MIHEPANOTIYHUN ЖУРНАЛ MINERALOGICAL JOURNAL (UKRAINE)

УДК 550.424.4

Л.В. Кононенко, И.Л. Колябина, В.И. Маничев, Т.И. Коромысличенко КИНЕТИКА СОРБЦИИ ЦЕЗИЯ-137 И СТРОНЦИЯ-90 ГЛИНАМИ

Проведены экспериментальные модельные исследования обменного и необменного поглощения ¹³⁷Cs и ⁹⁰Sr природными глинами (бентонитом, палыгорскитовой глиной, каолином и глиной смешанного состава). Выявлен эффект ремобилизации радионуклидов, находившихся в фиксированной форме. Определены величины констант скорости процессов ионообменной сорбции и десорбции ¹³⁷Cs и ⁹⁰Sr, а также констант скорости необменной сорбции (фиксации) и ремобилизации этих радионуклидов на реакционных центрах разных типов для глин различного минерального состава.

E-mail: kononenko ludmila@mail.ru

Введение. Глины, известные высокой сорбционной способностью по отношению к ряду радионуклидов, рассматриваются в качестве наиболее вероятных материалов для создания системы инженерных барьеров хранилищ радиоактивных отходов (PAO) [2—4]. Сорбционная способность глин определяется как термодинамическими характеристиками образуемых ими соединений с радионуклидами, так и кинетическими параметрами взаимодействия радионуклидов с глинами.

Объекты исследования и методика эксперимента. Для оценки сорбционных характеристик глин относительно ¹³⁷Сs и ⁹⁰Sr проведены экспериментальные модельные исследования обменного и необменного поглощения радионуклидов природными глинами. Для эксперимента были выбраны разные по минеральному составу глины — монтмориллонитовая (бентонит) и палыгорскитовая глина Дашуковского месторождения (Черкасская обл.), каолин Глуховецкого месторождения (Винницкая обл.) и полиминеральная глина из карьера с. Лозовое (АР Крым).

Исследован химический состав глин (табл. 1), определено содержание микроэлементов, органического и неорганического углерода, выполнен рентгеноструктурный анализ.

© Л.В. Кононенко, И.Л. Колябина, В.И. Маничев, Т.И. Коромысличенко, 2010

Бентонит и палыгорскитовая глина Дашуковского месторождения (сарматский ярус неогена) — это продукты выветривания пород кристаллического фундамента. Образцы бентонита из второго слоя Дашуковского карьера имеют слабо-зеленоватую окраску, они плотные и пластические, в основном однородные по составу, характеризуются высокой степенью дисперсности. В их минеральном составе отмечены примеси кварца и полевого шпата, сцементированные агрегатами глинистого минерала, главным образом монтмориллонита. Среди примесных минералов тяжелой фракции следует отметить ильменит, циркон, рутил, дистен, ставролит.

Образцы палыгорскитовой глины из третьего слоя Дашуковского карьера имеют светлосерую окраску, слабопористые, тонкодисперсные. Глина однородного состава, представлена палыгорскитом. Среди примесей минералов легкой фракции отмечены кварц, полевой шпат и в незначительном количестве — кальцит. Подавляющая часть глины сложена частицами <0,001 мм. Примеси минералов тяжелой фракции — ильменит, циркон, апатит, гранат.

Для каолина Глуховецкого месторождения характерной особенностью служит разная степень выветривания материнских кристаллических пород. Глина белая со слабо-желтым оттенком, тонкодисперсная, достаточно одно-

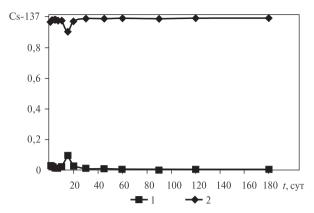
родная, представленная каолинитом, содержание которого достигает 80—85 %. Примесь кварца и полевого шпата составляет 10—15 %. Полевой шпат характеризуется значительной степенью выветривания. В составе тяжелой фракции отмечена незначительная примесь зерен циркона, монацита, турмалина, апатита.

Образцы *глины полиминерального состава из карьера с. Лозовое* характеризуются наличием каолинита, монтмориллонита, гидрослюды и хлорита. Глина светло-серой окраски с зеленоватым оттенком, плотная. Имеется незначительная примесь зерен кварца и кальцита.

