ГЕОХІМІЯ GEOCHEMISTRY

https://doi.org/10.15407/mineraljournal.42.02.046 UDC 550.93

Л.М. Степанюк, д-р геол. наук, чл.-кор. НАН України, проф., заст. дир. Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України 03142, Київ, Україна, пр-т Акад. Палладіна, 34 E-mail: stepaniuk@nas.gov.ua https://orcid.org/0000-0001-5591-5169 Л.В. Шумлянський, д-р геол. наук, пров. наук. співроб. Інститут геохімії, мінералогії та рудоутворення ім. М.П. Семененка НАН України 03142, Київ, Україна, пр-т Акад. Палладіна, 34 E-mail: lshumlyanskyy@yahoo.com http://orcid.org/0000-0002-6775-4419 А. Гоффманн, аспірант. Каліфорнійський університет, Відділення наук про Землю СА 92521, м. Ріверсайд, США, пр-т Університетський, 900 E-mail: ahoff003@ucr.edu М. Гофманн, PhD, зав. лабораторією. Музей природознавства Сенкенберга, Дрезден, Німеччина E-mail: mandy.hofmann@senckenberg.de Scopus ID: 35334126200 А. Ковалик, аспірант. Каліфорнійський університет, Відділення наук про Землю СА 92521, м. Ріверсайд, США, пр-т Університетський, 900 E-mail: fkova001@ucr.edu А. Беккер, проф. Каліфорнійський університет, Відділення наук про Землю СА 92521, м. Ріверсайд, США, пр-т Університетський, 900 E-mail: andreyb@ucr.edu

http://orcid.org/0000-0002-1154-0585

ПРО МЕЗОАРХЕЙСЬКИЙ ВІК КЛАСТОГЕННОГО ЦИРКОНУ ІЗ МЕТАТЕРИГЕННИХ УТВОРЕНЬ СКЕЛЮВАТСЬКОЇ ТА САКСАГАНСЬКОЇ СВІТ КРИВОРІЗЬКОЇ СТРУКТУРИ (ЗА ДАНИМИ U-Pb ДАТУВАННЯ)

Переконливі геохронологічні дані щодо часу формування відкладів, які виповнюють Криворізьку структуру, дотепер відсутні, і в чинній Хроностратиграфічній схемі вони віднесені до палеопротерозою. Тому особливо актуальним є датування детритових мінералів-геохронометрів, яке допомагає визначити максимальний вік осадонакопичення. Розглянуто результати U-Pb датування цирконів із двох проб метапісковиків і двох проб філітових сланців. Три з цих проб репрезентують метатеригенні відклади скелюватської світи Криворізької структури, одна проба сланців була відібрана з товщі саксаганської світи. Дослідження виконано з застосуванням методу лазерної абляції з визначенням ізотопного складу за допомогою ICP-MS. Більшість отриманих ізотопних дат виявилися різко дискордантними, що пов'язане зі значною метаміктизацією цирконів завдяки високому вмісту урану та торію. Ми використовували лише ті результати датування, ступінь конкордантності яких понад 80 %. Згідно із ними, циркони з усіх досліджених проб виявляють вузький діапазон варіацій ізотопного віку, від 2,9 до 3,3 млрд pp. і відповідають мезоархейським породам

Цитування: Степанюк Л.М., Шумлянський Л.В., Гоффманн А., Гофманн М., Ковалик А., Беккер А. Про мезоархейський вік кластогенного циркону із метатеригенних утворень скелюватської та саксаганської світ Криворізької структури (за даними U-Pb датування). *Мінерал. журн.* 2020. 42, № 2. С. 46—62. https://doi.org/10.15407/ mineraljournal.42.02.046

Середньопридніпровського району Українського щита, що складають фундамент, на якому накопичувалися відклади Криворізької структури. Вік виявлених нами наймолодших кристалів становить близько 2,9 млрд pp., він визначає максимальний вік формування відкладів скелюватської і саксаганської світ. Він також у межах похибки відповідає віку детритових монацитів (2,85 млрд pp.), отриманому раніше для пісковиків скелюватської світи. Цей вік дещо молодший, ніж вік метабазальтів новокриворізької світи (не менше 2,96 млрд pp.), виливи яких знаменували початок формування Криворізької структури. Раніше визначений вік гранітів Ганнівського масиву (2,68 млрд pp.), які перетинають відклади новокриворізької та саксаганської світ, також вказує на їхній як мінімум неоархейський вік. Отримані нами геохронологічні дані не заперечують висновку про мезо-неоархейський вік відкладів скелюватської та саксаганської світ.

Ключові слова: Криворізька структура, кластогенний циркон, LA-ICP-MS, скелюватська світа, саксаганська світа.

Вступ. У попередній нашій публікації розглянуто результати датування кластогенних монацитів із метапісковика нижньої підсвіти скелюватської світи [10], які засвідчили мезоархейський вік монацитів (2849 \pm 10 млн рр.). Помітно древнішими (3,0—3,2 млрд рр.) виявилися кластогенні циркони із кварцитів латівського горизонту [4]. У цій статті наведено результати датування різних ділянок полірованих зрізів кристалів кластогенного циркону локальним уран-свинцевим ізотопним методом (*LA-ICP-MS*) із метапісковиків, філітоподібного сланцю цієї ж світи та філітового сланцю саксаганської світи.

Визначення віку кластогенних цирконів із метатеригенних утворень, які залягають стратиграфічно вище новокриворізької світи, обумовлено тим, що серед цирконів із кварциту латівського горизонту ми не виявили кристалів, молодших за 3,0 млрд pp. [4] і, таким чином, поява кластогенних цирконів віком 2,6— 2,8 млрд pp. (гранітоїди мокромосковського, демуринського та токівського комплексів) та молодших за 2,1 млрд pp. (гранітоїди кіровоградського та новоукраїнського комплексів), мала б знаменувати пізніші за новокриворізький, етапи седиментації в межах Криворізького басейну (неоархейський та палеопротерозойський).

На сьогодні визначено вік кластогенних цирконів із метаосадових утворень гданцівської світи [1]. Серед кластогенних кристалів циркону виявлено популяції віком 2,1; 2,95 та поодинокі >3,5 млрд рр. При цьому в кількісному співвідношенні значно переважає кластогенний циркон плагіогранітоїдів віком 2,95 млрд рр. Наявність кластогенного циркону віком 2,1 млрд рр. дає змогу стверджувати, що породи гданцівської світи накопичилися пізніше 2,1 млрд рр. тому.

Об'єкт і методи дослідження. Ми датували кластогенні циркони із метапісковика першої

верстви знизу нижньої частини розрізу скелюватської світи (пр. 20/10), метапісковика (пр. 22/10) і філітоподібного сланцю (пр. 23/10) із її верхньої частини (рис. 1), а також філітового сланцю саксаганської світи.

Прошарки метапісковиків серед метаконгломератів і метагравелітів відслонюються на 190-200 м нижче за течією від пішохідного мосту через р. Інгулець західніше від парку відпочинку в житловому масиві Південного гірничозбагачувального комбінату (ПівднГЗК). Тут уздовж лівого схилу долини ріки на відстань до 150—160 м у скельних виходах висотою 8—15 м відслонюється товща різногалькових метаконгломератів, метагравелітів і метапісковиків, які складають дво- і трикомпонентні ритми. Нижні члени ритмів представлені метапісковиками або метагравелітами, а верхні — метаконгломератами. Переважають двокомпонентні ритми, репрезентовані асоціацією метагравелітів і метаконгломератів. Детальний опис розрізу наведено в Путівнику [7].

