MIHEPAЛОГІЯ MINERALOGY

УДК 546.711: 549.623.5: (544.174.2 + 535.37)

А.Н. Платонов, В.М. Хоменко, А.Н. Таращан

Институт геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины 03680, г. Киев-142, Украина, пр. Акад. Палладина, 34 E-mail: platonov@i.com.ua

КРИСТАЛЛОХИМИЯ И СПЕКТРОСКОПИЯ ИОНОВ МАРГАНЦА В СЛЮДАХ

Методами оптической спектроскопии и люминесценции изучены образцы Mn³⁺-содержащих разновидностей фенгитов (алургитов), мусковитов и лепидолитов, а также образцы Mn²⁺-содержащих слюд — широзулита и манганофиллита. Поляризованные оптические спектры алургитов и Mn³⁺-мусковитов характеризуются наличием четырех полос поглощения ионов Mn^{3+} , спектральная позиция которых близка к таковой в спектрах поглощения других минералов, окрашенных этими ионами, — берилла-морганита, клиноцоизита, цоизита-тулита, турмалина-эльбаита, эпидота-пьемонтита, монтмориллонита и т. д. Средние значения энергии полос поглощения ионов $\mathrm{Mn^{3+}}$ в оптических спектрах алургита $\mathit{Al\text{-}Sw} - \mathrm{v_1} = 10700~\mathrm{cm^{-1}}, \mathrm{v_2} = 17550, \mathrm{v_3} = 19800~\mathrm{u}~\mathrm{v_4} = 22450~\mathrm{cm^{-1}},$ а в спектрах $\mathrm{Mn^{3+}}$ -мусковита $\mathit{GRR}\text{-}727 - \mathrm{v_1} = 10300~\mathrm{cm^{-1}}, \mathrm{v_2} = 17750, \mathrm{v_3} = 19950, \mathrm{v_4} = 22450~\mathrm{cm^{-1}}.$ Спектры поглощения лепидолитов аналогичны спектрам алургитов, средние значения энергии полос в них составляют: v_1 = = 12370 см $^{-1}$, v_2 = 17600, v_3 = 19940, v_4 = 22440 см $^{-1}$. Существенной отличительной особенностью спектров Mn³⁺ в лепидолитах является более высокое (12370 см⁻¹ против 10300 в спектрах алургитов) значение энергии v_1 -полосы. Для спектров поглощения алургитов, полученных при трех ориентациях вектора поляризованного света — $E \parallel Np \parallel c \parallel c$, $E \parallel Nm \perp c$ и $E \parallel Ng \perp c$, проанализированы ориентационные зависимости полос $v_1 - v_4$ ионов Mn³⁺. В соответствии с правилами отбора эти полосы поглощения отнесены к электронным переходам $^{5}B \rightarrow ^{5}A$ и $^{5}B \rightarrow ^{5}B$ в ионах Mn³⁺, находящихся в октаэдрическом кристаллическом поле локальной симметрии C_2 (позиция M2 в структуре слюды). На примере спектра поглощения ионов Mn^{3+} в полилитионите рассмотрено влияние ионов лития на спектроскопические параметры Mn^{3+} -содержащих слюд. В спектре поглощения широзулита наблюдаются восемь слабых узких полос ионов $^{VI}Mn^{2+}$ и $^{IV}Fe^{3+}$, наложенных на интенсивный край полосы переноса заряда $O^{2-} \to Fe^{3+}$, а в спектре манганофиллита ($E \perp c$) на крутом склоне полосы $O^{2-} \to Fe^{3+}$ фиксируются лишь слабые перегибы в районе предполагаемых узких полос поглощения, соответствующих переходам на уровни ${}^{4}A, {}^{4}E({}^{4}G)$ и ${}^{4}T_{2}({}^{4}D)$ в ионах ${}^{VI}Mn^{2+}$ и ${}^{IV}Fe^{3+}$. На основе анализа оригинальных спектров возбуждения люминесценции (Mn^{2+}, Fe^{3+}) -содержащих синтетических флогопитов выполнено отнесение полос поглощения в спектрах широзулита и манганофиллита к конкретным электронным переходам в ионах ${}^{
m VI}{
m Mn}^{2+}$ и IV Fe³⁺. Обсуждаются механизмы образования обменно-связанных пар VI Mn²⁺ и IV Fe³⁺ в структуре слюд. Слабые полосы излучения ионов VIMn²⁺ при 570 нм в спектрах рентгенолюминесценции выявлены в ограниченном числе изученных образцов слюд, что позволяет предположить преимущественно трехвалентное состояние примеси марганца в изученных мусковитах и лепилолитах.

Введение. Марганец в виде ионов Mn^{2+} и Mn^{3+} относится к числу постоянных изоморфных примесей в природных слоистых силикатах, в том числе в слюдах, где в некоторых минеральных видах он играет роль видообразующего элемента. В качестве примеров отметим такие триоктаэдрические слюды, как норришит $KLiMn^{3+}{}_{2}Si_{4}O_{12}$, марганцевые аналоги

© А.Н. ПЛАТОНОВ, В.М. ХОМЕНКО, А.Н. ТАРАЩАН, 2012

флогопита — широзулит $KMn^{2+}_2Si_3AlO_{10}(OH)_2$ и циннвальдита — масутомилит $K(LiAlMn^{2+})$ $Si_3AlO_{10}F_2$, содержащий от 1,0 до 1,5 ф. ед. Mn^{2+} (до 8 % MnO), а также монтдорит (K, $Na)_2(Fe^{2+}$, Mn, Mg, Ti, $Al)_5Si_8O_{20}(F, OH)_4$ и хендриксит $K(Zn, Mg, Mn^{2+})_3Si_3AlO_{10}(OH)_2$, содержащие от 9 до 13 % оксида марганца [5]. В более распространенных слюдах — мусковите и флогопите — содержание марганца достигает 1,5 % MnO в первом (разновидность алургит) и до 20 — во втором (манганофил-

лит). В лепидолитах максимальное содержание марганца составляет около 6 % MnO.

Интересным и малоизученным направлением кристаллохимии слюд является изучение характера распределения разновалентных ионов марганца в минералах этой группы в зависимости от комбинации видообразующих катионов. Так, фиксируемая по данным полных химических анализов высокая степень окисленности изоморфной примеси марганца в литиевых слюдах может быть обусловлена необходимостью компенсации заряда слюдяного пакета при вхождении одновалентных ионов Li⁺ в позиции октаэдрического слоя (дополнительно к параллельному замещению $Al^{3+} \leftarrow Si^{4+}$ в тетраэдрическом слое). Не случайно многие литийсодержащие минералы редкометалльных дифференцированных пегматитов (бериллы, сподумены, турмалиныэльбаиты и, конечно же, слюды) обладают характерной розовой, сиреневой, пурпурной, лиловой и фиолетовой окраской, вызванной одним из наиболее известных хромофоров минерального мира — ионами трехвалентного марганца.

Возможное вхождение Mn^{3+} в октаэдрические позиции магнезиально-железистых слюд компенсируется, как и для других высоковалентных катионов (Fe^{3+} , Ti^{4+} , Cr^{3+}), также путем замены части атомов кремния атомами алюминия в тетраэдрическом слое слюдяного пакета.

Благодаря своей привлекательной окраске Mn³⁺-содержащие слоистые силикаты постоянно находятся в сфере внимания специалистов в области оптической спектроскопии минералов, свидетельством чему служат приведенные в табл. 1 результаты исследования этих объектов, полученные в разное время разными исследователями. В таблицу вошли только те данные, авторы которых однозначно приписали полосы поглощения в спектрах изученных слюд ионам Mn³⁺. Детальный сравнительный анализ оптических спектров Mn³⁺-содержащих слюд до сих пор не проводился. Следует также отметить, что розовая окраска марганецсодержащих минералов и слоистых силикатов в том числе, особенно на первых этапах исследования спектров поглощения последних, нередко связывалась с ионами Mn²⁺, поскольку широкие полосы оптических переходов ${}^5E_g \to {}^5T_{2g}$ в ионах ${\rm Mn^{3+}}$ и ${}^6A_{1g} \to {}^4T_{1g}$ в ионах ${\rm Mn^{2+}}$ весьма близки по энергии (спектральному положению).

Спектроскопические свойства ионов Mn^{2+} в слюдах изучены слабо несмотря на их широкую распространенность в качестве примеси, зачастую значительной $(0,n-n\ \%)$: до настоящего времени имеется лишь несколько работ, в которых приводятся данные об оптических спектрах поглощения и спектрах люминесценции Mn^{2+} в минералах этой группы [1—3, 7, 9, 11, 25, 41, 43]. Наиболее обстоятельное исследование выполнено Γ . Смитом с колле-

Tаблица 1. Значения энергии полос поглощения ионов M n^{3+} в оптических спектрах природных слюд (по данным предыдущих исследователей)

Table 1. Energy values of the Mn³⁺-ions absorption bands in the optical spectra of natural micas (previous published data)

Минерал	Место отбора	П	Источник		
Miniepasi	nicero croopa	ν_1	ν_2	ν_3	TIOTO IIIIIK
Мусковит	Archer's Post, Кения Ultevis, Швеция Не указано Ю. Дакота, США	13700 13200 — —	18250 18250 17540 18520—17860	21850 21850 — —	[34, 20] [20] [12] [1]
Алургит	Minas Gerais, Бразилия	10200	18235	21990	[37]
Мусковит	Harding Mine, США Забайкалье, Россия	_ 12200	18480 18900	21880 22200	[37] [9]
Лепидолит	California, США Не указано	11600 12500	16900 17860—18350	21500 21980—22200	[36] [1]
Флогопит Норришит	Синтетический N.S. Wales, Австралия	12300 —	19500 17400—19600	22400 22500	[41] [24]

гами [41], выявившими сложный характер оптических спектров поглощения марганецсодержащих флогопитов, представленных комбинацией полос поглощения октаэдрических ионов Mn^{2+} и тетраэдрических ионов Fe^{3+} . Авторы показали, что значительное увеличение интенсивности полос в поляризации $E \parallel c$ обусловлено образованием в структуре слюды обменно-связанных пар ${}^{IV}Fe^{3+} - {}^{VI}Mn^{2+}$. А.И. Бахтин [1] в спектре поглощения краснобурого манганофиллита, содержащего 5,38 МпО, наблюдал в этой же поляризации серию узких полос VIMn²⁺, которые приписал электронным переходам на уровни 4T_1 (18520 см⁻¹), 4T_2 (21500), ${}^{4}E, {}^{4}A_{1}$ (23810). В отличие от Г. Смита и др. [41], он наблюдал усиление и уширение этих полос в поляризации $E \perp c$ и объяснил эти эффекты обменным взаимодействием между парой ионов Mn²⁺, расположенных в соседних октаэдрах.

Информация о люминесценции Mn²⁺ в слюдах впервые была приведена в работе И.В. Прокофьева и др. [11]: по аналогии с другими силикатами авторы приписали ионам Mn²⁺ полосу 570 нм в спектрах излучения мусковита. В дальнейшем эта трактовка была принята в качестве основной в работах других исследователей [2, 3], хотя прямой зависимости интенсивности этой полосы от содержания марганца проследить не удалось. При изучении большой коллекции слюд различной генетической принадлежности Г.В. Кузнецовым и А.Н. Таращаном [3] было также показано, что полосы люминесценции Mn²⁺ при рентгеновском возбуждении наиболее характерны для спектров слюд из редкометалльных месторождений, в основном для мусковитов, реже лепидолитов, развивающихся по мусковиту. Так же, как и в спектрах поглощения, полосы излучения Mn²⁺ в спектрах рентгенолюминесценции слюд практически всегда сопровождаются полосами излучения ионов ^{IV}Fe³⁺.