При оценке сорбционной способности глин как потенциального материала системы инженерных барьеров хранилищ РАО важно учитывать наличие двух основных механизмов сорбции радионуклидов — ионообменной сорбции, когда поглощенные радионуклиды находятся в состоянии динамического равновесия с водорастворимыми формами радионуклидов, и необменной сорбции, в результате которой радионуклиды прочно фиксируются природным сорбентом.

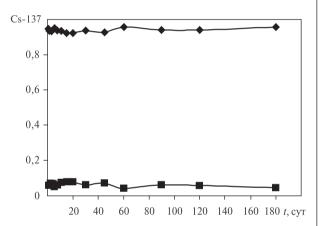
Методика длительных модельных экспериментов по установлению параметров ионо- и необменного поглощения ¹³⁷Cs и ⁹⁰Sr глинами разного минерального состава была разработана и опробована при исследовании ионо- и необменного поглощения ¹³⁷Cs почвой [1]. Серию навесок глины заливали раствором радионуклида (соответственно, 137 Cs или 90 Sr), перемешивали и оставляли в контакте на разные интервалы времени (1, 5, 10, 30, ... 120 сут и т. д.). По окончании соответствующего срока почву отделяли от раствора. В фильтрате определяли содержание радионуклида и по разнице значений активности в исходном растворе и в фильтрате определяли долю радионуклида, поглощенного глиной. Отделенную от раствора глину тут же заливали 1 М раствором ацетата аммония и выдерживали в контакте на протяжении суток при периодическом перемешивании. При этом в раствор переходит ионообменная форма радионуклида, содержание которой определяли в фильтрате. Остаток радионуклида, поглощенного почвой, считали принадлежащим к необменносорбированной (фиксированной) форме.

Содержание 137 Cs определяли по его γ -активности, содержание 90 Sr — по β -активности его дочернего радионуклида 90 Y.


Результаты эксперимента и их обсуждение. Экспериментальные исследования показали, что 99,6—99,8 % ¹³⁷Сs глины поглощают на протяжении первых суток, при этом вклад ионо- и необменной сорбции варьирует в зависимости от минерального состава глин. Так, доля обменно-сорбированого цезия за первые сутки составляла, %: на бентоните — 2,8, на палыгорскитовой глине — 5,6, на каолине — 5,8, на полиминеральной глине — 14.

Далее соотношение обменно- и необменносорбированного цезия изменялось со временем: сначала на протяжении двух-трех суток происходило возрастание доли необменносорбированного цезия за счет расходования ионообменной формы, потом наблюдался инверсионный переход необменно-сорбированной формы цезия в ионообменную, пребывающую в состоянии динамического равновесия с водорастворимым ¹³⁷Cs (рис. 1—4).

Максимальный вклад ионообменной сорбции цезия на глинах достигается на 15—20-е сутки контакта глины с раствором ¹³⁷Сs (свыше 9 % для бентонита и 7,65 — для палыгорскитовой глины). Далее происходит постепенное снижение доли ионообменной сорбции ¹³⁷Сs и возрастание вклада необменной


Таблица 1. Химический состав глин, % Table 1. Chemical composition of clays, %

	Глина				
Компонент	бентонит	онит палыгор- скитовая каолин		полимине- ральная	
SiO ₂	54,44	56,28	45,26	46,38	
TiO ₂	0,84	0,19	0,70	0,51	
Al_2O_3	16,34	9,88	36,28	15,49	
Fe ₂ O ₃	7,78	6,48	2,31	2,77	
FeO	0,28	0,28	0,29	2,72	
MnO	0,02	0,14	<0,01	0,04	
MgO	1,72	7,27	1,13	1,68	
CaO	1,25	0,38	<0,05	11,38	
Na ₂ O	0,05	0,15	0,16	0,45	
K ₂ O	0,05	1,50	1,00	2,35	
P_2O_5	0,03	0,11	0,16	0,03	
H ₂ O	8,10	6,13	0,16	1,17	
П. п. п.	9,03	4,38	12,16	14,67	
S _{общ}	0,03	_	_	0,01	
Σ	99,96	99,67	99,61	99,59	
pН	6,80	6,78	6,75	7,85	
$C_{\scriptscriptstyle m BAJ}$	0,10	0,17	0,24	2,42	
Снекарбонатн	_	_	0,09	0,54	

