactobacillus acidophilus [72].

Microgels resistant to aggressive conditions 
of the GIT. An interesting approach to increase 
the viability of encapsulated probiotics during 
the passage through the GIT has been devel-
oped. It consists in controlling the pore size and 
internal pH of the microgels. Many probiotics 
are inactivated when exposed to gastric juice 
due to its high acidity and the presence of diges-
tive enzymes. Th is eff ect can be reduced if the 
internal pH of the microgels remains neutral in 
the stomach, and the impossibility of penetra-
tion of digestive enzymes into the microgel is 
ensured. Simple microgels are not very eff ec-
tive in protecting probiotics in the GIT because 
small hydrogen ions (H+) and digestive enzymes 
can easily diff use into them due to the rela-
tively large pore size of the biopolymer network 
[37, 50]. For example, alginate microgels with a 
pore size of 17 nm [15, 57], which is much larger 
than the size of hydrogen ions (<1  nm) or en-
zymes (<5 nm). Th erefore, H+ ions and digestive 
enzymes can easily diff use into them and pro-
mote the degradation of encapsulated probiot-
ics. Studies have shown that the incorporation 
of an insoluble antacid (magnesium hydrox-
ide  Mg(OH)2) into calcium alginate microgels 
can signifi cantly improve the gastric stability of 
encapsulated probiotics by creating a neutral in-
ternal pH around them [57]. Similar results were 
also obtained using another insoluble antacid 

(magnesium oxide MgO) included in calcium 
alginate microgels [45]. Th ese antacids are in-
soluble in water at neutral pH but dissolve under 
acidic conditions, which releases hydroxide ions 
that neutralize hydrogen ions, thereby main-
taining a constant neutral pH (until completely 
dissolve). It has been experimentally proven that 
CaCO3 is a more eff ective antacid for protecting 
probiotics compared to Mg(OH)2 [56].

It has also been proven that doping microgels 
with cellulose nanoparticles signifi cantly im-
proves the resistance of probiotic microorgan-
isms in the GIT by fi lling the pores and thereby 
reducing the ingress of gastric juice [57]. pH-
sensitive carrier particles have been developed, 
consisting of a mixture of calcium, alginate, 
and EDTA. Th is system is jelly-like under acidic 
conditions but decomposes at neutral pH values, 
so it can be used for the programmed release of 
probiotics in the small intestine.

Microgels with added nutrients. Another ap-
proach to increase the survival of encapsulated 
probiotics during storage and in the GIT is to 
provide them with a suffi  cient quantity of ben-
efi cial nutrients — prebiotics. Encapsulation of 
prebiotics in the core of microgels is known to 
improve the viability of probiotic microorgan-
isms [59]. For example, the addition of oligo-
saccharides (β-glucan, plant extracts) improves 
probiotic delivery [65]. Oligosaccharides are not 
normally degraded by GI enzymes but can be 
used by some bacteria, especially Lactobacillus 
species in the colon. Co-microencapsulation of 
Lactobacillus fermentum with oligosaccharides 
protects the probiotic from exposure to low tem-
peratures [59]. Th e inclusion of sea buckthorn 
extract in microgels also contributes to the pro-
tection of L. casei during heat treatment and 
passage through the GIT, which is explained by 
its antioxidant activity [73, 74].

Selection of biomaterial for microencapsu-
lation. Biomaterials used to encapsulate probi-
otics include natural and synthetic polymers. 
Th ese biomaterials are in direct contact with liv-
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ing cells. For this reason, the following criteria 
have been developed for their selection:

■ physical and chemical properties (chemical 
composition, morphology, mechanical strength, 
stability in the GIT, and intestinal fl uid;

■ toxicological analysis;
■ production and sterilization processes [75—79].
Biomaterials are inorganic or organic mac-

romolecules consisting of a repeating chain 
of monomers linked by covalent bonds. Th eir 
chemical structure and conformation of mono-
meric chains provide them with specifi c func-
tionality  — the ability to form gels. Th e most 
common biomaterial used to encapsulate pro-
biotics is alginate. Other supporting biomateri-
als include carrageenan, gelatin, chitosan, whey 
proteins, cellulose acetate phthalate, locust bean 
gum, and starches [62, 76—79].

Alginate is a linear polymer of a heteroge-
neous structure, consisting of two monosac-
charide units: α-L-guluronic (G) and β-D-
mannuronic (M), connected by β (1—4) glyco-
sidic bonds. Alginate is soluble in water over a 
temperature range of 60 °C to 80 °C. It is known 
that alginate gels do not dissolve in an acidic 
environment. Th e success of using alginate in 
microencapsulation of probiotics is due to the 
protection of cells from acidic conditions. It is 
an ideal bacterial encapsulation material for de-
livery to the intestines. Alginate is well known 
for its biocompatibility, environmental friendli-
ness, low cost, and ease of use. Th e carboxylic 
groups on the alginate chain can be crosslinked 
with polyvalent ions, such as calcium ions. 
Cross-linked alginate materials are stable in 
the low-pH environment of the stomach, and 
the crosslinks are reversed in high-pH environ-
ments such as intestines. Th e controllable and 
reversible nature of these cross-links makes al-
ginate a promising encapsulating polymer for 
the targeted delivery of probiotics to the gut.