Метапісковик (пр. 20/10), відібраний у лівому березі р. Інгулець приблизно в 150 м нижче за течією від пішохідного мосту, метапісковик (пр. 22/10) також відібраний у лівому березі р. Інгулець, приблизно на 200 м вище за течією в останньому скельному виході, в якому відслонена верхня (метапісковикова) частина скелюватської світи, приблизно в 20 м на північ, із розвалів, був відібраний філітоподібний сланець (пр. 23/10).

Філітовий сланець (пр. 24/10) відібрано із нижньої частини розрізу саксаганської світи, поширеної в лівому борту р. Саксагань (палеорусло) в районі рудоуправління ім. Кірова.

Вік визначено локальним уран-свинцевим ізотопним датуванням різних ділянок полірованих зрізів кристалів циркону за допомогою *LA-ICP-MS*.

Циркон було виділено з проби вагою близько 10 кг за стандартною методикою в лабора-

Рис. 1. Карта-схема виходу метаосадових порід скелюватської світи, район пішохідного мосту через р. Інгулець західніше парку відпочинку в житловому масиві ПівднГЗК, за [7], зі змінами та доповненнями авторів: 1 - крупногалечникові метаконгломерати, 2 - середньогалечникові метаконгломерати, 3 - дрібногалечникові метаконгломерати, 4 - метагравеліти, 5 - метапісковики з прошарками метаконгломератів, 6 - філітоподібні сланці, 7 - задерновані ділянки, 8 - місця відбору радіогеохронологічних проб

Fig. 1. Schematic map of the outcrop of the Skelyuvatka Suite metasedimentary rocks, area of the footbridge over the Inhulets River, to the west of the park in the housing estate of the Southern Mining and Processing Plant, according to [7], with corrections by authors: 1 - cobble metaconglomerate, 2 - pebble metaconglomerate, 3 - fine-pebble metaconglomerate, 4 - coarse-grained metasandstone, 5 - metasandstone with interlayers of metaconglomerate, 6 - phyllite-like shales, 7 - turfed areas, 8 - sites at which samples were collected

торії збагачення Інституту геохімії, мінералогії та рудоутворення імені М.П. Семененка НАН України. Дослідження морфології та внутрішньої будови циркону виконано в світлі, що проходить, у відбитому світлі та на електронному мікроскопі в режимі катодолюмінесценції.

Циркони розташовували в епоксидній шайбі та приполіровували до розкриття їхніх внутрішніх ділянок. Далі циркони з метапісковика (пр. 20/10) та філітоподібного сланцю (пр. 23/10) аналізували на ізотопи U, Th та Pb методом LA-ICP-MS в Природознавчому музеї м. Дрезден (GeoPlasma Lab, Senckenberg Naturhistorische Sammlungen Dresden) із використан-

Рис. 2. Мікрофотографія метапісковика, пр. 20/10, лівий беріг р. Інгулець західніше парку відпочинку в житловомумасиві ПівднГЗК, просвічуючий мікроскоп, ніколі +

Fig. 2. Microphotograph of metasandstone, sample 20/10, left bank of the Ingulets River, to the west of the recreation park in the housing estate of the Southern Mining and Processing Plant, transmitted light, crossed analysers

ням інструменту Thermo-Scientific Element 2 XR *ICP-MS* та приєднаної до нього лазерної системи Wave UP-193 Excimer. Кожен аналіз складався з фонових вимірів протягом 15 с та збору ланих протягом 30 с із використанням лазерного пучка діаметром 35 µm. Отримані ізотопні дані корегували на величину фонового сигналу, наявність загального свинцю, викликане лазером елементне фракціонування, інструментальну лискримінацію мас та на елементне фракціонування Pb/Th та Pb/U. Наведені похибки охоплюють квадратичну добавку зовнішнього відтворювання стандартного циркону *GJ*-1 (~0,6 та 0,5—1 % для ²⁰⁷Pb/²⁰⁶Pb та ²⁰⁶Pb/²³⁸U відповідно). Відношення Th/U отримано безпосередньо шляхом вимірів на LA-ICP-MS. Концентрації U та Pb розраховані відносно стандарту GJ-1 і мають точність близько 10 %.

Циркони метапісковика (пр. 22/10) та філітового сланцю (пр. 24/10) проаналізовано на ізотопи U, Th та Pb методом *LA-ICP-MS* в Каліфорнійському університеті, м. Санта-Барбара. Аналізи виконано із застосуванням приладу *Nu Plasma HR MC-ICP-MS*, поєднаного з системою лазерної абляції *Photon Machines Excite* 193. Абляція відбувалася протягом 15 с, частота лазерних імпульсів становила 4 Hz та енергія ~1 ј/ст², глибина кратерів досягала ~5 µm, а діаметр — 15 µm. Аналізуванню передували фонові вимірювання протягом 15 с, після кожних 10 аналізів виконували вимі-

Рис. 3. Мікрофотографії кристалів циркону із метапісковика, пр. 20/10: a — морфологія кристалів, відбите світло; b — зрізи тих же кристалів на просвіт; c — катодолюмінесцентні зображення зрізів тих же кристалів *Fig. 3.* Microphotograph of zircon crystals from metasandstone, sample 20/10: a — crystal morphology, reflected light; b — the same crystals, transmitted light; c — CL images

рювання стандарту 91500. Якість вимірювань контролювали за допомогою стандартних зразків *GJ*-1 та *Plešovice*.

Результати досліджень. Метапісковик (пр. 20/10) різнозернистий, складений уламками кварцу (80—90 %) та поодинокими уламками плагіоклазу, зцементованими кварц-серицитовим матеріалом. Уламки кварцу кутасті, хвилясто згасають. З акцесорних мінералів наявні апатит, монацит, циркон, турмалін, рутил і рудні. Структура бластопсамітова з мікролепідогранобластовою структурою цементу (рис. 2).

Циркон представлений декількома типами різною мірою обкатаних зерен, від ізометричних, повністю обкатаних, до майже не зачеплених абразією кристалів із добре розвиненим ограненням і ледь помітними слідами обточування на їхніх вершинках та ребрах. Найпоширенішими (більше 60 %) є світло-коричневі і коричневі напівпрозорі зерна, червонувато-рожеві і рожеві складають близько 30 % популяції. Світло-рожеві циркони значно менше поширені (не більше 10 %), трапляються і поодинокі жовтувато-бурі зерна. Наростання жовтувато-бурого циркону на зернах коричневого і світло-коричневого є поширеним явищем, але такі наростання відмічаються здебільшого на головках, зрідка на окремих ребрах або гранях, і покривають лише окремі частини кристалів. Світло-коричневі і коричневі кристали зазвичай мають тонку концентричну зональність, хоча досить поширеними є незональні зерна. Всередині червонувато-рожевих кристалів навіть під бінокуляром виявляються світліші (світло-рожеві) ядра, що досить часто мають заокруглені контури [10].

У результаті вивчення кристалів циркону, в тому числі полірованих зрізів, за допомогою

Рис. 4. Уран-свинцева діаграма з конкордією для кластогенних ядер в кристалах циркону із метапісковика, пр. 20/10

Fig. 4. U-Pb concordia diagram for clastogene cores in zircon crystals from metasandstone, sample 20/10

методів оптичної мікроскопії у більшості коричневих тріщинуватих зерен виявлено регенерацію (доростання) жовтувато-бурим цирконом з відносно високими кольорами інтерференції, а всередині жовтувато-бурих кристалів трапляються релікти світлішого циркону [10].

За видовженням найпоширенішими є призматичні циркони ($K_{вид}$ 2—2,5), їм трохи поступаються циркони з коефіцієнтом видовження менше 1,5, як поодинокі трапляються голкоподібні зерна з видовженням більше 3 (рис. 3). Характерно, що останні мають найменшу ступінь обточеності, тоді як зерна з незначним видовженням звичайно повністю, або майже повністю (абразії зазнали не лише ребра, а й усі грані, до їх повного, або майже повного, зникнення) обточені.