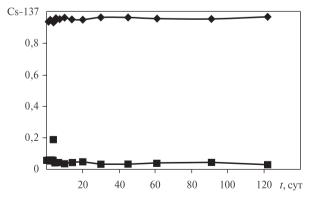

Рис. 1. Динамика ионо- (1) и необменной (2) сорбции 137 Сs бентонитом. *Усл. обозначения* (тут и на рис. 2—4): 1-Cs(E), 2-Cs(fix)

Fig. 1. Dynamics of ion-exchange (1) and unexchange (2) sorption of 137 Cs by bentonite. Legend for Fig. 1—4: 1 — Cs(E), 2 — Cs(fix)

 $Puc.\ 2.\ Динамика ионо-\ (1)$ и необменной (2) сорбции $^{137}\mathrm{Cs}$ палыгорскитовой глиной

Fig. 2. Dynamics of ion-exchange (1) and unexchange (2) sorption of 137 Cs by palygorskite clay

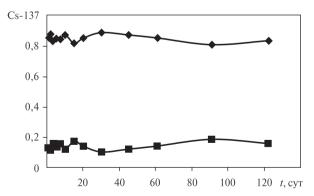

Puc. 3. Динамика ионо- (1) и необменной (2) сорбщии 137 Сs каолином

Fig. 3. Dynamics of ion-exchange (1) and unexchange (2) sorption of 137 Cs by kaolin

сорбции. При этом необменная сорбция ¹³⁷Сs более эффективно происходит на бентоните, достигая после 30-дневного контакта 99,0—99,4 % (рис. 1).

В случае с палыгорскитовой глиной отмечается достаточно значительный вклад ионообменной сорбции 137 Cs, доля которой не становится меньше 4-6 % даже после двухшести месяцев контакта глины с раствором 137 Cs (рис. 2). Еще больший вклад ионообменной сорбции 137 Cs отмечается для глины смешанного состава — ее доля после трех-четырех месяцев контакта глины с раствором 137 Cs достигает 16-18 % (рис. 4).

Модельные эксперименты по изучению динамики ионо- и необменного поглощения глинами ⁹⁰Sr показали, что на протяжении первых суток глины поглощают свыше 95 % его, причем часть ионообменной сорбции составляет 29,8 % в случае бентонита и 32,4 палыгорскитовой глины. Доли необменной сорбции составляли, соответственно, 70 и 62,5 %. Далее продолжался процесс постепенной фиксации ⁹⁰Sr с возрастанием доли необменно-сорбированной формы ⁹⁰Sr до 77 %. После 20 сут контакта глин с раствором ⁹⁰Sr начался быстрый процесс ремобилизации ⁹⁰Sr, т. е. переход необменно-сорбированной формы в мобильную ионообменно-сорбированную. Через 30 сут контакта раствора ⁹⁰Sr с глинами в ионообменной форме находилось свыше 82 % радионуклида в случае бентонита и 68 — палыгорскитовой глины. Затем на бентоните началось постепенное уменьшение доли обменно-сорбированной формы до 65— 70 %, а на палыгорскитовой глине соотношения обменной и необменной форм практи-

Рис. 4. Динамика ионо- (1) и необменной (2) сорбции 137 Сs полиминеральной глиной

Fig. 4. Dynamics of ion-exchange (1) and unexchange (2) sorption of 137 Cs by polymineral clay

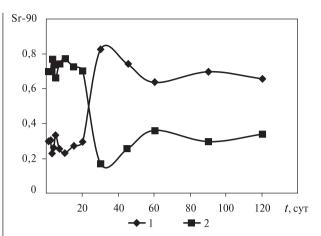
чески стабилизировалось на уровне (65-68%): (25-28%) (рис. 5, 6).

Определение кинетических параметров ионообменной и необменной сорбции ¹³⁷Cs и ⁹⁰Sr глинами разного минерального состава. Данные, полученные нами в результате модельных экспериментов, были обработаны с помощью метода математического моделирования кинетики обменной и необменной сорбции с применением многоместной модели поглошения.

Установлено, что ионо- и необменное поглощение ¹³⁷Сѕ глинами происходит на реакционных центрах трех типов. На каждом типе центров протекает два противоположно направленных процесса — сорбция (фиксация) цезия и его десорбция (ремобилизация). Результирующее распределение ¹³⁷Сѕ между фиксированной и ионообменной формами на центрах разных типов определяется конкуренцией процессов сорбции и десорбции.