Th e selection of a suitable biomaterial is a 
preliminary study requiring careful method-
ological research. Th e search for new materials 

for encapsulation is of paramount importance. 
Th ese materials must meet the requirements of 
non-toxicity, resistance to gastric acidity, and 
compatibility with cells of probiotic microor-
ganisms [79—82].

Modern methods for evaluating the eff ec-
tiveness of probiotic microorganisms’ delivery 
systems. To evaluate the eff ectiveness of a pro-
biotic delivery system, it is very important to 
characterize its structural organization, physi-
cochemical properties, functional characteris-
tics, and viability of probiotic microorganisms. 
It is advisable to carry out such assessment with 
a combination of in vitro and in vivo models. In 
vitro models are useful for scanning many dif-
ferent compounds quickly and cheaply, but they 
oft en do not accurately model the complex pro-
cesses that take place inside the human gut. In 
vivo models are more expensive and time-con-
suming, but they allow a more accurate assess-
ment of the potential eff ectiveness of the deliv-
ery system in real applications.

In vitro methods for evaluating the eff ec-
tiveness of delivery systems:

1. Characterization of the structure and phys-
icochemical properties

Th e structural organization of microgels is 
usually characterized by light or electron mi-
croscopy [37, 43, 52]. Atomic force microscopy 
can also be used to study the surface morphol-
ogy of microgels. Fluorescence microscopy can 
be used to visualize selectively labeled microgel 
biopolymers [52]. Fluorescent staining is also 
used to measure the internal pH of microgels 
and determine the location and viability of pro-
biotic microorganisms in microgels [3, 52]. Th e 
ratio of living-to-dead cells is detected by confo-
cal microscopy or fl ow cytometry [16]. It is also 
possible to detect probiotics by incorporating a 
luminescence emitting plasmid (pGENluxCD-
ABE), which allows the detection of live cells of 
probiotic microorganisms using an in vivo im-
aging system (IVIS) [30]. Th e advantage of this 
bioluminescent plasmid is that it can be used to 
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track probiotics as they pass through the GIT, as 
well as to monitor the proliferation of probiotics 
in the gut, such as E. coli DH-5α. One of the main 
disadvantages of this method is that it is current-
ly not suitable for the detection of gram-positive 
bacteria, which include most probiotics [30].

2. Viability and functionality of probiotics
Th e viability of probiotics is determined us-

ing plate counting or fl ow cytometry methods 
as described by the International Organization 
for Standardization [83]. Th ere are static and dy-
namic models of digestion in vitro.

Th e static model assumes a constant ratio of 
food to digestive fl uid, as well as a constant pH 
throughout each stage of digestion, making the 
method easy to use. Digestive juices include fl u-
ids mimicking saliva, simulated gastric fl uids 
(consisting of HCl, salts, and pepsin; pH 1—2) 
and intestinal fl uids (consisting of bile salts and 
pancreatin; pH 5—7) [65].

Th e dynamic model involves pH regulation, 
food fl ow control, and real-time delivery of di-
gestive enzymes to diff erent parts of the GIT, 
which better mimics the digestive process itself 
[65]. For example, the SHIME system, which 
consists of fi ve vessels containing various simu-
lated gastrointestinal fl uids, simulates gastric 
and lower intestinal activity. A computer-con-
trolled in vitro gastrointestinal model called the 
Dynamic Gastrointestinal Simulator (SIMGI) 
has been developed. Th is simulator allows one 
to simulate the physiological processes in the 
stomach, small intestine, as well as the ascend-
ing, transverse, and descending regions of the 
large intestine. In addition, this system also 
promotes the multiplication of the colonic mi-
crobiota [65].

Th e TNO models for the upper GIT (stom-
ach and small intestine — TIM-1) and the large 
intestine (TIM-2) are widely used to model the 
human intestine [84]. Th is model is also applica-
ble to studying the survival of probiotic micro-
organisms. An in vitro model of the GIT called 
the «Th iny Intestine» (TSI) has been developed 

to simulate the human small intestine, which 
maintains pH, temperature, bile salt levels, mi-
crobiota, and enzyme composition at a physi-
ologically signifi cant level [85].