Рис. 5. Мікрофотографія метапісковика, пр. 22/10, просвічуючий мікроскоп, ніколі +

Fig. 5. Microphotograph of metasandstone, sample 22/10, transmitted light, crossed analysers

Зазначимо, що із розрізу метакластогенної частини скелюватської світи, відслоненої у лівому березі р. Інгулець в районі ПівднГЗК (рис. 1), нами було відібрано чотири геохронологічних проби: 20/10 — метапісковик із першої нижньої верстви, 21/10 — метапісковик із чотирнадцятої верстви знизу, 22/10 — метапісковик із найвищої верстви та 23/10 — філітоподібний сланець. За зовнішніми ознаками (колір, обточеність та ін.) кристали цирконів, виділених із вказаних проб, досить схожі, але є деякі відмінності. У пр. 21/10 різко переважають червонувато-рожеві, відносно великі кристали циркону, ступінь обкатанності зерен невисока. Кристали циркону пр. 22/10 і 23/10 дрібніші, більш абрадовані, окрім різновидів, присутніх у пр. 20/10, значну роль відіграють жовтувато-бурі непрозорі кристали з відносно високою магнітною сприйнятливістю (легко відділяються за допомогою електромагніту від інших різновидів). Такі кристали найпоширеніші в ІІ електромагнітній фракції.

Результати ізотопного датування центральних ділянок кристалів циркону, виділених із метапісковика (пр. 20/10), наведені в табл. 1, фігуративні точки свинець-уранових ізотопних досліджень — на рис. 4. Як видно із табл. 1 та рис. 4, практично для всіх, за винятком аналізу 1 (див. табл. 1), отримано конкордантні значення віку, при цьому виокремлюються дві вікові групи — 3457 ± 27 млн рр. (лише один кристал) та 3208 ± 18 млн рр. Варто зазначити, що кристалічні породи віком понад 3,4 млрд рр.

Number	U	Pb	Th	²⁰⁶ Pb	²⁰⁶ Pb	2 σ,	²⁰⁷ Pb	2 σ,	²⁰⁷ Pb	2 σ,		²⁰⁶ Pb	
Number	pr	om	U	²⁰⁴ Pb	²³⁸ U	%	²³⁵ U	%	²⁰⁶ Pb	%	rno	²³⁸ U	
1	2	1	0.41	4390	0.73058	3.2	25.4013	3.7	0.25216	1.9	0.86	3536	
2	9	6	0.12	21363	0.64291	3.0	22.4347	3.7	0.25309	2.3	0.80	3200	
3	11	8	0.25	6699	0.65446	3.0	23.1760	3.6	0.25683	2.0	0.84	3246	
4	15	12	0.32	42374	0.65113	3.0	22.4936	3.3	0.25055	1.2	0.93	3233	
5	4	3	0.51	2418	0.64627	3.4	22.7456	4.0	0.25526	2.0	0.86	3214	
6	35	30	0.51	1925	0.66431	1.8	24.2088	2.2	0.26430	1.4	0.79	3284	
7	9	8	0.40	3001	0.65380	2.0	23.3153	2.7	0.25864	1.8	0.75	3243	
8	31	23	0.43	12412	0.62112	1.9	19.9467	2.2	0.23291	1.0	0.89	3114	
9	50	39	0.46	7299	0.62222	1.9	20.5064	2.9	0.23903	2.2	0.65	3119	
10	21	22	1.59	24486	0.61920	1.6	20.0299	2.0	0.23461	1.2	0.78	3107	
11	36	37	0.74	207	0.70165	2.1	28.8490	2.9	0.29820	2.0	0.72	3427	
12	23	19	0.41	27552	0.65101	1.4	22.6571	1.9	0.25242	1.2	0.74	3232	
13	38	32	0.44	1842	0.66346	1.9	23.4317	2.1	0.25615	0.8	0.91	3281	
14	32	27	0.54	508	0.63997	2.3	21.5291	3.0	0.24399	1.9	0.78	3189	
15	62	49	0.27	383	0.62658	7.1	21.2152	8.7	0.24557	5.0	0.82	3136	
16	45	37	0.42	356	0.62564	1.9	20.9199	2.3	0.24251	1.2	0.85	3132	
17	33	27	0.36	449	0.65560	1.7	22.3777	1.9	0.24756	0.8	0.90	3250	
18	39	33	0.63	41762	0.63120	1.4	20.4572	1.7	0.23506	0.9	0.83	3154	
19	7	6	0.12	8365	0.69183	1.9	24.1565	2.4	0.25324	1.6	0.77	3390	
20	36	28	0.26	37873	0.65934	1.7	22.7468	2.4	0.25021	1.7	0.73	3265	

Таблиця 1. Результати уран-свинцевого ізотопного датування цирконів із метапісковика скелюватської світи, пр. 20/10 Table 1. Results of the uranium-lead isotope dating of zircons from the metasandstone of the Skelyuvatka Suite, sample 20/10

ПРО МЕЗОАРХЕЙСЬКИЙ ВІК КЛАСТОГЕННОГО ЦИРКОНУ

дотепер не виявлені у Середньопридніпровському мегаблоці. Циркони другої вікової групи (3,2 млрд pp.) близькі за віком до найдавніших цирконів із метатоналітів Середньопридніпровського мегаблоку, наприклад поширених у пригирловій частині долини р. Мокра Сура та в районі с. Шолохово [3, 8]. Головна їх відмінність полягає в досить низькому вмісті в них урану (2—60 ррт). Такий низький вміст урану характерний для цирконів із порід гранулітових асоціацій, на сьогодні такі циркони не виявлені в межах Середнього Придніпров'я, але є в породах гранулітової асоціації Приазовського блоку та Середнього Побужжя [16—18].

Вік кластогенних монацитів метапісковика, визначений за класичним уран-свинцевим ізотопним методом, складає 2,85 млрд рр., нині він є найкращою нижньою віковою межею для скелюватської світи криворізької серії [10]. Варто зазначити, що нам не вдалося виявити кристали циркону віком 2,6—2,9 млрд рр. Не виявлено кристалів циркону такого віку і в породах глеюватської світи. На наш погляд, це обумовлено тим, що синпетрогенний циркон у двопольовошпатових гранітах, вік яких 2,6—

2 σ, Ma	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	2 σ, Ma	²⁰⁷ Pb ²⁰⁶ Pb	2 σ, Ma	Conc., %
87	3324	37	3198	30	111
76	3203	37	3204	36	100
77	3234	35	3227	31	101
77	3205	32	3188	20	101
87	3216	39	3218	32	100
46	3277	22	3273	22	100
52	3240	27	3238	28	100
48	3089	21	3072	16	101
46	3116	28	3113	35	100
39	3093	19	3084	20	101
56	3448	29	3461	31	99
35	3212	18	3200	20	101
49	3245	20	3223	13	102
59	3163	30	3146	30	101
179	3148	88	3156	79	99
48	3135	22	3137	19	100
43	3200	18	3169	13	103
35	3113	17	3087	15	102
50	3275	24	3205	25	106
45	3216	24	3186	26	102

ISSN 2519-2396. Мінерал. журн. 2020. 42, № 2

Puc. 6. Мікрофотографії кристалів циркону із метапісковика, пр. 22/10. Катодолюмінесцентні зображення *Fig. 6.* Microphotograph of zircon crystals from metasandstone, sample 22/10. CL images

2,9 млрд pp., зазвичай утворює тонкі оболонки на більш древньому цирконі порід субстрату [11].