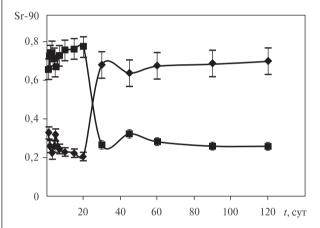
Ионообменная сорбция 90 Sr происходит на реакционных центрах четырех, а необменная — трех типов.

Поглощение радионуклидов на каждом типе центров можно описать такими уравнениями.

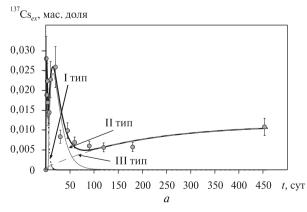

Для ионообменной сорбции:

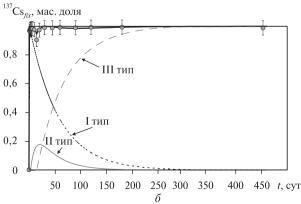
$$C_{ex}^{i} = a \cdot e^{-k_{sorb}^{i}} - a \cdot e^{-k_{dsorb}^{i}}$$

Для необменной сорбции:


$$C_{fix}^{i} = a \cdot e^{-k_{fix}^{i}} - a \cdot e^{-k_{r}^{i}}$$

где: C_{ex}^i — концентрация радионуклида, поглощенного на i-том типе ионообменных центров в момент времени t; C_{fix}^i — концентра-


Puc. 5. Динамика ионо- (1) и необменной (2) сорбции 90 Sr бентонитом. *Усл. обозначения* (тут и на рис. 6): 1 - Sr(E), 2 - Sr(fix)


Fig. 5. Dynamics of ion-exchange (1) and unexchange (2) sorption of 90 Sr by bentonite. Legend for Fig. 5, 6: 1 - Cs(E), 2 - Cs(fix)

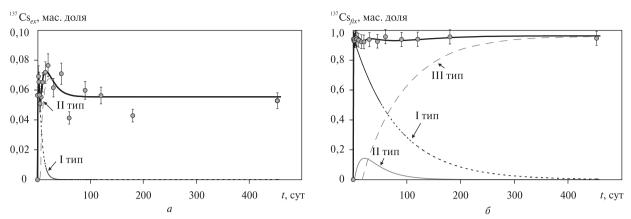
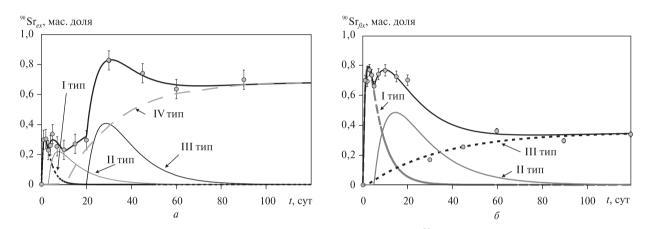
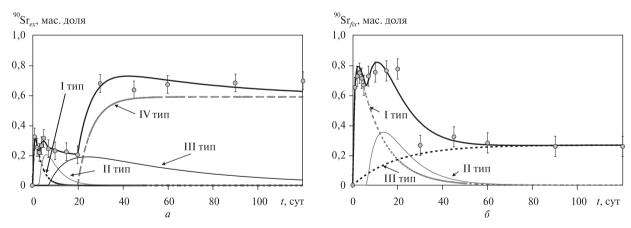

Рис. 6. Динамика ионо- (1) и необменной (2) сорбции 90 Sr палыгорскитовой глиной

Fig. 6. Dynamics of ion-exchange (1) and unexchange (2) sorption of 90 Sr by palygorskite clay




Puc. 7. Расчетные кривые динамики ионо- (*a*) и необменной (*б*) сорбции 137 Cs на бентоните *Fig.* 7. Estimated curves of dynamics of ion-exchange (*a*) and unexchange (*б*) sorption of 137 Cs by bentonite

Puc. 8. Расчетные кривые динамики ионо- (*a*) и необменной (δ) сорбции ¹³⁷Cs на палыгорскитовой глине *Fig. 8.* Estimated curves of dynamics of ion-exchange (*a*) and unexchange (δ) sorption of ¹³⁷Cs by palygorskite clay