Основная проблема при идентификации полос поглощения ионов $\mathrm{Mn^{2+}}$ — низкая интенсивность этих полос, обусловленная запрещенным по спину характером электронных dd-переходов в ионах с конфигурацией $3d^5$ ($\mathrm{Mn^{2+}}$, $\mathrm{Fe^{3+}}$). По данным Р.Г. Бернса [22], молярный коэффициент экстинкции ε полос поглощения, связанных со спин-запрещенными переходами, составляет 10^{-1} — $10~\mathrm{J} \cdot \mathrm{моль^{-1}} \times \mathrm{cm^{-1}}$. Дополнительные трудности возникают при анализе спектров $\mathrm{Mn^{2+}}$ в минералах, со-

держащих примесь ионов ${}^{VI}Fe^{3+}$ и ${}^{IV}Fe^{3+}$, слабые узкие полосы поглощения которых нередко перекрываются с полосами Mn^{2+} .

Несмотря на перечисленные сложности интерпретации, невозможность определения валентного состояния марганца современными локальными методами и недостаточное количество большей частью устаревших данных, полученных с помощью традиционного химического анализа, делают сегодня метод локальной оптической (электронной) спектроскопии ведущим при определении наличия структурной примеси ионов Mn³⁺ в минералах. В данной статье авторами исследованы кристаллохимические аспекты вхождения разновалентных ионов Mn³⁺, Mn²⁺ в структуру слюд на основании интерпретации и детального сравнительного анализа оригинальных и ранее опубликованных спектров оптического поглощения, люминесценции и состава марганецсодержащих слюд.

Изученные образцы и методика исследования. Объектом наших исследований послужили "классические", известные из минералогических справочников образцы Mn³⁺-coдержащих разновидностей мусковитов — алургитов, обладающих характерной пурпурнокрасной (малиновой) окраской, а также избранные образцы Mn³⁺-содержащих литиевых слюд — мусковитов и лепидолитов из коллекции Т.Н. Шуриги, собранной в процессе многолетнего изучения редкометалльных месторождений. Также нами были исследованы с помощью методов оптической спектроскопии и люминесценции образцы Mn²⁺содержащих слюд — широзулита и манганофиллита. Состав изученных образцов с указанием мест (регионов) их отбора приведен в табл. 2.

Состав большинства изученных образцов слюд определяли методом классического "мокрого" анализа в химической лаборатории ВИМСа (Москва, Россия, аналитик С.П. Пурусова) из микронавесок тех же образцов (монофракций) слюд, микрокристаллы из которых использовали при оптико-спектроскопических исследованиях. Содержание щелочных металлов определено там же методом пламенной фотометрии.

Микрозондовые анализы алургитов Al-Sw и Al-P, лепидолита VK, широзулита и манганофиллита выполнены в центральной лаборатории (ZELMI) Технического университета Бер-

Tаблица 2. Место отбора и катионный состав изученных образцов Mп $^{3+}$ -содержащих слюд (коэффициенты кристаллохимических формул, O = 11)

Table 2. Localities and cation compositions (atoms per formula units, O = 11) of the Mn³⁺-bearing micas studied

Номер	Место отбора	Катионы, а. ф. е.													
образца	Meero oroopa	Si	Ti	^{IV} A1	^{VI} Al	Fe ³⁺	Fe ²⁺	Mn	Mg	Ca	Li	K	Na	Rb	Cs
			•	Фен	гиты і	и муско	виты								
Al-Sw	Ultevis, Швеция	3,23	0,04	0,77	1,59	0,17	N. d.	0,033	0,22	-	-	0,92	0,57	-	_
Al-P	Piemont, Италия	3,68	0,014	0,32	1,22	0,04	"	0,055	0,70	_	-	0,93	0,01	_	-
GRR-727*	Minas Gerais, Бразилия	3,06	0,02	0,94	1,72	0,15	_	0,020	0,10	_	_	0,93	0,05	_	-
100	Монголия	2,97	l —	1,03	1,98	0,02	0,01	0,004	l —	0,02	0,01	0,80	0,07	0,09	0,01
					Лепи	долить	ol								
VK	В. Казахстан	3,33	-	0,67	1,54	0,001	N. d.	0,053	—	-	0,97	0,92	0,02	0,012	_
<i>LX</i> -1	Кольский п-ов, Россия	3,24	_	0,76	1,44	_	_	0,03	_	0,02	1,44	0,92	0,02	0,001	0,001
IM	Забайкалье, Россия	3,33	_	0,67	1,61	_	_	0,03	_	0,01	0,87	0,79	0,06	0,03	0,006
SB	В. Саян, Россия	3,33	_	0,67	1,47	0,008	_	0,02	_	_	1,20	0,89	0,02	0,07	0,01
K-1	В. Казахстан	3,26	_	0,74	1,57	0,004	_	0,004	_	0,02	1,00	0,90	0,05	0,04	0,01
31	В. Саян, Россия	3,29	_	0,71	1,40	0,01	_	0,004	_	0,06	1,34	0,80	0,05	0,16	0,03
					Полилі	итионі	ım								
MP	Мадагаскар	3,58	l —	0,42	1,15	0,02	0,01	0,15	I —	I —	1,68	0,83	0,02	I — I	_
Широзулит															
ShJ**	Taguchi m., Япония	12,54	0,04	1,46	0,29	N. d. l	0,20	1,53	0,94	l —	N. d.	0,90	0	N. d. l	N. d.
	Манганофиллит														
Man***	Långban, Швеция	2,88	0,04	1,12	0,13	N. d.	0,24	0,25	2,28	0	N. d.	0,95	0,03	N. d.	N. d.

 Π р и м е ч а н и е. * — по данным работы [31], ** — по данным работы [30], *** — 0,02 Ва; N. d. — не определялось.

лина (Германия) на приборе *Camebax Micro-beam*. Образцы анализировали в пластинках, подготовленных для спектроскопического изучения. Анализы каждого образца проведены при диаметре электронного зонда 2 мкм и напряжении 15 кВ в трех—шести точках, расположенных в пределах тех участков, где проводились измерения спектров поглощения. В качестве стандартов использовали: рутил — для Ті, шпинель — для Al и Mg, волластонит — для Si и Ca, α-Fe — для Fe, альбит — для Na, ортоклаз — для K, флюорит — для F, чистые металлы — для Мп и Сг.

Пересчет химических анализов на коэффициенты кристаллохимических формул проводили по методу валентностей, при суммарной отрицательной валентности анионного каркаса, равной 22 на половину элементарной ячейки. Данные о содержании химических элементов в тексте, таблицах и на рисунках приведены в виде количества атомов на формульную единицу и обозначены аббревиатурой "а. ф. е.".

Спектры оптического поглощения приведенных в табл. 2 образцов марганецсодержа-

щих слюд были измерены на несерийном высокочувствительном микроспектрофотометре [42] при комнатной температуре. Серьезной проблемой в получении оптических спектров поглощения природных слюд является, как правило, слабая прозрачность измеряемых образцов вследствие расщепления их по спайности и сопутствующих этому явлениям внутреннего отражения и интерференции света на тонких спайных слойках. С учетом морфологических особенностей образцов, их слабой прозрачности и слабой цветовой насыщенности часть оптических спектров была получена методом диффузного отражения от поверхностей спайных выколок — кристаллографических плоскостей (001) в диапазоне 350-1000 нм (28600-10000 см $^{-1}$). Угол падения луча составлял 45° с плоскостью измеряемого образца, вследствие чего оптическая ориентировка спектров является усредненной для оптических осей Np, Nm и Ng. Результирующие спектры были пересчитаны на значения функции Кубелки-Мунка (K/s).

Спектры поглощения относительно прозрачных спайных пластинок слюд получены

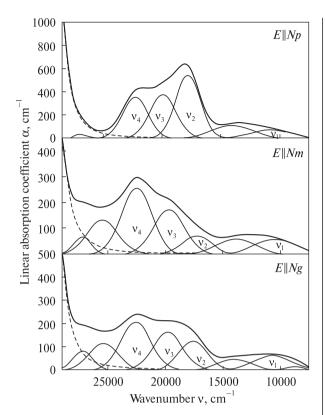
стандартным способом (на просвет) в том же спектральном интервале. Для части образцов удалось приготовить препараты, параллельные и перпендикулярные плоскости спайности (001), что позволило получить спектры по всем осям оптической индикатрисы. Для других образцов, относительно прозрачных в тонких (до 0,01 мм) препаратах, ориентированных параллельно плоскости спайности, спектры "на просвет" получены в двух поляризациях при $E \perp c$.

Для объективного разложения полученных спектров на элементарные полосы поглошения и более точной оценки спектроскопических параметров (энергии, интенсивности и полуширины) этих полос использовалась программа Peakfit 4.0 (Jandel Scientific). Длинноволновое крыло интенсивного УФ-поглощения, образующее фон для исследуемых спектров в видимой и ближней ИК-областях, моделировалось с помощью одной или двух полос смешанной (Гаусс-Лоренц) формы. Формы полос кристаллического поля в результате разложения неизменно описывались гауссианами или близкими к ним смешанными функциями. Разложение оптических спектров слюд осуществлялось с учетом приемлемой полуширины на полувысоте ($\Delta v_{1/2}$) полос ddпереходов в ионах Mn^{3+} [19, 29]. При этом принималось во внимание неизбежное вследствие упомянутых выше эффектов уширение полос поглощения, особенно в спектрах, полученных методом диффузного отражения.

С любезного согласия проф. Дж.Р. Россмана (*Caltech*, *Pasadena*, *USA*) нами для сравнения по той же методике были разложены поляризованные оптические спектры поглощения малиново-красного Mn³⁺-содержащего алургита из *Minas Gerais* (Бразилия), обр. *GRR*-727 [37]. Приведенный в табл. 2 состав этого образца взят из работы [31].

Спектры фото-, рентгенолюминесценции и возбуждения люминесценции были получены в Институте геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины на несерийном спектрофотометрическом оборудовании с использованием оригинальной методики, описаной в работе [15].

Результаты исследования. *Химический состав*. Судя по результатам химических анализов алургитов (табл. 2), последние полностью отвечают определению этой слюды как разновидности марганецсодержащего мусковита с


повышенным содержанием кремния и магния, т. е. фенгита. Оба изученных нами образца представляют упоминаемые в минералогических справочниках (см., например, [5]) типичные проявления, а алургит *Al-P* (Сан Марчель, Пьемонт, Италия) описан классиком минералогии Э.С. Дэна в его знаменитом труде "*Textbook of Mineralogy*" [23].

При пересчете микрозондовых анализов марганецсодержащих слюд на кристаллохимические формулы нами учитывались данные [38] о взаимном буферировании пар разновалентных ионов элементов переменной валентности. В соответствии с экспериментальными результатами, при взаимном нахождении в минералообразующем процессе ионов железа и марганца последний может переходить в трехвалентное состояние только после полного окисления железа до Fe³⁺. Отметим, что классические химические анализы минералов, в спектрах которых наблюдались типичные полосы Mn³⁺, в целом подтверждают данную закономерность.