Метапісковик (пр. 22/10) різнозернистий, складений уламками кварцу (до 80 %) та поодинокими уламками плагіоклазу, зцементованими тонкозернистим кварц-серицитовим матеріалом (рис. 5). Порівняно з метапісковиком (пр. 20/10), він є більш дрібнозернистим і вміщує більше серициту в цементі, кількість останнього іноді досягає 20 %.

Циркони в цілому дрібніші за циркони метапісовика (пр. 20/10), в кількісному співвідношенні переважають сильно абрадовані до ізометричних (рис. 6), за кольором переважають рожеві і світло-рожеві зерна, в меншій кількості присутні коричневі, зрідка відмічаються жовтувато-бурі, які є помітно поширенішими (до 10 %) в II електромагнітній фракції. Трапляються поодинокі світло-жовті дископодібні кристали монациту.

Результати уран-свинцевого локального датування центральних ділянок кристалів циркону метапісковика наведено в табл. 2 (із 63 виконаних аналізів наведено лише 27, конкордантність яких була не нижчою 80 %), фігуративні точки уран-свинцевих ізотопних дос-

lable 2	. Resul	ts of t	he uranium	-lead isotop	e dating of	zircons fro	m the met	asandstone o	of the Skelyu	vatka Suit	ie, sample	22/10					
-mnN	Conte	ents, n	Th	²⁰⁶ Pb	2 σ,	207 Pb	2 σ,	²⁰⁷ Pb	2 σ,	- 1-	²⁰⁶ Pb	2α,	²⁰⁷ Pb	2σ,	²⁰⁷ Pb	2 σ,	Conc.,
ber	Ŋ	Th	Ū	²³⁸ U	%	²³⁵ U	%	²⁰⁶ Pb	%	rno	²³⁸ U	Ma	235U	Ma	²⁰⁶ Pb	Ma	%
1	172	69	0.40	0.6235	0.0235	25.14	0.967	0.29130	0.0060	0.85	3123	34	3313	16	3424	8	91
8	198	94	0.47	0.6156	0.0220	20.53	0.758	0.24200	0.0050	0.89	3092	18	3116	11	3133	6	66
12	95	31	0.33	0.6358	0.0226	21.20	0.768	0.24060	0.0050	0.76	3173	15	3148	6	3123	10	102
14	202	72	0.36	0.5924	0.0213	20.36	0.752	0.24820	0.0051	0.92	2999	20	3109	11	3173	8	95
15	39	11	0.29	0.6560	0.0255	22.39	0.862	0.24675	0.0050	0.98	3253	44	3200	16	3163	5	103
16	81	32	0.39	0.6247	0.0231	20.89	0.773	0.24255	0.0049	0.96	3128	29	3136	13	3136	9	100
17	145	38	0.26	0.3340	0.0121	5.13	0.188	0.11056	0.0023	0.91	1858	16	1840	6	1808	10	103
19	151	37	0.24	0.6467	0.0233	22.39	0.817	0.25020	0.0051	0.88	3215	22	3201	10	3186	8	101
20	154	79	0.51	0.6139	0.0236	21.50	0.857	0.25390	0.0052	0.99	3085	39	3161	18	3208	9	96
23	81	31	0.39	0.6820	0.0263	22.88	0.891	0.24340	0.0049	0.98	3352	40	3221	17	3142	9	107
27	163	95	0.58	0.6210	0.0232	20.78	0.772	0.24399	0.0049	0.98	3113	33	3131	13	3145	б	66
28	189	75	0.39	0.6351	0.0226	22.49	0.829	0.25700	0.0053	0.91	3177	21	3205	11	3228	8	98
31	153	54	0.35	0.5892	0.0212	21.51	0.776	0.26472	0.0054	0.96	2986	21	3162	6	3274	5	91
33	122	40	0.33	0.6305	0.0238	20.97	0.826	0.24240	0.0052	0.91	3162	29	3137	17	3135	12	101
39	193	118	0.61	0.5450	0.0256	21.05	0.848	0.28110	0.0077	0.94	2802	73	3140	20	3367	29	83
43	236	212	0.90	0.5266	0.0203	20.81	0.758	0.28660	0.0065	0.78	2727	36	3130	10	3398	17	80
44	203	132	0.65	0.6340	0.0248	21.21	0.834	0.24283	0.0049	0.97	3167	42	3148	18	3138	9	101
46	88	30	0.34	0.5989	0.0226	19.73	0.741	0.23797	0.0048	0.98	3025	34	3078	14	3106	4	97
50	132	99	0.50	0.6420	0.0244	22.74	0.878	0.25598	0.0052	0.99	3196	38	3216	16	3221	4	66
52	60	33	0.56	0.6471	0.0241	22.10	0.830	0.24655	0.0050	0.98	3216	32	3188	13	3162	ю	102
53	21	21	0.96	0.6380	0.0254	20.62	0.825	0.23340	0.0048	0.96	3182	48	3120	19	3074	6	103
56	40	15	0.38	0.6470	0.0252	21.94	0.866	0.24530	0.0050	0.98	3216	41	3180	18	3154	5	102
57	77	31	0.40	0.5478	0.0213	20.20	0.785	0.26650	0.0065	0.71	2815	39	3101	16	3284	22	86
59	109	35	0.32	0.5798	0.0219	19.45	0.752	0.24220	0.0051	0.92	2948	34	3064	16	3133	10	94
62	28	6	0.32	0.6720	0.0264	23.03	0.949	0.24900	0.0051	0.97	3312	47	3227	21	3178	6	104
65	141	58	0.41	0.6364	0.0240	21.43	0.824	0.24498	0.0050	0.96	3174	36	3158	16	3152	9	101
99	66	96	0.96	0.5975	0.0219	19.59	0.730	0.23715	0.0048	0.99	3020	26	3071	12	3100	4	97

Таблиця 2. Результати уран-свинцевого ізотопного датування цирконів із метапісковика скелюватської світи, пр. 22/10

52

ISSN 2519-2396. Mineral. Journ. (Ukraine). 2020. 42, No. 2

 Π р и м і т к
а. 27 аналізів із 63. N о t e. 27 analyzes from 63.

Рис. 7. Уран-свинцева діаграма з конкордією для кластогенних ядер в кристалах циркону із метапісковика, пр. 22/10

Fig. 7. U-Pb concordia diagram for clastogene cores in zircon crystals from metasandstone, sample 22/10

ліджень — на рис. 7. Таким чином, кількість кристалів циркону, конкордантність яких виявилася не нижчою за 80 %, складає менше 50 %. Дискордантні кристали характеризуються помітно вищим вмістом урану (понад 200 ррт, зрідка — понад 500 ррт). Водночас, вік конкордантних кристалів за найдостовірнішим ізотопним співвідношенням 207 Pb/ 206 Pb, всіх, окрім одного зерна (1,8 млрд рр.), лежить у віковому інтервалі 3074—3424 млн рр. (табл. 2). Таким чином, як і серед кластогенних кристалів циркону метапісковика (пр. 20/10) найнижчої верстви скелюватської світи, в метапісковику (пр. 22/10) із її верхньої верстви відсутні кластогенні кристали циркону віком 2,9—2,6 млрд рр. Наразі ми не знаємо природу циркону віком 1,8 млрд рр., на нашу думку, його кристалізація могла бути обумовлена тектоно-магматичною активізацією, що спричинила формування Корсунь-Новомиргородського анортозит-рапаківігранітного плутону [13, 14, 19], уран-натрієвих метасоматитів (альбітитів) і численних дайок основного та ультраосновного складу [5, 20, 21]. В усякому разі кристали циркону віком 1,8 млрд рр. є досить поширеними в амфіболітах новокриворізької серії [9] та в багатьох інших породних комплексах Українського щита [15].