Puc. 9. Расчетные кривые динамики ионо- (a) и необменной (δ) сорбции 90 Sr на бентоните *Fig. 9.* Estimated curves of dynamics of ion-exchange (a) and unexchange (δ) sorption of 90 Sr by bentonite

Puc. 10. Расчетные кривые динамики ионо- (*a*) и необменной (*б*) сорбции 90 Sr на палыгорскитовой глине *Fig. 10.* Estimated curves of dynamics of ion-exchange (*a*) and unexchange (*б*) sorption of 90 Sr by palygorskite clay

ция радионуклида, поглощенного на i-том типе необменных центров в момент времени t; a — коэффициент, отвечающий максимально возможному поглощению радионуклида на

i-том типе реакционных центров; k_{sorb}^i , k_{dsorb}^i — константы, соответственно, ионообменной сорбции и десорбции на i-том типе ионообменных центров; k_{fix}^i , k_r^i — константы, соот-

<i>Таблица 2.</i> Кинетические параметры ионообменной и необменной сорбции ¹³⁷ Cs глинами
<i>Table 2.</i> Kinetic parameters of ion-exchange and unexchange sorption of ¹³⁷ Cs by clays

Константа скорости, сут-1	Тип реакционного центра	Глина				
		бентонит	палыгорскитовая	каолин	полиминеральная	
Ионообменная сорбция						
Сорбция	$I\left(k_{sorp}^{ I}\right)$	0,847	1,022	27,8	0,522	
	$II\left(k_{sorp}^{II}\right)$	0,145	0,146	0,0877	0,134	
	III (k_{sorp}^{III})	0,0054	_	0,0896	0,0501	
Десорбция	$I\left(k_{dsorp}^{I}\right)$	0,384	0,1665	0,0527	0,228	
	$\mathrm{II}\left(k_{dsorp}^{\mathrm{II}}\right)$	0,066	0,0725	0,0336	0,0588	
	$\mathrm{III}\left(k_{dsorp}^{\mathrm{III}}\right)$	_	_	_	_	
Необменная сорбция						
Сорбция	$I\left(k_{fix}^{ I}\right)$	3,535	40,45	2,494	2,494	
	$\mathrm{II}\left(k_{\mathit{fix}}^{\mathrm{II}}\right)$	0,106	0,091	0,0649	0,0867	
	$\mathrm{III}\left(k_{\mathit{fix}}^{\mathrm{III}}\right)$	0,0178	0,0128	0,0147	0,0248	
Десорбция	$I\left(k_r^{\ I}\right)$	0,0176	0,0121	0,0134	0,0578	
	$\mathrm{II}\left(k_{r}^{\mathrm{II}}\right)$	0,0253	0,028	0,0397	0,0239	
	$\mathrm{III}\left(k_r^{\mathrm{III}}\right)$	_	_	_	_	

ветственно, необменной сорбции и ремобилизации радионуклида на i-том типе необменных центров.

Величины констант скорости процессов ионообменной сорбции и десорбции ¹³⁷Сs и ⁹⁰Sr, а также констант скорости необменной сорбции (фиксации) и ремобилизации ¹³⁷Сs и ⁹⁰Sr на реакционных центрах разных типов для глин разного минерального состава, определенные по уравнениям (1) и (2), приведены в табл. 2, 3.

На рис. 7, 8 приведены расчетные кривые сорбции-десорбции ¹³⁷Cs на реакционных центрах разных типов для бентонита и палыгорскитовой глины, а также результирующие кривые сорбции наряду с экспериментальными точками, полученными при исследовании динамики сорбции ¹³⁷Cs глинами. На рис. 9, 10 показаны аналогичные расчетные кривые сорбции-десорбции ⁹⁰Sr вместе с данными, полученными в ходе модельных экспериментов по динамике сорбции ⁹⁰Sr бентонитом и палыгорскитовой глиной. Экспериментальные точки на всех рисунках обозначены кружочками.