В соответствии с изложенным выше, в приведенных кристаллохимических формулах мусковитов и лепидолитов (табл. 2), в спектрах которых надежно идентифицируются полосы поглощения Mn^{3+} , все железо было пересчитано на Fe^{3+} . При этом марганец может частично присутствовать и в двухвалентной форме. Таким образом, полный набор возможных ионов-хромофоров в этих слюдах включает Mn^{3+} , Mn^{2+} , Fe^{3+} .

В анализах манганофиллита и ширазулита, спектры которых не содержат полос Mn^{3+} , весь марганец, так же, как и железо, пересчитаны на двухвалентную форму, хотя при этом значительная часть железа может находиться и в форме Fe^{3+} .

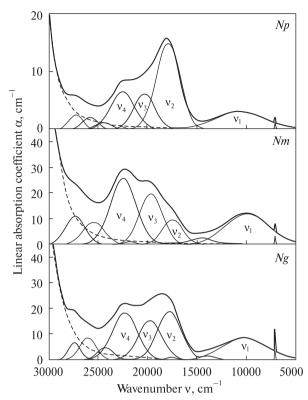
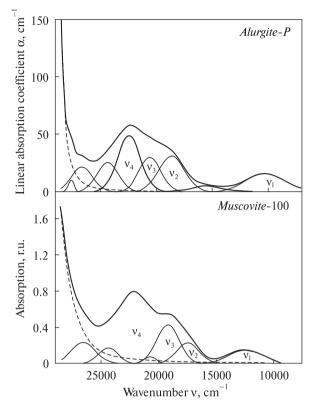

В составе обр. *Al-P* весь марганец пересчитан на Mn³⁺, что хорошо согласуется с результатами "классического" анализа С. Пенфилда (1833) [5], в соответствии с которым алургит из Сан Марчеля содержит 0,04 а. ф. е. Mn³⁺ и 0,01 — Mn²⁺. Алургит *Al-Sw* из месторождения *Ultevis* (Швеция) содержит, по данным [20], 0,03 а. ф. е. трехвалентного марганца. Образец *GRR*-727, весьма близкий по своей насыщенной красно-пурпурной окраске к рассмотренным выше образцам, отличается от последних "мусковитовым" содержанием кремния: состав этой марганецсодержащей слюды почти идентичен розовому мусковиту из Кении, в

Рис. 1. Поляризованные оптические спектры поглощения $\mathrm{Mn^{3+}}$ -содержащего фенгита (алургита) *Al-Sw* из проявления *Ultevis* (Швеция)

Fig. 1. Polarized optical absorption spectra of Mn³⁺-bearing phengite (alurgite) Al-Sw from Ultevis locality (Sweden)

том числе по содержанию примеси Mn^{3+} (0,03 а. ф. е.) [34, 35]. Соответственно, данный образец отнесен нами к Mn^{3+} -содержащим мусковитам.


 $Puc.\ 2.$ Поляризованные оптические спектры поглощения $\mathrm{Mn^{3^+}}$ -содержащего мусковита GRR -727 из $\mathit{Minas Gerais}$ (Бразилия). Снято Дж.Р. Россманом $\mathit{Fig.}\ 2.$ Polarized optical absorption spectra of $\mathrm{Mn^{3^+}}$ -bearing muscovite GRR -727 from Minas Gerais (Brasil).

Measured by G.R. Rossman

Особенностью химизма слюд из редкометалльных месторождений является присутствие в них лития и других редких щелочей — рубидия и цезия, а также отсутствие магния и

Taблица~3. Энергия (v), полуширины ($\Delta v_{1/2}$) и линейные коэффициенты поглощения (a) dd-полос поглощения ионов Mn^{3+} в оптических спектрах фенгитов и мусковитов Table~3. Energy (v), half widths ($\Delta v_{1/2}$), and linear absorption coefficients (a) of $Mn^{3+}~dd$ -bands in optical absorption spectra of phengites and muscovites

05	п	Спектроскопические параметры полос поглощения, см ⁻¹											
Образец	Поляризация	ν_1	$\Delta v_{1/2}$	α	ν ₂	$\Delta v_{1/2}$	α	ν ₃	$\Delta v_{1/2}$	α	v_4	$\Delta v_{1/2}$	α
Al-Sw	$Np(E \parallel c)$	10830	4000	71	17800	2450	547	19920	2640	377	22270	2530	355
	$Nm(E \perp c)$	10530	4110	58	17260	2940	70	19700	2790	172	22510	3080	256
	$Ng(E \perp c)$	10730	3890	62	17590	2840	119	19760	3040	164	22570	3090	210
GRR-727	$Np(E \parallel c)$	10680	5700	2,97	17920	2790	14,9	20350	2530	6,3	22540	2630	6,5
	$Nm(E \perp c)$	10000	4600	12	17490	2410	9,7	19690	2730	19,8	22500	3050	25,6
	$Ng(E \perp c)$	10200	5200	8,3	17810	2850	18,8	19780	2840	15,1	22330	2980	18,3
Al-P	$E \perp c$	10300	4100	16	17660	2700	30	20590	2270	30	22440	2400	48
100	$(E \perp c)$	12460	3390	0,14	17480	2290	0,23	18210	2310	0,43	22180	3070	0,73

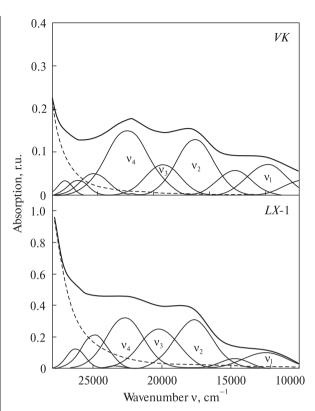


Рис. 3. Оптические спектры поглощения в $(E \perp c)$ -поляризации алургита Al-P из Пьемонта, Италия и мусковита 100 из Монголии

Fig. 3. The optical absorption spectra of alurgite Al-P from Piemont, Italy and muscovite 100 from Mongolia in $(E \perp c)$ -polarization

титана, что отличает их от диоктаэдрических алургитов. Как следует из табл. 2, состав изученных литиевых слюд варьирует от низколитиевого мусковита (0,01 a. ф. е. Li в обр. 100) до полилитионита *MP* (1,68 a. ф. е. Li), весьма близкого к соотношению 2Li:1Al в кристаллохимической формуле. Отметим, что нередко под названием л е п и д о л и т объединяют значительную группу природных слюд, промежуточных по составу между литиевым мусковитом (литиевым фенгитом) и слюдой с содержанием Li $1,5 \le x \le 2$ a. ф. е. [21, 32]. На диаграмме М.Д. Фостера [26] в координатах $X = \text{Fe}^{2+} + \text{Mg} + \text{Mn}^{2+}, \ Y = \text{Li } \text{и}$ $Z = Al + Fe^{3+}$ фигуративные точки состава лепидолитов, в том числе изученных нами образцов, располагаются по линии Al - Li. При этом, согласно расчетам катионного состава октаэдрического слоя, обр. 31, LX-1 и XXII отвечают по составу трилитионитам.

Содержание примеси марганца в изученных образцах слюд не превышает, как правило, 0,1 а. ф. е., максимальное значение уста-

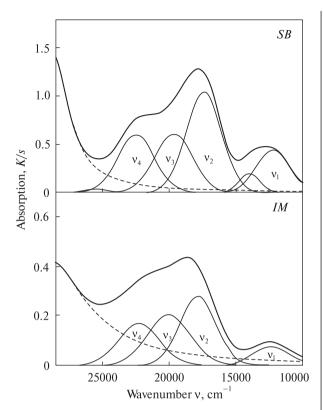
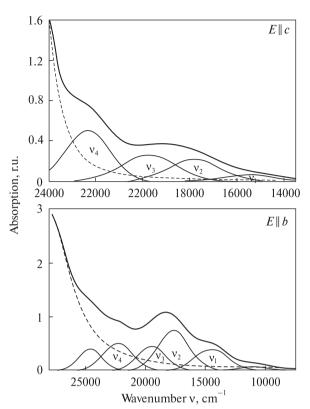

Рис. 4. Оптические спектры поглощения светло-пурпурных лепидолитов VK и LX-1 в $(E\perp c)$ -поляризации

Fig. 4. The optical absorption spectra of light-purple lepidolites VK and LX-1 in $(E \perp c)$ -polarization

новлено в полилитионите MP (0,15 а. ф. е. Mn). Приблизительно в таком же количестве в изученных слюдах присутствуют примеси других "хромофорных" ионов железа — Fe^{3+} и/или Fe^{2+} , которые также вносят определенный вклад в окрашивание слюд.

Оптические спектры поглощения ионов Mn^{3+} . Оптические спектры поглощения изученных образцов диоктаэдрических слюд — краснопурпурных алургитов Al-Sw, Al-P и Mn^{3+} -мусковитов GRR-723 и 100 приведены на рис. 1—3. Они характеризуются наличием четырех* полос поглощения ионов Mn^{3+} , спектральная позиция которых в целом довольно близка к таковой в спектрах поглощения других минералов, окрашенных этими ионами — берилла-морганита [33, 37], клиноцоизита и тулита [13], турмалина-эльбаита [37], эпидота-


^{*} Нумерация полос поглощения в приведенных оптических спектрах соответствует возрастанию энергии соответствующих электронных переходов в ионах Mn^{3+} .

Puc. 5. Оптические спектры поглощения сиреневых лепидолитов SB и IM, полученные методом диффузного отражения

Fig. 5. The optical absorption spectra of lilac lepidolites SB and IM measured by diffuse reflection method

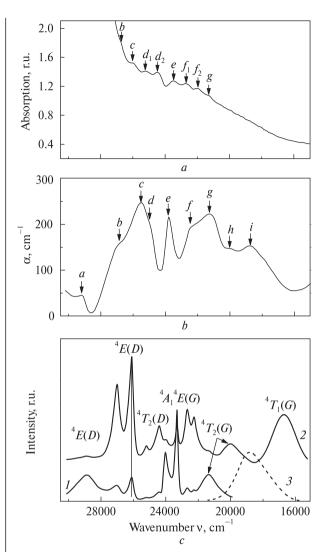
пьемонтита [22] и других. Более того, значения энергии элементарных полос поглощения ионов Mn^{3+} , полученных при разложении спектров алургита Al-P и диоктаэдрического смектита — монтмориллонита [40], практически полностью совпадают. Значения параметров полос поглощения ионов Mn^{3+} —

Puc.~6.~ Поляризованные оптические спектры поглощения сиреневого ${\rm Mn^{3+}}$ -содержащего полилитионита MP из Мадагаскара. Различие в ширине полос поглощения в двух спектрах обусловлено разным масштабом осей абсцисс

Fig. 6. Polarized optical absorption spectra of lilac Mn^{3+} -bearing polylithionite MP from Madagascar. Difference in the absorption bands width is caused by different scales of the abscissa axes in the spectra

энергии (v, см $^{-1}$), полуширины на полувысоте ($\Delta v_{1/2}$, см $^{-1}$) и интенсивности (α , см $^{-1}$ или I, отн. ед.), в четырехполосных спектрах приве-