Сланець філітоподібний (пр. 23/10) тонко-, різнозернистий сланцюватий, складений уламками кварцу (до 40%), зцементованими кварцсерицитовим матеріалом. Дрібні кутасті зерна кварцу та поодинокі кристали плагіоклазу занурені в тонкозернистий кварц-серицитовий цемент (рис. 8, а). Уламки кварцу нерідко являють собою агрегати кристалів (або ж фрагментовані зерна), які, як і луски серициту, характеризуються закономірним орієнтуванням (рис. 8, *b*). На окремих ділянках відмічаються мікрозонки, виповнені майже повністю тонкозернистим кварц-серицитовим матеріалом, в якому трапляються агрегати кварцу, витягнуті паралельно орієнтуванню мікрозонок. У таких ділянках іноді простежується сильне озалізнення (рис. 8, b), що в цілому зумовлює нерівномірне буре забарвлення породи. З акцесорних мінералів наявні апатит, циркон, рутил і рудні.

Рис. 8. Мікрофотографія філітоподібного сланцю, пр. 23/10, лівий беріг р. Інгулець західніше парку відпочинку в житловому масиві ПівднГЗК, просвічуючий мікроскоп, ніколі +

Fig. 8. Microphotograph of phyllite-like shale, sample 23/10, left bank of the Ingulets River, to the west of the park in the housing estate of the Southern Mining and Processing Plant, transmitted light, crossed analysers

ISSN 2519-2396. Мінерал. журн. 2020. 42, № 2

Conc	%	71	103	24	31	101	23	41	100	20	97	34	103	100	100	100	94	50	60	100	100	33	34	82	78	87	102	100
2α.	Ma	42	27	18	33	26	32	56	23	34	53	15	25	32	36	24	52	57	38	34	18	37	50	30	79	54	29	25
²⁰⁷ Ph	²⁰⁶ Pb	3118	3109	3086	3170	3216	3262	3131	3229	3244	3072	3038	3115	2961	3105	3081	3144	2996	3142	3087	3222	3096	3246	3179	3140	3238	3042	3201
2 α.	Ma	44	27	58	63	28	22	40	27	69	53	68	28	31	30	22	43	113	33	36	23	30	168	59	62	46	29	34
²⁰⁷ Ph	<u>235U</u>	2722	3144	1627	1919	3227	1737	2153	3235	1571	3032	1883	3147	2964	3106	3084	3071	2225	2553	3089	3222	1922	2070	2942	2849	3067	3068	3203
2 α.	Ma	70	54	49	62	58	12	31	59	49	102	73	60	59	51	40	69	152	41	72	52	24	177	122	79	71	59	78
206 Ph	$\overline{238U}$	2222	3198	744	982	3244	761	1282	3244	634	2972	1019	3197	2968	3108	3088	2960	1487	1880	3093	3220	1028	1102	2609	2455	2813	3109	3206
	rho	0.82	0.78	0.99	0.96	0.81	0.64	0.61	0.84	0.97	0.78	0.99	0.84	0.78	0.68	0.73	0.66	0.95	0.72	0.81	0.87	0.74	0.98	0.95	0.61	0.67	0.80	0.89
2 α.	2%	2.6	1.7	1.2	2.1	1.6	2.0	3.5	1.5	2.2	3.3	0.9	1.6	2.0	2.3	1.5	3.3	3.6	2.4	2.2	1.1	2.4	3.2	1.9	5.0	3.5	1.8	1.6
²⁰⁷ Ph	²⁰⁶ Pb	0.23968	0.23837	0.23489	0.24774	0.25497	0.26256	0.24166	0.25717	0.25951	0.23291	0.22805	0.23924	0.21728	0.23771	0.23418	0.24370	0.22211	0.24335	0.23510	0.25604	0.23641	0.25988	0.24911	0.24303	0.25853	0.22854	0.25251
2 d.	%	4.5	2.7	7.0	7.1	2.8	2.6	4.4	2.7	8.4	5.4	7.7	2.8	3.2	3.1	2.2	4.4	11.9	3.4	3.6	2.3	3.5	17.6	5.9	6.3	4.6	3.0	3.5
207 Ph	235U	13.6003	21.1103	3.9633	5.6205	22.9952	4.5350	7.3323	23.1894	3.6962	18.8112	5.3869	21.1790	17.5178	20.3053	19.8420	19.5779	7.9475	11.3641	19.9582	22.8744	5.6355	6.6830	17.1331	15.5343	19.5022	19.5270	22.4369
2.G.	%	3.7	2.1	6.9	6.8	2.3	1.7	2.7	2.3	8.1	4.2	7.7	2.4	2.5	2.1	1.6	2.9	11.3	2.5	2.9	2.0	2.6	17.3	5.6	3.9	3.1	2.4	3.1
206 Ph	238U	0.41154	0.64231	0.12237	0.16454	0.65410	0.12527	0.22005	0.65397	0.10330	0.58577	0.17132	0.64205	0.58473	0.61952	0.61451	0.58266	0.25952	0.33869	0.61569	0.64796	0.17289	0.18651	0.49882	0.46359	0.54711	0.61970	0.64445
206Ph	²⁰⁴ Pb	3606	40191	897	2166	18106	350	1744	14680	447	5579	867	3655	54634	1759	43207	53300	398	3099	22330	22300	3325	970	3919	2304	4575	45604	11552
L L		0.78	0.40	1.68	1.59	0.38	1.66	0.85	1.08	1.38	0.46	2.25	0.58	0.00	0.35	0.94	0.70	1.00	0.84	0.38	0.27	0.75	1.34	0.61	1.05	0.87	0.22	0.75
Pb	mc	24	30	28	32	14	44	51	25	33	30	15	10	29	9	26	40	49	31	25	10	13	8	24	26	8	14	13
D	id	44	38	166	158	18	264	191	25	225	43	68	12	47	6	29	50	151	75	34	13	65	30	40	45	11	20	17
	Number	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Рис. 9. Мікрофотографії кристалів циркону із філітоподібного сланцю, пр. 23/10: a — морфологія кристалів, відбите світло; b — зрізи тих же кристалів на просвіт; c — катодолюмінесцентні зображення *Fig. 9.* Microphotograph of zircon crystals from phyllite-like shale, sample 23/10: a — crystal morphology, reflected light; b — the same crystals, transmitted light; c — CL images

Циркони в цілому помітно дрібніші за циркони метапісовиків, переважно сильно абрадовані, зрідка до ізометричних (рис. 9), за кольором переважають рожеві і світло-рожеві зерна, в меншій кількості присутні коричневі, зрідка — жовтувато-бурі, яких у ІІ електромагнітній фракції значно більше (до 30 %).

Результати ізотопного датування центральних ділянок кристалів циркону, виділених із сланцю (пр. 23/10), наведені в табл. 3, фігуративні точки свинець-уранових ізотопних досліджень — на рис. 10. На відміну від урансвинцевих ізотопних систем кристалів циркону метапісковика, уран-свинцеві ізотопні системи багатьох кристалів циркону сланцю були порушені (є дискордантними) (див. табл. 3, рис. 10). Для основної маси кристалів цирко-ну, уран-свинцеві ізотопні системи яких не були порушені (конкордантність близько 100 %, див. табл. 3), показали вік у інтервалі 3229—3081 млн рр., характерний для переважної більшості порід Середньопридніпровського мегаблоку. Найменший вік отримано для одного із 27 проаналізованих кристалів циркону — 2961 \pm 32 млн pp., який є близьким до віку плагіогранітоїдів сурського комплексу. Як і в метапісковиках, серед кристалів циркону сланцю не виявлено кристалів віком 2,9—2,6 млрд рр.