На реакционных центрах первого типа происходит быстрая фиксация ¹³⁷Cs, она осуществляется в течение первых двух-пяти дней,

Таблица 3. Кинетические параметры ионообменной и необменной сорбции ⁹⁰Sr глинами

Table 3. Kinetic parameters of ion-exchange and unexchange sorption of ⁹⁰Sr by clays

Константа	Тип реакционного	Глина					
скорости, сут	центра	бентонит	палыгор- скитовая				
Ионообменная сорбция							
Сорбция	$I\left(k_{sorp}^{I}\right)$	1,232	1,996				
	$II(k_{sorp}^{II})$	0,456	0,479				
	III (k_{sorp}^{III})	0,148	0,131				
	$IV\left(k_{sorp}^{IV}\right)$	0,0425	0,159				
Десорбция	$I\left(k_{dsorp}^{I}\right)$	0,358	0,339				
	$II\left(k_{dsorp}^{II}\right)$	0,0893	0,200				
	$III\left(k_{dsorp}^{III}\right)$	0,0860	0,0190				
	$IV\left(k_{dsorp}^{IV}\right)$	_	_				
Необменная сорбция							
Сорбция	$I\left(k_{fix}^{I}\right)$	0,860	1,227				
	$\mathrm{II}\left(k_{fix}^{\mathrm{II}}\right)$	0,168	0,192				
	$\text{III}\left(k_{\textit{fix}}^{\text{III}}\right)$	0,0298	0,0511				
Десорбция	$I\left(k_r^{\ I}\right)$	0,163	0,0887				
	$\mathrm{II}\left(k_{r}^{\mathrm{II}}\right)$	0,0593	0,0923				
	III (k_r^{III})	_	_				

но и ремобилизация ¹³⁷Cs с этих центров происходит достаточно быстро. Константы скорости ремобилизации (десорбции) ¹³⁷Cs с реакционных центров I и II типов соизмеримы с константами скорости его фиксации на реакционных центрах III типа. Быстрее всего достигается равновесие между сорбцией и десорбцией на центрах I и II типов на бентоните, который характеризуется наиболее высокими значениями констант скорости необменной сорбции ¹³⁷Cs на реакционных центрах І типа и низкими — константы скорости десорбции (ремобилизации) с центров II типа. Благодаря этому бентонит быстрее всего поглощает ¹³⁷Cs из раствора и наиболее прочно удерживает его в необменно-сорбированной форме.

В случае сорбции ⁹⁰Sr как ионо-, так и необменное поглощение с большей скоростью протекает на палыгорскитовой глине. Однако для сорбции ⁹⁰Sr на глинах установлен факт перехода радионуклида со временем из необменной формы в ионообменную, которая находится в динамическом равновесии с водорастворимой и, следовательно, способна к водной миграции.

Выводы. 1. Исследования динамики сорбции ¹³⁷Сs глинами разного минерального состава показали, что 99,6—99,8 % ¹³⁷Сs поглощается глинами на протяжении первых суток, при этом относительные доли ионо- и необменной сорбции варьируют в зависимости от минерального состава глин. По способности к необменной сорбции ¹³⁷Сs глины составляют такой ряд: полиминеральная глина < палыгорскитовая < каолин < бентонит.

2. Выявлен эффект ремобилизации радионуклидов, находившихся в фиксированной форме, т. е. обратный переход радионуклидов из фиксированной формы в ионообменную, потенциально способную к водной миграции. Особенно мощно он проявляется в случае

сорбции глинами ⁹⁰Sr. Достаточно заметно проявляется ремобилизация ¹³⁷Cs, необменно-сорбированного полиминеральной и палыгорскитовой глинами. Сорбция цезия этими глинами характеризуется значительным вкладом ионообменной сорбции на протяжении длительного времени. Процессы временной ремобилизации характерны даже для динамики сорбции ¹³⁷Cs бентонитом на фоне мощной сорбционной способности последнего относительно этого радионуклида.

- 3. Установлено, что ионо- и необменное поглощение ¹³⁷Cs глинами происходит на реакционных центрах трех типов. На каждом типе центров протекают два противоположно направленных процесса сорбция (фиксация) цезия и его десорбция (ремобилизация). Результирующее распределение ¹³⁷Cs между фиксированной и ионообменной формами на центрах разных типов определяется конкуренцией процессов сорбции и десорбции.
- 4. Ионообменная сорбция 90 Sr происходит на реакционных центрах четырех типов, а необменная на реакционных центрах трех типов.
- 5. Определены величины констант скорости процессов ионообменной сорбции и десорбции 137 Cs и 90 Sr, а также констант скорости необменной сорбции (фиксации) и ремобилизации 137 Cs и 90 Sr на реакционных центрах разных типов для глин разного минерального состава.
- 6. Применение методики исследования сорбционной способности глин относительно радионуклидов в динамике, с учетом фактора времени, в комплексе с традиционными статическими исследованиями позволяет более надежно оценивать эффективность защитного глинистого слоя. Эти новые оригинальные результаты дадут возможность углубленного познания механизма сорбции радионуклидов глинами разного минерального состава.