Tаблица 4. Энергия (v), полуширины ($\Delta v_{1/2}$) и линейная интенсивность (I) dd-полос поглощения ионов Mn^{3+} в оптических спектрах изученных образцов лепидолитов и полилитионита Table 4. Energy (v), half widths ($\Delta v_{1/2}$), and linear intensities (I) of Mn^{3+} dd-bands in optical absorption spectra of lepidolites and polylithionite studied


Ofmanay	Спектроскопические параметры полос поглощения, см $^{-1}$											
Образец	ν_1	$\Delta v_{1/2}$	I	v_2	$\Delta v_{1/2}$	I	ν_3	$\Delta v_{1/2}$	I	ν_4	$\Delta v_{1/2}$	I
IM	12390	3240	0,07	17870	3200	0,28	20030	3780	0,20	22270	3640	0,17
31	13390	3320	0,27	17560	3210	0,52	20090	3350	0,24	22360	3030	0,14
SB	12250	2950	0,44	17400	3100	1,04	19680	3360	0,6	22470	3250	0,6
<i>K</i> -1	12290	3040	0,09	17520	2940	0,31	19900	3110	0,16	22270	3020	0,15
<i>LX</i> -1	12530	3560	0,10	17670	3260	0,31	19990	3300	0,25	22710	3160	0,32
VK	12390	3370	0,07	17630	3250	0,13	19950	2980	0,07	22560	3590	0,15
$MP(E \parallel c)$	15400	2640	0,07	17810	2540	0,22	19740	2750	0,22	22350	2210	0,50
$MP(E\perp c)$	14520	3200	0,37	17670	3040	0,71	19570	2810	0,45	22340	2610	0,43

дены в табл. 3. Усредненные значения энергии полос поглощения ионов ${\rm Mn^{3+}}$ в оптических спектрах обр. GRR-727 составляют: ${\rm v_1}=10300~{\rm cm^{-1}}$ (970 нм), ${\rm v_2}=17750$ (565), ${\rm v_3}=19950$ (500) и ${\rm v_4}=22450~{\rm cm^{-1}}$ (445 нм), а в спектре алургита ${\it Al-Sw}-{\rm v_1}=10700~{\rm cm^{-1}}$ (935 нм), ${\rm v_2}=17550$ (570), ${\rm v_3}=19800$ (505) и ${\rm v_4}=22450~{\rm cm^{-1}}$ (445 нм).

Типичные спектры поглощения изученных образцов сиреневых, розовато-сиреневых и розовых лепидолитов приведены на рис. 4 и 5, а параметры полос поглощения $v_1 - v_4$ ионов Mn³⁺ в их оптических спектрах суммированы в табл. 4. Как видим, эти спектры по общей конфигурации, числу полос и их спектральной позиции практически аналогичны спектрам алургитов; средние значения энергии полос составляют: $v_1 = 12370 \text{ см}^{-1}$, $v_2 = 17600$, $v_3 = 19940$ и $v_4 = 22440$ см⁻¹. Некоторое уширение полос поглощения ионов Mn³⁺ в спектрах лепидолитов может быть связано с особенностями измерения спектров этих образцов (см. выше). Существенной отличительной особенностью спектров Mn³⁺ в лепидолитах является более высокое (12370 см^{-1} против 10300 в спектрах алургитов) значение энергии v_1 -полосы. Отметим, что значение энергии v_1 полосы в спектре розового Li-содержащего мусковита 100 аналогично значениям у этой полосы в спектрах триоктаэдрических лепидолитов, но отличается от таковых в спектрах не содержащих лития алургитов.

Поляризованные оптические спектры поглощения сиреневого полилитионита MP (0,15 а. ф. е. Мп), полученные для разрезов, параллельных и перпендикулярных плоскости спайности (001), заметно отличаются от рассмотренных выше примеров. Поляризованный ($E \parallel c$) спектр полилитионита в интервале 415—715 нм (24000—14000 см $^{-1}$) приведен на рис. 6. Значения энергии полос поглощения ионов Mn^{3+} , кроме полосы v_1 , близки к таковым в спектрах мусковитов и лепидолитов (табл. 3, 4); их средние величины в спектрах полилитионита MP равны: $v_1 = 14950$ см $^{-1}$, $v_2 = 17740$, $v_3 = 19660$ и $v_4 = 22350$ см $^{-1}$.

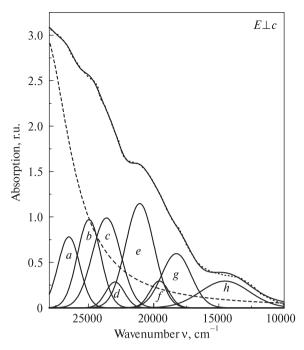

Кроме полос поглощения ионов Mn^{3+} в приведенных спектрах фиксируются полосы меньшей интенсивности ~27000—27500 см⁻¹, 25400—25800, 24200—24500, 15200—15400, 13900—14500 см⁻¹, соответствующие или близкие по спектральной позиции полосам запрещенных переходов в окта- и тетраэдри-

Рис. 7. a — оптический спектр поглощения широзулита, $\mathrm{KMn_3}^{2+}(\mathrm{Si_3Al})\mathrm{O_{10}}(\mathrm{OH})_2;\ b$ — спектр поглощения марганецсодержащего флогопита в поляризации $E \parallel X$ при низкой температуре [41]; c — спектры возбуждения люминесценции ионов $^{\mathrm{VI}}\mathrm{Mn^{2+}}$ (1, $\lambda_{\mathrm{изл}} = 530$ нм) и $^{\mathrm{IV}}\mathrm{Fe^{3+}}$ (2, $\lambda_{\mathrm{изл}} = 700$ нм) в активированном синтетическом фторфлогопите (T = 77 K)

Fig. 7. a — optical absorption spectrum of shirozulite, $\text{KMn}_3^{2+}(\text{Si}_3\text{Al})\text{O}_{10}(\text{OH})_2$; b — absorption spectrum of manganese-bearing phlogopite in the polarization $E \parallel X$ at low temperature [41], c — excitation spectra of Mn^{2+} ions (1, $\lambda_{\text{emis}} = 530$ nm) and $^{\text{IV}}\text{Fe}^{3+}$ (2, $\lambda_{\text{emis}} = 700$ nm) in activated synthetic fluorphlogopite (T = 77 K)

чески координированных ионах Fe^{3+} [18, 20, 25, 34]. Отметим, что широкие полосы поглощения в области 13000-15000 см $^{-1}$ весьма характерны для оптических спектров ди- и триоктаэдрических природных слюд, содержащих разновалентные ионы железа. Такие полосы интерпретированы как полосы переноса заряда $Fe^{2+} \rightarrow Fe^{3+}$ или как полосы об-

Рис. 8. Оптические спектры поглощения манганофиллита

Fig. 8. Optical absorption spectra of manganophyllite

менного взаимодействия между ионами Fe^{2+} — Fe^{3+} [1, 18, 36 и др.].

Спектры оптического поглощения и люминесценции ионов Mn^{2+} . Примером оптических спектров поглощения Mn^{2+} -содержащих слюд могут служить исследованные нами спектры широзулита (1) из рудника $Taguchi\ mine\ (Япо$ ния) и манганофиллита (2) из месторождения $Langban\ (Швеция)$, коэффициенты кристаллохимических формул которых, рассчитанные по данным микрозондовых анализов, представлены в табл. 2.

В спектре поглощения широзулита, приведенном на рис. 7, a, фиксируются восемь слабых узких полос, наложенных на интенсивный край полосы переноса заряда $O^{2-} \rightarrow Fe^{3+}$. Характерный спектр поглощения манганофиллита в поляризации $E \perp c$ приведен на рис. 8. Как видно из рисунка, на крутом склоне полосы поглощения $O^{2-} \rightarrow Fe^{3+}$ в коротковолновой области заметны лишь слабые перегибы в районе предполагаемых узких полос, соответствующих переходам на уровни 4A , $^4E(^4G)$ и $^4T_2(^4D)$.

С целью надежной идентификации наблюдаемых в спектрах изученных минералов полос поглощения нами были изучены спектроскопические характеристики активированных марганцем и железом кристаллов синтетичес-

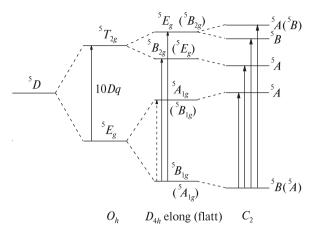
кого фторфлогопита $KMg_3[AlSi_3O_{10}]F_2$, который использован в качестве эталона. Образцы синтезированы с помощью метода пирогенного синтеза прямым высокочастотным нагревом в холодном тигле, что позволило получить высокую однородность распределения вводимых примесей и исключить загрязнение расплава материалом стенок тигля. Примеси (Mn, Fe) в широких концентрационных пределах (0,1-10%) вводили в шихту в виде оксидов.

Люминесценция ионов ${}^{VI}Mn^{2+}$ и ${}^{IV}Fe^{3+}$ при возбуждении в собственных полосах поглошения проявляется в спектрах синтетических фторфлогопитов в виде широкой полосы перехода ${}^{4}T_{2} \rightarrow {}^{6}A_{1}$ с максимумами 532 нм (18800 см⁻¹) и 705 (14200) соответственно. В спектре возбуждения люминесценции $^{VI}Mn^{2+}$ (рис. 8, c(1)) и ${}^{\text{IV}}\text{Fe}^{3+}$ (рис. 8, c (2)) во фторфлогопите наблюдаются полосы поглощения, которые в соответствии со схемой уровней ионов с электронной конфигурацией d^5 обусловлены переходами с нижнего уровня ${}^{6}A_{1}$ на все уровни расщепленных состояний ${}^4\dot{D}$ и 4G . При 77 К наблюдается расшепление наиболее узких и интенсивных полос поглощения, отнесенных к переходам ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{4}D)$ и ${}^{6}A_{1}({}^{6}S) \rightarrow$ ${}^{4}E, {}^{4}A_{1}({}^{4}G)$. Это свидетельствует о том, что низкосимметричная моноклинная составляющая кристаллического поля, в котором находятся ионы ${}^{VI}Mn^{2+}$ и ${}^{IV}Fe^{3+}$, приводит к полному снятию орбитального вырождения термов. Терм ${}^{4}E(D)$ расщепляется на две компоненты, а в области ${}^4A_1{}^4E(G)$ должны наблюдаться три узкие полосы, две из которых относятся к переходам на компоненты терма ${}^{4}E(G)$. В полученных спектрах возбуждения нами зафиксированы лишь две из них. Идентификация полос поглощения ионов двухвалентного марганца и трехвалентного железа дана в табл. 5, в которой для сравнения приведены значения энергии полос поглощения ^{IV}Fe³⁺ в оптическом спектре тетриферрифлогопита [6] и полос VIMn²⁺ и IVFe³⁺ в спектрах марганецсодержащих флогопитов [41].

Обсуждение результатов. Интерпретация спектров поглощения и кристаллохимия ионов Mn^{3+} в слюдах. Разрешенные dd-переходы в ионах Mn^{3+} (электронная конфигурация d^4) могут осуществляться только между основным 5E_g и возбужденным уровнями расщепленного в кристаллическом поле терма 5D [4, 22]. Соответственно, только электронные переходы

между этими уровнями могут вызывать интенсивные широкие полосы поглощения в оптических спектрах ${\rm Mn}^{3+}$ -содержащих соединений. Наличие в области $23000-17000~{\rm cm}^{-1}$ спектров изученных образцов сразу трех интенсивных полос поглощения с разной поляризационной зависимостью (рис. 1, 2; табл. 3, 4) предполагает полное снятие вырождения с верхнего триплетного уровня ${}^5T_{2g}$ (как и с основного 5E_g) в искаженных октаэдрах структуры слюд, точечная симметрия которых близка к группе C_2 [28, 31, 35].