Філітовий сланець, пр. 24/10. Лівий борт р. Саксагань (палеорусло) в районі рудоуправління ім. Кірова (Кіровський історико-геологічний заповідник, нижче вентиляційної шахти) приблизно на 30 м вище за течією від високовольтної лінії електропередач. На цій ділянці закинутими виробками відслонені 1-й та 2-й сланцеві горизонти саксаганської світи, перекриті залізорудними кварцитами. Пр. 24/10 філітового сланцю відібрано із 2-го сланцевого горизонту.

Рис. 10. Уран-свинцева діаграма з конкордією для кластогенних ядер в кристалах циркону із філітоподібного сланцю, пр. 23/10

Fig. 10. U-Pb concordia diagram for clastogene cores in zircon grains from phyllite-like shale, sample 23/10

Філітовий сланець — тонкозерниста бурувато-сіра порода, складена кутастими зернами кварцу та, зрідка, плагіоклазу, зцементована кварц-хлорит-серицит-гематитовим цементом. При цьому рудна речовина (гематит) дрібнозерниста, утворює скупчення (агрегати), за розміром близькі до уламків кварцу (рис. 11). Гематит у відбитому світлі сріблясто-білий, має металевий блиск, немагнітний (у протолочці концентрується в І електромагнітній фракції).

Кристали циркону філітового сланцю (пр. 24/10) подібні до кристалів циркону філітоподібного сланцю (пр. 23/10), але ще дрібніші, значна кількість кристалів метаміктизована (темні в катодолюмінесценції, рис. 12).

Результати U-Pb ізотопного датування центральних ділянок кристалів циркону з філіто-

																			_		_		_	_	_				_	_	
	Conc.,	%	66	83	102	102	102	101	103	103	103	101	100	100	101	102	104	103	66	101	100	101	101	100	66	100	104	100	96	101	66
	2σ,	Ma	9	220	9	8	7	11	6	8	5	٢	5	9	8	6	8	9	10	8	13	2	10	9	9	9	8	9	11	7	ĉ
	^{207}Pb	²⁰⁶ Pb	3005	1920	3013	3055	3054	3168	2996	3050	3054	2910	3095	3341	3355	3100	3173	2934	3279	3027	3086	3106	3068	3266	3111	3117	3041	3031	3107	3064	3080
	2σ,	Ma	12	88	23	14	6	12	20	12	12	6	8	8	6	15	14	11	16	11	11	20	11	6	7	14	٢	15	21	11	11
	207 Pb	235U	2992	1744	3027	3088	3081	3183	3039	3085	3098	2929	3099	3345	3380	3134	3229	2977	3281	3047	3098	3122	3079	3266	3102	3116	3088	3029	3051	3074	3058
	2σ,	Ma	34	210	48	35	17	19	44	29	32	22	20	21	17	33	37	23	48	25	29	45	23	30	19	34	21	35	58	30	25
01/47	²⁰⁶ Pb	²³⁸ U	2983	1600	3059	3131	3116	3189	3083	3130	3138	2948	3094	3344	3404	3171	3315	3030	3259	3065	3095	3135	3087	3266	3089	3123	3170	3037	2974	3101	3037
c, sampic	, alac	our	0.95	0.75	0.99	0.96	0.87	0.86	0.97	0.95	0.95	0.92	0.93	0.86	0.81	0.94	0.95	0.93	0.96	0.89	0.61	0.97	0.89	0.92	0.88	0.81	0.87	0.97	0.95	0.93	0.99
Sagall July	2 σ,	%	0.0045	0.0152	0.0046	0.0047	0.0047	0.0052	0.0046	0.0047	0.0047	0.0043	0.0048	0.0056	0.0058	0.0049	0.0051	0.0043	0.0055	0.0047	0.0051	0.0049	0.0049	0.0054	0.0049	0.0050	0.0047	0.0046	0.0051	0.0047	0.0047
	^{207}Pb	^{206}Pb	0.22343	0.11900	0.22459	0.23060	0.23040	0.24760	0.22220	0.22980	0.23033	0.21069	0.23637	0.27620	0.27870	0.23720	0.24830	0.21377	0.26550	0.22660	0.23520	0.23770	0.23240	0.26330	0.23878	0.23960	0.22860	0.22704	0.23820	0.23180	0.23420
	2 σ,	%	0.669	0.506	0.789	0.756	0.716	0.813	0.775	0.724	0.744	0.610	0.724	0.935	0.972	0.798	0.868	0.656	0.937	0.701	0.739	0.836	0.729	0.866	0.721	0.778	0.711	0.718	0.787	0.725	0.711
	207 Pb	235U	18.04	4.58	18.72	19.94	19.80	22.00	18.97	19.81	20.13	16.90	20.16	25.97	26.83	20.90	23.06	17.77	24.33	19.10	20.15	20.65	19.75	23.94	20.22	20.52	19.93	18.76	19.19	19.64	19.33
	2σ,	%	0.0222	0.0432	0.0244	0.0236	0.0222	0.0229	0.0241	0.0231	0.0234	0.0210	0.0222	0.0244	0.0248	0.0237	0.0255	0.0218	0.0260	0.0222	0.0227	0.0245	0.0223	0.0244	0.0220	0.0235	0.0229	0.0228	0.0248	0.0229	0.0220
soupe uau	²⁰⁶ Pb	²³⁸ U	0.5884	0.2830	0.6080	0.6253	0.6216	0.6399	0.6130	0.6252	0.6271	0.5798	0.6161	0.6798	0.6957	0.6354	0.6725	0.6002	0.6580	0.6087	0.6164	0.6260	0.6142	0.6597	0.6148	0.6234	0.6351	0.6019	0.5860	0.6179	0.6018
	Th	Ŋ	0.63	1.00	0.87	0.85	0.53	0.91	0.50	0.94	0.96	0.72	0.61	0.24	0.51	0.39	1.03	0.73	0.33	0.55	0.42	0.50	1.45	0.55	0.30	0.97	1.77	0.40	0.04	0.70	0.60
	s, ppm	Th	15	9	26	20	24	20	6	14	19	23	25	6	24	5	18	22	2	13	10	9	23	19	11	20	42	18	1	33	53
	Content	Ŋ	23	9	31	24	46	22	18	15	19	33	41	39	46	13	18	30	7	24	23	13	16	36	37	20	24	45	13	47	88
MI .4 aignt	Ninchar	INUIDEL	1	4	5	9	7	13	18	33	34	35	37	38	39	46	53	62	63	64	65	99	68	69	70	74	75	76	77	78	79

Таблиця 4. Результати уран-свинцевого ізотопного датування цирконів із філітового сланцю саксаганської світи, пр. 24/10 *Table 4*. Results of the uranium-lead isotone dating of zircons from the nhvIlite shale of the Saksagan Suite. samnle 24/10