Ин-т геохимии окруж. среды НАН и МЧС Украины, Киев

Поступила 25.06.2010

^{1.} *Кононенко Л.В., Колябина И.Л., Коромысличенко Т.И.* Кинетика обменного и необменного поглощения цезия-137 дерново-подзолистой почвой // 36. наук. пр. IГНС. — 2007. — Вип. 14. — С. 48—55.

^{2.} Лаверов Н.П., Омельченко Б.И., Юдинцев С.В. Изоляционные свойства бентонитового буфера в условиях подземного хранилища высокоактивных отходов // Геология руд. месторождений. — 2004. — 46, № 1. — С. 27—42.

^{3.} Data report for the safety assessment SR-Can // Techn. Rep. TR-06-25. Stockholm. — 2006. — P. 243.

^{4.} *Luukkonen A.* Modeling approach for geochemical changes in the prototype repository engineered barrier system // Work. Rep. 2004-31. Olkiluoto, Finland. — 2004. — P. 41.

PESIOME. Проведено експериментальні модельні дослідження обмінного та необмінного поглинання 137 Cs і 90 Sr природними глинами (бентонітом, палигорськітовою глиною, каоліном та глиною змішаного складу). Виявлено ефект ремобілізації радіонуклідів, що перебували у фіксованій формі. Визначено величини констант швидкості іонообмінної сорбції та десорбції 137 Cs і 90 Sr, а також константи швидкості необмінної сорбції (фіксації) та ремобілізації 137 Cs і 90 Sr на реакційних центрах різних типів для глин різного мінерального складу.

SUMMARY. Experimental model studies of ion-exchange and unexchange sorption of 137 Cs and 90 Sr by natural clays of different mineral composition were carried out. Study of dynamics of radionuclide sorption by clays showed, that 99.6—99.8 % of 137 Cs is absorbed by clays during the first day, the relative parts of ion-exchange and unexchange sorption vary depending on mineral composition of clays. In accordance with a 137 Cs unexchange sorption power the clays may be arranged in a row: multimineral clay < palygorskite < kaolin < bentonite.

The effect of radionuclide remobilization was found, in other words a reverse conversion of radionuclide fixed species to ion-exchange one, potentially able to water migration. This effect is especially evident in the case of ⁹⁰Sr sorption by clays. A remobilization of the ¹³⁷Cs, absorbed by multimineral and palygorskite clays, is rather noticeable too. ¹³⁷Cs absorption by these clays is characterized by the significant contribution of ion-exchange sorption over a long time. Although bentonite has a great ¹³⁷Cs absorption power, the process of temporal remobilization takes place even in dynamics of ¹³⁷Cs sorption by that kind of clay.

The data obtained from our model experiments were processed by mathematical modeling of kinetics of radionuclide ion-exchange and unexchange sorption with the use of multi-position absorption model. It is established that both ion-exchange and unexchange ¹³⁷Cs sorption by clays takes place on the reaction centers of three types. The processes of two opposite directions — sorption (fixing) of ¹³⁷Cs and its desorption (remobilization) — proceed on the centers of each type. The resulting distribution of ¹³⁷Cs between fixed and ion-exchangeable species on the centers of different types is determined by competition of sorption processes. Ion-exchange sorption of ⁹⁰Sr by clays takes place on the reaction centers of four types, unexchange one — on the reactionary centers of three types.

The values of rate constants of the processes of ¹³⁷Cs and ⁹⁰Sr ion-exchange sorption and desorption of ¹³⁷Cs and ⁹⁰Sr, as well as rate constants of their unexchange sorption (fixing) and remobilization on the reaction centers of different types were estimated for investigated clays.

Study of radionuclide sorption power of clays in dynamics, taking into account the time factor, combined with traditional static researches, allows more reliable estimation of clay efficiency as a protective layer for radioactive waste repository.