Величина расшепления основного ян-теллеровского уровня 5E_g , полоса перехода между подуровнями которого находится в ИК-области в районе интенсивных пиков поглощения ОН-групп, нами не определялась. Без учета этого расшепления сила кристаллического поля Dq для конфигурации d^4 может быть рассчитана из средневзвешенной энергии трех переходов на подуровни триплета $^5T_{2g}$. Параметры соответствующих полос поглощения v_2 , v_3 и v_4 приведены в табл. 3, 4, а полученные значения Dq варьируют в узком диапазоне от 1930 в мусковите 100 до 2020 см $^{-1}$ в фенгите Al-P. На рис. 3 отчетливо видно смещение полос поглощения в спектре мусковита 100 по


сравнению со спектром фенгита Al-P — коротковолновое для полосы v_1 ($\Delta v = 2150 \text{ cm}^{-1}$) и длинноволновое — для полос v_2 (1180 см⁻¹), v_3 (2400) и v_4 (260). Кроме того, в спектре Al-P отмечается длинноволновое смещение полос v₂ и v₂ также по сравнению со спектрами алургитов Al-Sw и GRR-727 (табл. 3), т. е. характер расщепления уровня ${}^5T_{2g}$ меняется по мере увеличения в мусковитах фенгитового компонента (табл. 2). Отмеченную особенность оптических спектров Mn³⁺ можно связать с повышением солержания магния и кремния. которые являются по отношению к VIMn³⁺ катионами второй координационной сферы и оказывают существенное влияние на геометрию октаэдрических позиций.

Поскольку переходы в ионе ${\rm Mn^{3+}}$ разрешены по спину, отвечающие им полосы поглощения проявляются в оптических спектрах даже при низкой концентрации этих ионов в минералах. Принимая во внимание присутствие интенсивных полос поглощения переходов ${}^5E_g({}^5D) \rightarrow {}^5T_{2g}({}^5D)$ в ${\rm Mn^{3+}}$ при незначительном содержании марганца в изученных мусковитах и лепидолитах, можно определенно говорить о нецентросимметричной октаэдрической позиции катионов ${\rm Mn^{3+}}$ в их струк-

Tаблица 5. Положение и идентификация полос ионов Mn^{2+} и Fe^{3+} в спектрах оптического поглощения природных слюд ($T=300~{\rm K}$) и спектрах возбуждения фотолюминесценции синтетического активированного фторфлогопита ($T=77~{\rm K}$). Полосы Mn^{2+} выделены жирным шрифтом Table 5. Position and identification of the bands of Mn^{2+} and Fe^{3+} ions in the optical absorption spectra of nature micas ($T=300~{\rm K}$) and in the excitation spectrum of synthetic phlogopite ($T=77~{\rm K}$). The Mn^{2+} -bands are in bold

		Полосы пог.	Полосы воз	збуждения	Электронный		
Ион	Мангано- филлит	Широзулит	Тетраферри- флогопит**	Мп-флого- пит ***	v, cm ⁻¹	ν, нм ³	переход
Mn ²⁺	18300 (<i>i</i>)	_	18500	18500 (<i>i</i>)	_	_	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$
Fe ³⁺	26500(b)	26750(<i>b</i>) 25950(<i>c</i>)	26500	27000(<i>b</i>) 25500(<i>c</i>)	26954 26100	371 383	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{4}D)$
Fe ³⁺	24950(<i>d</i>)	25200(<i>d</i> ₁)* 24430(<i>d</i> ₂)	24800	24800(d)	25190 24390	397 410	$^6A_1(^6S) \rightarrow {}^4T(^4D)$
Mn ²⁺	23600 (<i>e</i>)	23500 (<i>e</i>)	_	23800 (<i>e</i>)	24040 23310	416 429	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E, {}^{4}A_{1}({}^{4}G)$
Fe ³⁺	22900(f)	$ 22700(f_1) 22000(f_2) $	22730 21980	22300(f)	22670 22270	441 449	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E, {}^{4}A_{1}({}^{4}G)$
Mn ²⁺	21100 (g)	21300 (g)	_	21300 (g)	21350	468	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}G)$
Fe ³⁺	19600(h)	_	20000	19700(h)	20000	500	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}G)$
Mn ²⁺	18300(i)	_	18500	18500(i)	_	_	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$
Fe ³⁺	_	_	_	_	16670	600	${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$

 Π р и м е ч а н и е. * — одинаковыми буквами обозначены компоненты расщепления энергетических уровней в низкосимметричном кристаллическом поле, ** — по данным работы [6], *** — по данным работы [41].

Рис. 9. Схематическая диаграмма энергетических уровней, возникающих при расщеплении основного состояния 5D свободного иона $\mathrm{Mn^{3+}}$ в различных октаэдрических кристаллических полях [19, 27, 40]

Fig. 9. Schematic energy level diagram for the splitting of the 5D ground state of free Mn³⁺-ions in different octahedral crystal fields [19, 27, 40]

туре, соответствующей октаэдру M2. Вместе с тем точное определение силы осциллятора этих переходов в октаэдрах слюд сложного состава весьма проблематично в связи с ненадежностью определения в них соотношения $\mathrm{Mn^{2+}/Mn^{3+}}$. По данным Р.Г. Бернса [22], интенсивность полос ионов $\mathrm{Mn^{3+}}$, находящихся в октаэдрических позициях без центра симметрии, варьирует от 50 до $300~\mathrm{n \cdot моль^{-1} \cdot cm^{-1}}$.

Предполагаемая по спектроскопическим параметрам локализация ионов Mn³⁺ в структурных октаэдрах М2 согласуется с теорией изоморфных замещений. Известно, в частности, что близость размеров и химических характеристик замещаемых и замещающих атомов (ионов) в структуре минералов служат ведущими критериями изоморфизма [10, 16]. В табл. 6 приведены значения размерного фактора ($\Delta r = (r_1 - r_2)/r_2$) и фактора сходства химической связи (разница значений электроотрицательности ДЭО, по А.С. Поваренных) для пар Mn^{2+} , Mn^{3+} -замещаемый ион в октаэдрических позициях. Из приведенных в табл. 6 данных следует, что ионы Mn²⁺ должны преимущественно входить в (Mg, Fe²⁺)-октаэдры, а ионы Mn^{3+} — в низкосимметричные (Al, Fe³⁺)-uuc-октаэдры M2.

По данным [44], координационные октаэдры M2 уплощены вдоль кристаллографической оси c, причем интенсивность искажения возрастает с увеличением размера катиона. По результатам структурных расшифровок

 Mn^{3+} -содержащих мусковитов [31, 35], в частности по величине межатомных расстояний Me - O в октаэдрах M2, можно заключить. что локальная симметрия этих позиций не выше моноклинной (C_2 , C_s). Добавим, что аналогичные полосы поглощения при 11100, 13200, 18600 и 22200 см $^{-1}$ в оптическом спектре клиноцоизита были приписаны электронным переходам в ионах Mn³⁺, находящихся в кристаллическом поле симметрии $C_{\rm s}$ [13]. Полосы поглощения при 17900, 18600, 16800 и 7900 см^{-1} в спектрах природного и синтетического фиолетового Mn³⁺-содержащего диопсида (виолана) были отнесены к переходам ${}^5B \rightarrow {}^5B$ и ${}^5B \rightarrow {}^5A$ в ионах Mn³⁺, заселяющих позиции M1 с локальной симметрией C_2 [29]. Очевидно, что и полосы поглощения ионов Mn³⁺ в оптических спектрах изученных нами слюд также обусловлены электронными переходами в низкосимметричных позициях.

Схематическая диаграмма энергетических уровней иона Mn^{3+} , возникающих при расщеплении основного состояния 5D свободного иона в октаэдрических кристаллических полях при понижении симметрии, построенная по данным работ [19, 27, 40], приведена на рис. 9. Порядок изображенных на этом рисунке подуровней A и B, возникающих при расщеплении дублета 5E_g и триплета $^5T_{2g}$, может быть определен эмпирически посредством анализа ориентационных (поляризационных)

Таблица 6. Размерный и химический факторы изоморфизма ионов марганца [10, 16] Table 6. Size- and chemical controlling factors of manganese substitution [10, 16]

	Значения факторов изоморфизма						
Замещение	Размерный фактор $ \Delta r ^*$, %	Фактор сходства химической связи $ \Delta \Theta O $, ккал/г-атом					
$Mn^{2+} \rightarrow Fe^{2+}$	6	5					
\rightarrow Mg ²⁺	15	5					
\rightarrow Fe ³⁺	29	55					
\rightarrow Mn ³⁺	29	80					
\rightarrow Al ³⁺	55	40					
$Mn^{3+} \rightarrow Fe^{3+}$	0	25					
\rightarrow Al ³⁺	21	40					
\rightarrow Mg ²⁺ \rightarrow Fe ²⁺	12	85					
\rightarrow Fe ²⁺	21	75					

 Π р и м е ч а н и е. * — для расчета использованы значения эффективных ионных радиусов в шестерной координации [39].

зависимостей полос поглощения относительно элементов симметрии координационного полиэдра иона Mn^{3+} .

На примере спектров поглощения алургитов, полученных для трех ориентаций вектора поляризованного света — $E \parallel Np \ (\parallel c)$, $E \parallel Nm \ (\perp c)$ и $E \parallel Ng \ (\perp c)$ (рис. 1, 2), рассмотрим поляризационные зависимости полос $v_1 - v_4$. Поскольку значения полуширин соответствующих полос поглощения в разных поляризациях изменяются незначительно, для этих целей можно использовать соотношение линейных интенсивностей "одноименных" полос поглощения ионов Mn^{3+} в разных поляризациях — α_{Np} : α_{Nm} : α_{Ng} . Для полос в поляризованных спектрах обр. GRR-727 эти соотношения имеют следующий вид:

$$v_1 - 1:4:2; \quad v_2 - 1,5:1:2;$$

 $v_3 - 1:3,3:2,4; \quad v_4 - 1:4:2,8.$

Из приведенных данных следует, что полосы v_1 , v_3 и v_4 обладают максимальной интенсивностью в Nm ($\perp c$)-поляризации, а полоса поглощения v_2 — при ориентации вектора E параллельно оптической оси Np ($\parallel c$). Значения интенсивности всех рассмотренных выше полос в поляризации $E \parallel Ng$ ($\perp c$) занимают промежуточное положение между α_{Np} и α_{Nm} .

Согласно положениям ТКП, направления максимальной и минимальной интенсивностей полос поглощения соответствуют направлениям осей кристаллического поля, контролируемых элементами локальной симметрии координационного полиэдра [4]. Анализ кристаллической структуры мусковита позволяет заключить, что в координационных октаэдрах M2, имеющих локальную симметрию C_2 , единственным элементом симметрии, который можно соотнести с осью z кристаллического поля, является ось второго порядка L_2 . Положение этой оси, расположенной под углом как к оси c, так и к плоскости (001) кристалла мусковита (фенгита), в первом приближении можно обозначить как $z \land c >> z \land (a, b)$.