ZIIIII 0.0044 0.99 Z971 Z9 T 2013 T 2013 Z3550 0.0044 0.94 3142 35 3197 7 3085 6 102 Z3550 0.0048 0.93 3171 23 3197 7 3051 10 2365 6 102 Z35254 0.0047 0.93 3166 29 3055 11 3067 6 99 Z32121 0.0047 0.93 3049 28 323 3069 10 3067 6 100 Z32578 0.0044 0.93 3049 20 3069 11 3056 6 103 Z3578 0.0044 0.93 3049 20 3077 11 3056 6 103 Z3506 0.0044 0.93 3049 27 3077 11 3056 13 10 Z3506 0.0043 0.93 3024 16 <t< th=""><th>19.65 0.706 0.2</th><th>)225</th><th>0.6212 0.0</th><th>0.40 0.6212 0.0</th><th>10 0.40 0.6212 0.0</th></t<>	19.65 0.706 0.2)225	0.6212 0.0	0.40 0.6212 0.0	10 0.40 0.6212 0.0
23484 0.0048 0.94 3142 35 3105 10 3085 6 102 255550 0.0072 0.93 3171 23 3197 7 3051 10 3085 6 102 255550 0.0048 0.92 3171 23 3197 7 3051 10 3085 6 102 23200 0.0044 0.93 3016 29 3055 11 3067 6 98 23121 0.0044 0.97 3061 28 3059 10 3066 13 10 102 22050 0.0044 0.90 3049 20 3000 7 2903 5 10 0 22050 0.0044 0.92 3162 19 3235 11 96 103 200870 0.0043 0.93 3233 16 3133 16 103 200870 0.0044 0.93 3233 <td< td=""><td>0</td><td>16.65 0.607</td><td>0.5756 0.0211 16.65 0.607</td><td>1.28 0.5756 0.0211 16.65 0.607</td><td>36 1.28 0.5756 0.0211 16.65 0.607</td></td<>	0	16.65 0.607	0.5756 0.0211 16.65 0.607	1.28 0.5756 0.0211 16.65 0.607	36 1.28 0.5756 0.0211 16.65 0.607
25550 0.0052 0.93 3171 23 3197 7 3218 7 99 23000 0.0044 0.93 3116 23 3057 11 3067 6 98 232121 0.0047 0.93 3016 29 3055 11 3067 6 98 232121 0.0044 0.93 3016 28 3059 10 3060 4 100 23121 0.0044 0.98 2325 32 2960 12 3019 6 98 23121 0.0044 0.90 3049 20 300 7 2953 6 100 20047 0.98 3024 68 3039 21 3056 13 100 20047 0.99 3049 20 3030 7 2953 6 103 20047 0.99 3061 11 3056 11 3056 10 2050	0.0	20.23 0.744	0.6282 0.0237 20.23 0.744	0.65 0.6282 0.0237 20.23 0.744	27 0.65 0.6282 0.0237 20.23 0.744
233000 0.0048 0.92 3123 39 3087 12 3051 10 102 232255 0.0047 0.93 3016 29 3055 11 3067 6 98 232121 0.0047 0.97 3061 28 3059 10 3060 4 100 20800 0.0044 0.97 3061 28 3059 10 3060 4 100 20800 0.0044 0.90 3049 20 307 11 3056 8 102 20501 0.0044 0.90 3049 20 307 11 3056 8 102 20502 0.0044 0.90 3160 44 3183 16 103 2060 0.0044 0.90 3160 44 3183 16 103 2060 0.0044 0.90 3162 47 3183 16 103 21365 0.0044	0	22.30 0.797	0.6354 0.0230 22.30 0.797	0.34 0.6354 0.0230 22.30 0.797	15 0.34 0.6354 0.0230 22.30 0.797
23225 0.0047 0.93 3016 29 3055 11 3067 6 98 22547 0.0046 0.98 2855 32 2960 12 3019 6 95 223121 0.0047 0.97 3061 28 3059 10 3060 4 100 20980 0.0044 0.90 3049 20 300 7 2933 5 102 20121 0.0044 0.90 3049 20 300 7 2935 6 103 21621 0.0047 0.93 3024 68 3039 211 3056 11 3056 10 225978 0.0043 0.98 3024 68 3033 21 100 3049 10 23060 0.0044 0.96 33024 11 3055 11 97 23070 0.0043 0.96 3304 16 3135 16 103	0.0	19.91 0.740	0.6234 0.0239 19.91 0.740	1.40 0.6234 0.0239 19.91 0.740	40 1.40 0.6234 0.0239 19.91 0.740
22547 0.0046 0.98 2855 32 2960 12 3019 6 95 23121 0.0047 0.97 3061 28 3069 10 3060 4 100 20880 0.0044 0.98 2962 20 2937 7 2903 5 102 21621 0.0044 0.90 3049 20 3000 7 2903 5 100 23070 0.0047 0.92 3162 19 3025 11 3056 8 100 23060 0.0043 0.90 3162 14 3135 101 3055 11 98 103 23060 0.0043 0.90 2934 16 2035 11 7 2935 10 10 23071 0.0443 0.90 2933 316 11 7 2895 10 10 24480 0.0043 0.90 2934 16 3136	2	19.26 0.709 (0.5968 0.0221 19.26 0.709 0	0.97 0.5968 0.0221 19.26 0.709 0	82 0.97 0.5968 0.0221 19.26 0.709 0
231210.00470.9730612830691030604100208000.00420.982962202037729035102216210.00440.903049203000729526103216210.00440.9830246830392130368100237000.004490.9830246830392130368100237010.004490.993162193222833454497235060.004490.9523794230321530568100235060.004490.963162193222833454497235060.004490.90293416293162035100244800.00510.90293416293162035103244800.00510.9029341629311631551198244800.00520.9029341629311631561096245500.004400.902933160233155119821245500.004400.90296237302211298410106225500.004400.9029623730221230711022225500.0044	C	17.46 0.649 (0.5571 0.0210 17.46 0.649 0	0.38 0.5571 0.0210 17.46 0.649 (11 0.38 0.5571 0.0210 17.46 0.649 0
20980 0.0042 0.98 2962 20 2937 7 2903 5 102 21621 0.0044 0.90 3049 20 3000 7 2952 6 103 2780 0.0044 0.90 3049 20 3000 7 2955 6 103 273070 0.0047 0.92 3162 19 3224 8 3245 4 97 23070 0.0043 0.93 3162 19 3222 8 3245 4 97 23060 0.0043 0.95 2979 42 3023 15 3055 11 98 21365 0.0043 0.96 3230 44 3183 16 3136 6 103 24480 0.0051 0.96 3230 44 3183 16 3136 6 103 24480 0.0064 0.93 3160 29 3136 6 100 <td>2</td> <td>19.54 0.715 (</td> <td>0.6079 0.0224 19.54 0.715 0</td> <td>0.65 0.6079 0.0224 19.54 0.715 (</td> <td>23 0.65 0.6079 0.0224 19.54 0.715 0</td>	2	19.54 0.715 (0.6079 0.0224 19.54 0.715 0	0.65 0.6079 0.0224 19.54 0.715 (23 0.65 0.6079 0.0224 19.54 0.715 0
21621 0.0044 0.90 3049 20 3000 7 2952 6 103 227780 0.0049 0.98 3024 68 3039 21 3036 13 100 23070 0.00447 0.92 3162 19 3077 111 3056 8 102 23060 0.00443 0.95 3162 19 3222 8 3245 4 97 23060 0.0043 0.95 2979 42 3032 15 3055 11 98 21365 0.0043 0.90 2330 44 3183 16 3150 9 103 24480 0.0051 0.90 3330 44 3183 16 3136 6 103 24570 0.0044 0.90 295 3044 11 2984 10 106 22350 0.0044 0.90 295 3155 11 9 22	0.7	17.03 0.610 (0.5834 0.0210 17.03 0.610 0	0.78 0.5834 0.0210 17.03 0.610 0	53 0.78 0.5834 0.0210 17.03 0.610 0