In vivo methods for evaluating the delivery 
systems' eff ectiveness. While in vitro models 
are more practical for rapidly screening many 
diff erent formulations, they do not accurately 
mimic the human intestine. Th erefore, prom-
ising candidates for probiotic delivery systems 
should be tested in more accurate in vivo models. 
To determine the viability of microencapsulated 
probiotic microorganisms aft er oral adminis-
tration, real-time PCR and fl uorescence in situ 
hybridization (FISH) are used [3]. Sometimes, 
there is a poor correlation between in vitro and 
in vivo studies.

Th e eff ect of encapsulation on the functional 
characteristics of probiotics is also being evalu-
ated using animal models. For example, mice 
with DSS-induced colitis were fed with free 
and microencapsulated LGG [68]. Th e results 
showed that encapsulated LGGs were more ef-
fective in preventing intestinal infl ammation 
than free LGGs.

Although rodents, especially rats and mice, 
are commonly used to test probiotics, it should 
be noted that their GIT is not very similar to a 
human. Conversely, dogs and humans have fairly 
similar gastric morphology and gastric empty-
ing characteristics, while pigs and humans have 
fairly similar colon morphology [86]. Th erefore, 
it is more appropriate to use the above-men-
tioned animal species to obtain more convinc-
ing data, but this is associated with higher costs 
and ethical issues.

Conclusions. Due to the importance of the 
intestinal microbiota for human health, as well 
as the increasing number of negative factors af-
fecting the microbiota of the host organism, the 
development of systems for the oral delivery of 
microencapsulated active viable probiotic mi-
croorganisms to the large intestine is one of the 
important tasks of modern biotechnology.
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Microencapsulation of probiotics into poly-
mer microcapsules successfully protects them 
from aggressive and changing conditions of the 
GIT, and also allows the delivery of living cells 
of probiotic microorganisms without loss of their 
functional activity to the target biotope of the 
host organism. Microcapsules also protect pro-
biotic cells during storage over a wide range of 
temperatures and can signifi cantly extend the 
shelf life of the fi nal product. Joint microencap-
sulation of prebiotics with probiotic microorgan-
isms can further increase the survival of the lat-
ter during storage and passage through the GIT.

It has been shown that alginate is an ideal 
biopolymer material for microencapsulation of 
probiotic microorganisms for targeted delivery 
of them to the intestine. Alginate is biocom-
patible, environmentally friendly, has a low 
cost, and, most importantly, is characterized 
by ease of use.

Th us, the development of functional foods 
enriched with microencapsulated probiotic mi-
croorganisms as eff ective means of maintain-
ing and restoring the intestinal microbiota is 
one of the urgent and important tasks of mod-
ern science.
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СУЧАСНІ АСПЕКТИ МІКРОКАПСУЛЮВАННЯ ПРОБІОТИЧНИХ МІКРООРГАНІЗМІВ

Численні дослідження останніх років показали, що кишковий мікробіом відіграє важливу роль у підтрим-
ці різних фізіологічних процесів в організмі, включаючи травлення, метаболізм, роботу імунної системи, 
захист від патогенів, біосинтез унікальних метаболітів, виведення токсинів і регулювання функції вісі ки-
шечник-мозок. Мікробіота кишечника формується під впливом багатьох факторів: способу народження і 
вигодовування немовляти, генетичного фону та способу життя, включаючи дієту, фізичні навантаження, 
прийом лікарських препаратів, стрес та загальний стан здоров›я господаря. Популяції кишкових мікроор-
ганізмів можуть істотно відрізнятися в різних людей, зокрема і здорових. Несприятливі зміни в мікробному 
складі та в його функціях є характеристикою дисбіозу та свідчать про патологічні порушення в організмі [1].

Введення в організм про-, пре-, синбіотиків та інших похідних, а також трансплантація фекальної мікро-
біоти здатні відновлювати порушену мікробіоту шлунково-кишкового тракту. В даний час зростає інтерес до 
функціональних інноваційних продуктів харчування як ідеальних носіїв для пробіотиків. Однак, багато комер-
ційних пробіотичних продуктів неефективні, оскільки корисні бактерії, що входять до їх складу, не вижива-
ють при процесингу харчових продуктів, зберіганні та проходженні через верхні відділи шлунково кишкового 
тракту. Отже, необхідні сучасні ефективні стратегії підвищення стабільності пробіотичних мікроорганізмів. 
Однією з таких стратегій є сучасний метод мікрокапсулювання. Застосування такої технології при виготовленні 
функціональних продуктів харчування дозволяє підтримувати стабільність пробіотичних мікроорганізмів при 
зберіганні, захищає їх від агресивних умов шлунково-кишкового тракту та сприяє їх колонізації на слизовій 
оболонці товстого кишечника. Для досягнення кращого захисту та контрольованого вивільнення пробіотиків 
найбільш широко використовують альгінатні мікрогелі як матеріал для оболонок мікрокапсул.
Ключові слова: пробіотичні мікроорганізми, мікробіота кишечника, мікробіом, інкапсуляція, функціональні 
продукти харчування.