В соответствии с правилами отбора для электронных переходов в Mn^{3+} -ионах, находящихся в кристаллическом поле симметрии C_2 , параллельно оси z разрешены переходы ${}^5B \rightarrow {}^5B$ и ${}^5A \rightarrow {}^5A$, а перпендикулярно этой оси $-{}^5B \rightarrow {}^5A$ и ${}^5A \rightarrow {}^5B$ [4]. Если принять за нижний энергетический уровень основного состояния иона Mn^{3+} уровень 5B , то полосы поглощения v_1 , v_3 и v_4 в рассмотренных выше

спектрах слюд отвечают переходам ${}^5B \to {}^5A$. Соответственно, наиболее интенсивная в поляризации $E \parallel c$ полоса поглощения v_2 (17550—17750 см⁻¹) вызвана электронными переходами типа ${}^5B \to {}^5B$ (рис. 9).

Определенные сомнения оставляет отнесение к разрешенным квинтет-квинтетным переходам полосы поглощения v_1 , отличающейся от других полос ионов \dot{Mn}^{3+} в спектрах изученных слюд низкой интенсивностью, повышенными значениями ширины $\Delta v_{1/2}$ $(4000-5000 \text{ cm}^{-1} \text{ в спектрах алургитов})$ и вариабельностью своей спектральной позиции (величины волнового числа у). Не исключая возможности отнесения ее к электронным переходам между подуровнями терма 5D , запрещенным правилами отбора, можно предположить также альтернативный вариант отнесения ее к запрещенному по спину переходу ${}^{5}E_{a} \rightarrow {}^{3}T_{1}$. В любом случае, аномальные свойства этой полосы требуют дополнительного изучения и объяснения.

Как отмечено выше, основное отличие спектров обр. MP от спектров алургитов и лепилолитов — иное соотношение интенсивностей полос поглощения в разных поляризациях. Так, если в поляризации $E \parallel c$ в спектрах большинства изученных слюд наибольшей интенсивностью характеризуется полоса поглощения v_2 (17500—17900 см⁻¹), то в спектре полилитионита *MP* в этой поляризации доминирует полоса v_4 (22350 см⁻¹). Это означает, что соответствующий электронный переход в ионах Mn³⁺ в полилитионите разрешен в направлении $E \parallel c$. С другой стороны, переход, отвечающий полосе поглощения v_2 в спектре полилитионита, разрешен в ориентации $E \perp c$. Такую ситуацию можно объяснить изменением порядка энергетических уровней ионов Mn³⁺ в кристаллическом поле низкой симметрии в структуре полилитионита по сравнению со схемой уровней для ионов Mn³⁺ в октаэдрических позициях мусковитов, фенгитов и лепидолитов (рис. 9).

Причины подобной трансформации могут быть обусловлены прежде всего особенностями состава полилитионита *MP*, отличающими этот образец от прочих изученных нами слюд, а именно с высокой концентрацией в нем лития. Очевидно, что геометрические параметры (локальная симметрия и, возможно, размеры) октаэдрических позиций, занятых ионами Mn³⁺ в высоколитиевых образцах, отличаются от

таковых в случае вхождения ионов Мп³⁺ в алургиты, не содержащие примеси лития. Влияние ионов лития на геометрию позиции М2, где, согласно приведенным выше аргументам, концентрируются примесные ионы Mn³⁺, определяется характером распределения Li⁺ в структурах ди- и триоктаэдрических слюд. В мусковитах, а тем более в триоктаэдрических лепидолитах, вхождение крупных (r = 0.88 Å) ионов лития возможно в позицию M1. Вхождение избыточных ионов Li^+ в позиции M2 может привести, с одной стороны, к увеличению размера этих позиций, а с другой — к их "расщеплению" на "стандартную" M2 (Al₁₀) и более крупную M2' = M3 (Al + + Mn^{3+, +} Li⁺), что реализуется в структурах 3T-мусковитов и фенгитов [21].

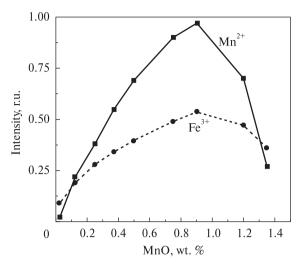
Гетерооктаэдрический тип слоя, возникающий вследствие "расщепления" позиции M2, является характерной особенностью строения литиевых слюд. Размеры октаэдрических структурных позиций в таком случае отвечают последовательности $M1 \cong M3 > M2$. В то же время, судя по имеющимся структурным данным [21, 28], слюды с наибольшим содержанием лития (>1,5 а. ф. е.), т. е. собственно полилитиониты, характеризуются мезооктаэдрическим характером слоя с двумя позициями — M1 и M2.

Проведенный нами ранее анализ зависимостей геометрических параметров полиэдров M1, M2 и M3 от состава литиево-железистых слюд показывает близость средних расстояний Me - L в позициях M1 и M3 гетерооктаэдрических слоев, их больший размер по сравнению с позициями M2, а также их уменьшение при возрастании содержания Li [8]. Результаты уточнений структуры гетерооктаэдрических слюд ряда полилитионит — сидерофиллит свидетельствуют также о возрастании степени искаженности полиэдров М1, М3 с увеличением содержания лития [28, 44]. Таким образом, при вхождении в октаэдрические позиции структуры слюд ионов лития они оказывают заметное влияние на размеры и локальную симметрию (характер и степень искаженности) соседних с ними октаэдров M2, заселенных ионами Mn^{3+} .

Спектры люминесценции и оптического поглощения Mn^{2+} . В соответствии с приведенными в табл. 5 данными, к полосам поглощения ионов Mn^{2+} в спектре широзулита можно уверенно отнести лишь две полосы — $23500~(^4A_1^4E)$ и 21300 см $^{-1}$ (4T_2). Широкая полоса 4T_1 , так же, как и коротковолновая полоса $^4E(D)$ в районе 28600—29000 см $^{-1}$ [41], на фоне крутого края полосы переноса заряда $O^{2-} \rightarrow Fe^{3+}$ в поляризации $E \perp c$ не наблюдается.

Сравнение со спектром возбуждения люминесценции во фторфлогопите позволяет сделать вывод, что полосы 25200 и 24300 см $^{-1}$ следует отнести к компонентам расщепления уровня $^4E(D)$ ионов $^{\rm IV}$ Fe $^{\rm 3+}$. Среднее значение энергии составляет 24800 см $^{-1}$, что полностью совпадает со значениями энергии указанного перехода в спектрах поглощения марганецсодержащего флогопита [41] и тетраферрифлогопита [6]. Такое же расщепление характерно и для перехода $^6A_1(^6S) \rightarrow ^4A, ^4E(^4G)$ (табл. 5).

Используя данные по синтетическому фторфлогопиту (табл. 5), мы провели разложение видимой области спектра манганофиллита на полосы запрещенных переходов в ионах VI Mn²+ и IV Fe³+. При заданном алгоритме разложения выделяются семь близких к гауссианам полос поглощения с максимумами 26500, 24950, 22900, 19600 см⁻¹ (IV Fe³+) и 23600, 21100, 18300 см⁻¹ (VI Mn²+). Их полуширина колеблется в пределах 2000—2500 см⁻¹, что типично для полос dd-переходов при комнатной температуре.


Как видно из спектров, приведенных на рис. 7, с, возбуждение в индивидуальных полосах поглощения VIMn²⁺ и IVFe³⁺ одновременно, хотя и с разной эффективностью, приводит к излучению обоих центров. В спектре возбуждения в полосе излучения ^{VI}Mn²⁺ при 532 нм (рис. 7, c(I)) малоинтенсивные полосы при 371, 383, 397, 410, 441, 449 и 468 нм принадлежат ионам ^{IV}Fe³⁺ и, наоборот, в спектре возбуждения в полосе излучения ^{IV}Fe³⁺ при 705 нм (рис. 7, c(2)) малоинтенсивные полосы 350, 416 и 429 нм принадлежат ионам VIMn²⁺. Здесь мы явно имеем дело с процессами сенсибилизационной люминесценции вследствие образования обменно-связанных пар VIMn²⁺ — IVFe³⁺, электронные переходы в которых включают возбуждение $^{VI}Mn^{2+}$ или $^{IV}Fe^{3+}$ (т. е. процессы одноцентрового возбуждения). Образование таких пар было ранее установлено в природных марганецсодержащих флогопитах [41].

Поскольку энергия обменного взаимодействия пары значительно меньше энергии первого возбужденного состояния отдельного иона, каждый из ионов пары в значительной

мере сохраняет свою индивидуальность, вследствие чего появляющиеся в результате обменного взаимодействия полосы поглошения располагаются в спектрах примерно в тех же областях, где обычно находятся полосы индивидуальных ионов. С другой стороны, эти полосы при совпадении с энергиями спинзапрешенных полос одной или обеих компонент пары имеют интенсивность, превышающую интенсивность dd-полос поглощения индивидуальных ионов [41]. Взаимное сенсибилизирующее действие этих ионов по отношению друг к другу представлено на рис. 10, где показана зависимость интенсивности полос излучения ионов ${}^{IV}Fe^{3+}$ и ${}^{VI}Mn^{2+}$ в спектрах фотолюминесценции активированного марганцем фторфлогопита от концентрации MnO в шихте при постоянной концентрации Fe_2O_3 (~0,1 %). Как видно из рисунка, несмотря на неизменную концентрацию Fe³⁺ в исследованных образцах, интенсивность его полосы в спектрах рентгенолюминесценции увеличивается с ростом концентрации марганца. Характер этой зависимости такой же, как и для излучения $^{VI}Mn^{2+}$. Этот факт служит прямым доказательством образования во фторфлогопите обменно-связанных пар ^{IV}Fe³⁺ — VIMn²⁺, концентрация которых растет при увеличении общего содержания марганца.

Обменное взаимодействие в таких парах предполагает расположение ионов $^{\rm IV}{\rm Fe}^{3+}$ и $^{\rm VI}{\rm Mn}^{2+}$ в соседних тетра- и октаэдрической позициях структуры [41]. При этом полосу люминесценции ${\rm Mn}^{2+}$ можно идентифицировать как излучательный переход в основное состояние $^6A_1(^6S)$ с одной из штарковских компонент уровней 4T_2 (${\rm Mn}^{2+} \to {\rm Mg}^{2+}$, фторфлогопит, $\lambda_{\rm Makc} = 530$ нм) или 4T_1 (${\rm Mn}^{2+} \to {\rm Al}^{3+}$, мусковит, $\lambda_{\rm Makc} = 570-590$ нм) в зависимости от размера соответствующего полиэдра [14, 17] (рис. 11).

Исследование люминесцентных свойств образцов слюд, представленных в табл. 5, по-казало, что при рентгеновском возбуждении полосы Mn^{2+} регистрируются лишь в спектрах излучения двух образцов — мусковита AI (рис. 11) и полилитионита MP. Для остальных слюд характерны лишь полосы $^{IV}Fe^{3+}$, причем их интенсивность в спектрах излучения лепидолитов примерно на порядок выше, чем в спектрах мусковитов и полилитионитов. Вместе с тем в спектре рентгенолюминесценции мусковита 100 полоса Mn^{2+} при 570 нм замет-

Puc. 10. Зависимость интенсивности полос излучения ионов $^{VI}Mn^{2+}$ и $^{IV}Fe^{3+}$ в спектрах рентгенолюминесценции активированного марганцем фторфлогопита от содержания MnO в шихте при постоянной концентрации Fe_2O_3 (~0,1 %). Интенсивность полосы $^{IV}Fe^{3+}$ излучения уменьшена в три раза

Fig. 10. Dependence of the emission bands intensities of $^{\rm VI}{\rm Mn^{2^+}}$ and $^{\rm IV}{\rm Fe^{3^+}}$ ions in the X-ray luminescence spectra of activated manganese fluorphlogopite on the content of MnO in the starting mixture at a constant concentration of ${\rm Fe_2O_3}$ (~0.1 %). The intensity of the $^{\rm IV}{\rm Fe^{3^+}}$ emission band is reduced by 3 times

но проявляется лишь после его прокаливания при 600 °C (рис. 11). Такое же увеличение интенсивности излучения $\mathrm{Mn^{2+}}$ после прокаливания наблюдалось ранее и в спектрах лепидолитов [1]. Кроме того, А.И. Бахтин [1] наблюдал резкое ослабление полосы поглощения $\mathrm{VIMn^{3+}}$ 560 нм после прогрева мусковита при 500 °C в течение 1 ч. Эти опыты свидетельствуют о том, что прогрев слюды может приводить к частичному изменению валентности ионов марганца ($\mathrm{VIMn^{3+}} \to \mathrm{VIMn^{2+}}$).

Таким образом, можно полагать, что главной причиной отсутствия полосы 570 нм в спектрах люминесценции большинства исследованных мусковитов и лепидолитов, содержащих незначительную примесь марганца, является трехвалентное состояние марганца, замещающего алюминий в позиции M2, а двухвалентный марганец присутствует в них в очень незначительном количестве.

При высоких значениях концентрации марганца, как в широзулите и манганофиллите, основную роль в процессах люминесценции играет концентрационное тушение. Другая причина слабой люминесценции марганца в этих слюдах — присутствие в их составе зна-

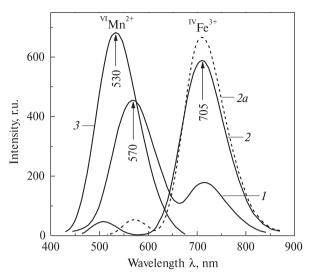


Рис. 11. Фрагменты спектров рентгенолюминесценции $(T=300~\mathrm{K})$ мусковита Al из петалит-микроклин-альбитовых пегматитов (Восточный Саян, Россия) (1) и мусковита 100 из сподумен-микроклин-альбитовых пегматитов (Монголия) (2- исходный образец, 2a- прокаленный при $600~\mathrm{^{\circ}C}$); 3- спектр фотолюминесценции ионов $\mathrm{Mn^{2+}}$ в синтетическом фторфлогопите $(T=77~\mathrm{K})$

Fig. 11. Fragments of X-ray spectra (T = 300 K) of muscovite AI from petalite-microcline-albite pegmatites (Eastern Sayan, Russia) (1) and muscovite 100 from spodumene-microcline-albite pegmatites (Mongolia) (2 - original sample, $2a - \text{heated at } 600 \,^{\circ}\text{C}$); $3 - \text{the spectrum of Mn}^{2+}$ ions photoluminescence in synthetic fluorphlogopite (T = 77 K)

чительной примеси железа, которое в двухвалентной форме гасит излучение любых активаторных примесей, а в трехвалентной форме приводит к образованию обменно-связанных пар $^{IV}\text{Fe}^{3+}$ — $^{VI}\text{Mn}^{2+}$, в которых ионы $^{VI}\text{Mn}^{2+}$ играют в основном роль сенсибилизатора люминесценции $^{IV}\text{Fe}^{3+}$.

Выводы. С помощью спектроскопических методов получены прямые доказательства вхождения марганца в структуру слюд как в двух-, так и в трехвалентной форме. Незначительная примесь Mn^{3+} (до 2 % Mn_2O_3) установлена в диоктаэдрических слюдах — мусковитах и фенгитах (алургитах). Двухвалентный марганец в качестве видообразующего катиона входит в марганцевые триоктаэдрические слюды — широзулит и манганофиллит. Высоколитиевые слюды — лепидолиты и полилитиониты — могут вмещать как Mn³⁺, так и Mn^{2+} , при этом фиолетовые тона их окраски обусловлены примесью Mn³⁺. Общей чертой большинства марганецсодержащих слюд является низкое содержание двухвалентного железа, а в образцах, содержащих Mn^{3+} , на уровне обнаружения спектроскопическими методами (>0,01 а. ф. е.) двухвалентное железо полностью отсутствует. Эти результаты согласуются с экспериментальными данными, свидетельствующими о несовместимости ионов Mn^{3+} и Fe^{2+} в геохимических системах [38].

Наличие в спектрах мусковитов и лепидолитов трех интенсивных полос поглощения, обусловленных переходами на расщепленный триплетный уровень $^5T_{2g}(^5D)$ ионов Mn^{3+} , позволяет сделать вывод о их расположении в искаженных нецентросимметричных полиэдрах с точечной симметрией C_2 либо C_s , что соответствует октаэдрам M2.

Влияние ионов второй координационной сферы на спектроскопические параметры Mn^{3+} проявляется в изменении характера и величины расщепления уровня $^5T_{2g}$. Так, по мере увеличения в мусковитах фенгитового компонента, т. е. с повышением содержания магния и кремния, отмечается длинноволновое смещение полос v_2 и v_3 по сравнению со спектрами алургитов. В спектрах полилитионита изменяются поляризационные зависимости полос ионов Mn^{3+} , что может быть связано со сменой порядка расщепленных энергетических уровней вследствие сильного влияния ионов Li^+ на геометрию вмещающих Mn^{3+} смежных позиций M2 [28, 44].

Полосы запрещенных по спину переходов ионов Mn²⁺ обнаружены в спектрах широзулита и манганофиллита. Слабая люминесценция Mn²⁺ в этих слюдах обусловлена присутствием в них примеси железа, которое в широзулите в форме Fe²⁺ гасит излучение активаторных примесей, а в манганофиллите в трехвалентной форме приводит к образованию обменно-связанных пар ${}^{IV}Fe^{3+}-{}^{VI}Mn^{2+}$. Обменное взаимодействие предполагает вхождение ионов ${}^{IV}Fe^{3+}$ и ${}^{VI}Mn^{2+}$ в смежные позиции структуры, причем ионы ^{VI}Mn²⁺ играют в таких парах роль сенсибилизатора люминесценции ^{IV}Fe³⁺, а полоса люминесценции Mn²⁺ интерпретируется как излучательный переход в основное состояние ${}^{6}A_{1}({}^{6}S)$ с одной из штарковских компонент уровней ${}^{4}T(G)$.

Авторы отдают дань памяти ушедшей из жизни Татьяне Николаевне Шуриге (ВИМС МПР РФ, Москва), нашему многолетнему соавтору, материалы которой по литиевым слюдам использованы в настоящей статье. Авторы счи-

тают также своей приятной обязанностью выразить благодарность С. Хертиг-Агте (ТУ, Берлин), К. Ишида (Университет Куиѕhи, Фукуока) и Дж.Р. Россману (КалТех, Пасадена) за предоставленные для исследования образцы алургита, широзулита и манганофиллита, данные химического анализа широзулита и спектр образца GRR-727; Ф. Галберту (ТУ, Берлин) за помощь при проведении микрозондовых анализов; М.Н. Тарану (ИГМР им. Н.П. Семененко, Киев) за помощь в измерении спектров диффузного отражения; Фонду им. А. Гумбольдта (Бонн) за предоставленную В.М. Хоменко поддержку для осуществления оптико-спектроскопических измерений.

ЛИТЕРАТУРА

- 1. *Бахтин А.И*. Породообразующие силикаты : оптические спектры, кристаллохимия, закономерности окраски, типоморфизм. Казань : Изд-во Казан. ун-та, 1985. 191 с.
- 2. *Горобец Б.С., Рогожин А.А.* Спектры люминесценции минералов. М.: ВИМС, 2001. 312 с.
- 3. *Кузнецов Г.В., Таращан А.Н.* Люминесценция минералов гранитных пегматитов. Киев: Наук. думка, 1988. 178 с.
- Марфунин А.С. Введение в физику минералов. М.: Недра, 1974. — 328 с.
- 5. *Минералы* : Справ. М. : Наука, 1992. Т. IV, вып. 2. 661 с.
- 6. *Павлишин В.И., Платонов А.Н., Польшин Э.В. и др.* Слюды с железом в четверной координации // 3ВМО. 1978. Ч. 107, № 2. С. 165—180.
- Платонов А.Н. Природа окраски минералов. Киев: Наук. думка, 1976. — 264 с.
- 8. Платонов А.Н., Хоменко В.М., Шурига Т.Н. Оптические спектры поглощения и распределение ионов железа в структурах литиево-железистых слюд // Геохимия. 2008. № 12. С. 1—13.
- 9. Платонов А.Н., Шурига Т.Н. Оптические спектры и окраска мусковитов из редкометалльных месторождений // Мінерал. журн. 2005. 27, № 2. С. 73—80.
- Поваренных А.С. Кристаллохимическая классификация минеральных видов. — Киев: Наук. думка, 1966. — 547 с.
- Прокофьев И.В., Горобец Б.С., Шурига Т.Н. и др. Природа флюоресценции минералов лития // Изв. АН СССР. Сер. геол. — 1979. — № 3. — С. 88—94.
- 12. Скосырева М.В., Никольская Л.В. О природе окраски мусковита из редкометальных пегматитов // Геохимия. 1978. № 3. С. 437—442.
- 13. Таран М.Н., Платонов А.Н., Петрусенко С. и др. Оптический спектр поглощения иона Мп³⁺ в природных клиноцоизитах // Геохимия, минералогия и петрология. Изд-во Болгар. акад. наук, 1984. № 19. С. 43—51.

- Таращан А.Н. Люминесценция минералов. Киев: Наук. думка, 1978. — 296 с.
- 15. Таращан А.Н., Остапенко Г.Т., Таран М.Н. и др. Изоморфизм, зарядовое состояние и спектроскопические свойства ионов титана в кварце // Мінерал. журн. 2005. 27, № 2. С. 46—58.
- Урусов В.С. Теория изоморфной смесимости. М.: Наука, 1977. — 251 с.
- 17. Халилов В.Х., Пивоваров С.С. Спектроскопические исследования структурного состояния иона Mn^{2+} в кварцевом стекле // Физика и химия стекла. 1982. 8, № 3. С. 311—317.
- 18. Хоменко В.М., Платонов А.Н., Краснова Н.И. Оптические свойства флогопитов Ковдорского массива // Изв. АН СССР. Сер. геол. 1991. № 12. С. 94—105.
- 19. Abs-Wurmbach I., Langer K., Seifert F., Tillmanns E.

 The crystal chemistry of (Mn³+, Fe³+)-substituted andalusites (viridines and kanonaite), (Al_{1-x-y}Mn³+_x × Fe³+_y)₂(O/SiO₄): crystal structure refinement, Mössbauer, and polarized optical absorption spectra //
 Z. Kristallogr. 1981. 155. S. 81—113.
- Annersten H., Hålenius U. Ion distribution in pink muscovite, a discussion // Amer. Miner. — 1976. — 61. — P. 1045—1050.
- Bailey S.W. Classification and structures of the micas // Micas. Reviews in Mineralogy / Ed. S.W. Bailey. 1984. Vol. 13. P. 1—60.
- 22. *Burns R.G.* Mineralogical application of crystal field theory. Cambr. Univ. Press, 1993. 550 p.
- 23. *Dana E.S.* A Textbook of Mineralogy. Pt. V. 4 ed. New York, 1932. 420 p.
- 24. Eggleton R.A., Ashley P.M. Norrishite, a new manganese mica, K(Mn³+2Li)Si₄O₁₂ from Hoskins mine, New South Wales, Australia // Amer. Miner. 1989. 74. P. 1360—1367.
- 25. Faye G.H. The optical absorption spectra of certain transition metal in muscovite, lepidolite, and fuchsite // Can. J. Earth Sci. 1968. 5, No 1. P. 31—38.
- 26. Foster M.D. Interpretation of the composition of trioctahedral micas // U.S. Geol. Surv. Prof. Paper. 1960. **354-B.** P. 1—49.
- 27. Ghose S., Kersten M., Langer K. et al. Crystal field spectra and Jahn-Teller effect of Mn³⁺ in clinopyroxene and clinoamphiboles from India // Phys. and Chem. Minerals. 1986. 13. P. 291—305.
- 28. *Guggenheim S*. Cation ordering in lepidolite // Amer. Miner. 1981. **66**. P. 1221—1232.
- 29. *Hålenius U., Skogby H.* Crystal field spectra of trivalent manganese in synthetic and natural (Na⁺—Mn³⁺)-substituted diopsides // Eur. J. Mineral. 1996. **8**. P. 1231—1240.
- Ishida K., Hawthorne F.C., Hirowatwri F. Shirozulite, KMn²⁺₃(Si₃Al)O₁₀(OH)₂, a new manganese-dominant trioctahedral mica: Description and crystal structure // Amer. Miner. — 2004. — 89. — P. 232—238.
- 31. *Knurr R.A.*, *Bailey S.W.* Refinement of Mn-substituted muscovite and phlogopite // Clays and Clay Miner. 1986. **34**. P. 7—16.
- 32. *Nomenclature* of the micas // Miner. Mag. 1999. **63**. P. 267—279.

- 33. *Platonov A.N., Taran M.N., Klyakhin V.A.* On two colour types of Mn³⁺-bearing beryls // Z. Dtsch. gemmol. Ges. 1989. **38**. S. 147—154.
- 34. *Richardson S.M.* A pink muscovite with reverse pleochroism from Archer's Post, Kenya // Amer. Miner. 1975. **60**. P. 73—78.
- Richardson S.M., Richardson J.W. Crystal structure of pink muscovite from Archer's Post, Kenya: implication for reserve pleochroism in dioctahedral micas // Ibid. — 1982. — 67. — P. 69—75.
- Rossman G.R. Spectroscopy of micas // Revs in Mineralogy. Vol. 13. Micas / Ed. S.W. Bailey. —1984. P. 145—181. — (Mineral. Soc. America).
- 37. Rossman G.R. Mineral Spectroscopy Server. 2005. http://minerals.gps.caltech.edu.
- 38. Schreiber H.D., Merkel R.C., Schreiber V.L., Balazs G.B. Mutual interactions of redox couples via electron exchange in silicate melts. Models for geochemical melt systems // J. Geophys. Res. 1987. 92, B9. P. 9233—9245.
- Shannon R.D. Revised effective ionic radii and systematic of interatomic distances in halides and chalcogenides // Acta Crystallogr. 1976. A32. P. 751—767.
- Sherman D.M., Vergo N. Optical spectrum, site occupancy, and oxidation state of Mn in montmorillonite // Amer. Miner. — 1988. — 73. — P. 140—144.
- 41. Smith G., Hålenius U., Annersten H., Ackermann L. Optical and Mössbauer spectra of manganese-bearing phlogopites: Fe³⁺_{IV} Mn²⁺_{VI} pair absorption as the origin of reverse pleochroism // Ibid. 1983. 68. P. 759—768.
- 42. *Taran M.N., Langer K., Abs-Wurmbach I. et al.* Local relaxation around ^[6]Cr³⁺ in synthetic pyrope-knorringite garnets, Mg³(Al_{1-x}Cr³⁺_x)₂Si₃O₁₂, from electronic absorption spectra // Phys. and Chem. Minerals. 2004. 31. P. 650—657.
- 43. Tarashchan A.N., Kuznetsov G.V. Luminescence of REE and 3d-transition metal ions in phyllosilicates // Abstr. 16th General Meet. IMA. Pisa, 1994. P. 404.
- 44. Weiss Z., Rieder M., Chmielova M., Krajicek J. Geometry of the octahedral coordination in micas: a review of refined structures // Amer. Miner. 1985. 70. P. 747—757.

Поступила 09.07.2012

О.М. Платонов, В.М. Хоменко, А.М. Таращан

КРИСТАЛОХІМІЯ І СПЕКТРОСКОПІЯ ІОНІВ МАРГАНЦЮ В СЛЮДАХ

Методами оптичної спектроскопії та люмінесценції вивчено зразки Mn^{3+} -вмісних відмінностей фенгітів (алургітів), мусковітів і лепідолітів, а також Mn^{2+} -слюд — широзуліту та манганофіліту. Поляризовані оптичні спектри алургітів і Mn^{3+} -мусковітів характеризуються наявністю чотирьох смуг поглинання іонів Mn^{3+} , спектральна позиція яких близька до позицій смуг у спектрах поглинання інших мінералів, забарвлених цими іонами — берилу-морганіту, кліноцоїзиту, цоїзиту-туліту, турмаліну-ельбаїту, епідоту-п'ємонтиту,

монтморилоніту та ін. Середні значення енергії смуг поглинання іонів Mn^{3+} в оптичних спектрах алургіту Al- $Sw - v_1 = 10700 \text{ cm}^{-1}$, $v_2 = 17550$, $v_3 = 19800 \text{ Ta } v_4 =$ = 22450 cm^{-1} , a y cnektpax Mn³⁺-myckobity *GRR*-727 $v_1 = 10300 \text{ cm}^{-1}, v_2 = 17750, v_3 = 19950, v_4 = 22450 \text{ cm}^{-1}.$ Спектри поглинання лепідолітів аналогічні спектрам алургітів; середні значення енергії переходів у них складають: $v_1 = 12370 \text{ см}^{-1}$, $v_2 = 17600$, $v_3 = 19940$, $v_4 =$ $= 22440 \text{ см}^{-1}$. Суттєвою особливістю спектрів Mn^{3+} у лепідолітах є вищі (12370 см $^{-1}$ проти 10300 у спектрах алургітів) значення енергії смуги v_1 . Для спектрів поглинання алургітів, отриманих у трьох поляризаціях — $E \| Np (\| c), E \| Nm (\perp c)$ та $E \| Ng (\perp c)$, вивчено орієнтаційні залежності смуг $v_1 - v_4$ іонів Mn³⁺. Відповідно до правил відбору ці смуги поглинання віднесені до електронних переходів ${}^5B \rightarrow {}^5A$ та ${}^5B \rightarrow {}^5B$ в іонах Mn³⁺ в октаедричному кристалічному полі локальної симетрії C_2 (позиція M2 у структурі слюди). На прикладі спектра поглинання іонів Mn³⁺ у полілітіоніті розглянуто вплив іонів Li⁺ на спектроскопічні параметри Mn³⁺-вмісних слюд. У спектрі поглинання широзуліту присутні вісім слабких вузьких смуг іонів ${}^{VI}Mn^{2+}$ та ${}^{IV}Fe^{3+}$, які розташовані на схилі інтенсивної смуги переносу заряду $O^{2-} \to Fe^{3+}$, а у спектрі манганофіліту ($E \perp c$) на крутому схилі смуги $O^{2-} \rightarrow$ Fe³⁺ фіксуються лише слабкі перегини в місцях очікуваних вузьких смуг поглинання переходів на рівні ${}^{4}A, {}^{4}E({}^{4}G)$ та ${}^{4}T_{3}({}^{4}D)$ іонів ${}^{VI}Mn^{2+}$ та ${}^{IV}Fe^{3+}$. На основі порівняльного аналізу зі спектрами збудження люмінесценції (Mn²⁺, Fe³⁺)-вмісних синтетичних флогопітів, смуги поглинання в спектрах широзуліту та манганофіліту віднесено до конкретних електронних переходів в іонах ^{VI}Mn²⁺ та ^{IV}Fe³⁺. Обговорюються механізми утворення обмінно-зв'язаних пар VIMn²⁺ — ^{IV}Fe³⁺ у структурі слюд. Слабкі смуги випромінювання іонів $^{VI}Mn^{2+}$ за 570 нм в спектрах рентгенолюмінесценції проявляються лише в деяких вивчених зразках, що дозволяє припустити переважно тривалентний стан домішки марганцю у вивчених мусковітах та лепідолітах.

A.N. Platonov, V.M. Khomenko, A.N. Tarashchan

CRYSTAL CHEMISTRY AND SPECTROSCOPY OF MANGANESE IONS IN MICAS

Samples of $\rm Mn^{3+}$ -containing phengites (alurgites), muscovites and lepidolites as well as $\rm Mn^{2+}$ -micas shirozulite and manganophyllite were studied by means of optical spectroscopy and luminescence methods. Polarized optical absorption spectra of alurgites and $\rm Mn^{3+}$ -muscovites are characterized by four $\rm Mn^{3+}$ absorption bands, which positions are close to those of the respective bands in spectra of different minerals (varieties) which colorations are caused by $\rm Mn^{3+}$ ions — beryl (morganite), clinozoisite, zoisite (tulite), tourmaline (elbaite), epidote (piemontite) etc. Mean wavenumber values of the $\rm Mn^{3+}$ -bands' maximums are $\rm v_1 = 10700~cm^{-1}, v_2 = 17550, v_3 = 19800, v_4 = 22450~cm^{-1}$ in the optical spectra of alurgite $\rm \it Al-Sw;$ and $\rm v_1 = 10300~cm^{-1}, v_2 = 17750, v_3 = 19950, v_4 = 22450~cm^{-1}$ in the spectra of $\rm Mn^{3+}$ -containing muscovite

 edge of the intense $O^{2-} \rightarrow Fe^{3+}$ charge transfer band in the optical spectum of shirozulite. Only weak shoulders on the steep slope of the $O^{2-} \rightarrow Fe^{3+}$ band are present in the manganophyllite spectrum $(E \perp c)$ at energies where narrow bands of spin-forbidden transitions to ${}^4A, {}^4E({}^4G)$ and ${}^{4}T_{2}({}^{4}D)$ levels of ${}^{VI}Mn^{2+}$ and ${}^{IV}Fe^{3+}$ ions are expected. Comparison with excitation spectra of (Mn²⁺, Fe³⁺)containing synthetic phlogopites allows attribution of the absorption bands in shirozulite and manganophyllite spectra to definite electronic transitions in these d^5 ions. Formation of exchange-coupled pairs VIMn²⁺—IVFe³⁺ in mica's structure is discussed. Weak emission bands of VIMn²⁺ ions at 570 nm were found only in some X-ray luminescence spectra of Mn-containing samples studied. This can be caused by dominant role of 3+ valence state of manganese in muscovites and lepidolites.