22780 0.0049 0.98 3024 68 3039 21 3036 13 10 23070 0.0047 0.92 3165 27 3077 11 3056 8 102 23070 0.0047 0.92 3162 19 3222 8 3245 4 97 25978 0.0043 0.95 27 19 3222 8 3245 4 97 23060 0.0043 0.95 277 291 7 2895 9 103 21365 0.0043 0.90 2934 16 2931 6 100 21365 0.0043 0.90 2934 16 2933 16 103 24247 0.0043 0.90 2880 19 7 2895 9 103 24480 0.0044 0.90 2880 19 7 2934 10 10 225510 0.0047 0.96 293 </td <td>2</td> <td>18.19 0.650 (</td> <td>0.6047 0.0217 18.19 0.650 0</td> <td>0.65 0.6047 0.0217 18.19 0.650 (</td> <td>53 0.65 0.6047 0.0217 18.19 0.650 0</td>	2	18.19 0.650 (0.6047 0.0217 18.19 0.650 0	0.65 0.6047 0.0217 18.19 0.650 (53 0.65 0.6047 0.0217 18.19 0.650 0
23070 0.0047 0.92 3106 27 3077 11 3056 8 102 23978 0.0052 0.96 3162 19 3222 8 3245 4 97 23060 0.0049 0.95 2979 42 3032 15 3055 11 98 23060 0.0043 0.905 2979 42 3032 15 3055 11 98 21365 0.0043 0.90 2934 16 2931 6 100 24480 0.0051 0.90 2934 16 2931 6 293 24510 0.0049 0.90 2880 19 302 11 298 22550 0.0047 0.90 2880 19 303 3156 10 95 225510 0.0047 0.90 2933 3156 11 298 10 223590 0.0044 0.93 3023 14	2	18.97 0.780 0	0.5990 0.0270 18.97 0.780 0	0.29 0.5990 0.0270 18.97 0.780 0	15 0.29 0.5990 0.0270 18.97 0.780 0
25978 0.0052 0.96 3162 19 3222 8 3245 4 97 23060 0.0049 0.95 2979 42 3032 15 3055 11 98 23060 0.0043 0.95 2979 42 3032 15 3055 11 98 21365 0.0043 0.90 2934 16 2933 6 100 21365 0.0043 0.90 2934 16 2933 6 103 24470 0.0049 0.90 2934 16 3156 6 103 24470 0.0049 0.90 2880 19 3029 8 3156 6 103 24450 0.0052 0.93 3160 41 3044 11 2984 10 106 223290 0.0044 0.96 2962 37 3076 13 307 9 106 232190 0.0044 <		19.71 0.724 0	0.6192 0.0227 19.71 0.724 0	0.96 0.6192 0.0227 19.71 0.724 0	49 0.96 0.6192 0.0227 19.71 0.724 0
23060 0.0049 0.95 2979 42 3032 15 3055 11 98 230870 0.0043 0.88 2995 27 2941 7 2895 9 103 21365 0.0043 0.88 2995 27 2941 7 2895 9 103 21365 0.0043 0.90 2934 16 2133 6 100 24480 0.0051 0.96 3230 44 3183 16 3150 9 103 24480 0.0052 0.95 3004 56 3090 23 3155 11 95 24550 0.0047 0.96 2790 266 2031 14 3048 5 9 106 223290 0.00447 0.96 2790 26 2931 14 3048 5 92 223290 0.00447 0.96 2962 37 123 3017 9 <t< td=""><td></td><td>22.89 0.823 0</td><td>0.6332 0.0227 22.89 0.823 0</td><td>0.16 0.6332 0.0227 22.89 0.823 0</td><td>10 0.16 0.6332 0.0227 22.89 0.823 0</td></t<>		22.89 0.823 0	0.6332 0.0227 22.89 0.823 0	0.16 0.6332 0.0227 22.89 0.823 0	10 0.16 0.6332 0.0227 22.89 0.823 0
20870 0.0043 0.88 2995 27 2941 7 2895 9 103 21365 0.0043 0.90 2934 16 2933 6 100 21365 0.0043 0.90 2934 16 2933 6 100 24480 0.0051 0.96 3230 44 3183 16 3150 9 103 24480 0.0051 0.96 3230 44 3183 16 3156 6 90 24500 0.0049 0.96 2880 19 3024 11 2984 10 106 222510 0.0047 0.96 2790 26 2931 14 3048 5 92 223290 0.0047 0.96 2790 256 370 14 3048 5 92 233290 0.0047 0.93 3190 35 3071 10 16 23199 0.0047		18.81 0.719 0	0.5880 0.0229 18.81 0.719 0	0.28 0.5880 0.0229 18.81 0.719 0	5 0.28 0.5880 0.0229 18.81 0.719 0
21365 0.0043 0.90 2934 16 2933 6 100 24480 0.0051 0.96 3230 44 3183 16 3150 9 103 24480 0.0051 0.96 3230 44 3183 16 3150 9 103 24247 0.0049 0.90 2880 19 3029 8 3136 6 9 103 24550 0.0049 0.95 3004 56 3090 23 3155 11 95 92 22550 0.0047 0.96 2790 26 2931 14 3048 5 92 232200 0.0047 0.96 2790 256 11 2984 10 106 232300 0.0047 0.93 3190 35 3076 13 3017 9 106 233199 0.0047 0.93 3155 12 3017 10 9 1	3	17.11 0.613 0	0.5915 0.0217 17.11 0.613 0	0.84 0.5915 0.0217 17.11 0.613 0	46 0.84 0.5915 0.0217 17.11 0.613 0
24480 0.0051 0.96 3230 44 3183 16 3150 9 103 24247 0.0049 0.90 2880 19 3029 8 3136 6 92 24550 0.0052 0.95 3004 56 3090 23 3155 11 95 24550 0.0047 0.95 3004 56 3090 23 3155 11 95 22056 0.0047 0.95 3704 11 2984 10 106 223290 0.0047 0.93 3190 35 3076 13 3017 9 106 233290 0.0047 0.93 3190 35 3076 13 3017 9 106 23199 0.0047 0.93 3152 26 3071 10 9 10 23199 0.0047 0.93 3056 8 3065 3 100 23193 0	G	16.93 0.603 0	0.5763 0.0205 16.93 0.603 0	0.37 0.5763 0.0205 16.93 0.603 0	16 0.37 0.5763 0.0205 16.93 0.603 0
24247 0.0049 0.90 2880 19 3029 8 3136 6 92 24550 0.0052 0.95 3004 56 3090 23 3155 11 95 24550 0.0046 0.93 3160 41 3044 11 2984 10 106 22956 0.0047 0.96 2790 26 2931 14 3048 5 92 229510 0.0047 0.96 2962 37 3022 12 3071 10 106 22510 0.0047 0.93 3190 35 3076 13 3017 9 106 24510 0.0047 0.94 3155 26 3145 13 3152 7 100 23199 0.0047 0.97 3056 8 3065 3 100 23199 0.0047 0.97 3056 8 3065 3 100 231		22.00 0.850 0	0.6510 0.0253 22.00 0.850 0	1.10 0.6510 0.0253 22.00 0.850 0	16 1.10 0.6510 0.0253 22.00 0.850 0
24550 0.0052 0.95 3004 56 3090 23 3155 11 95 22050 0.0046 0.93 3160 41 3044 11 2984 10 106 22050 0.0047 0.96 2790 26 2931 14 3048 5 92 223200 0.0047 0.96 2790 26 37 3022 12 3071 10 96 223200 0.0047 0.93 3190 35 3076 13 3017 9 106 22510 0.0047 0.93 3190 35 3076 13 3177 9 106 22510 0.0047 0.94 3155 26 3145 13 3152 7 100 23199 0.0047 0.97 3056 8 3065 3 100 233338 0.00447 0.99 248 3 365 3 100	2	18.74 0.673 (0.5632 0.0202 18.74 0.673 0	0.87 0.5632 0.0202 18.74 0.673 0	34 0.87 0.5632 0.0202 18.74 0.673 0
22050 0.0046 0.93 3160 41 3044 11 2984 10 106 22956 0.0047 0.96 2790 26 2931 14 3048 5 92 22350 0.0047 0.96 2790 26 2931 14 3048 5 92 23320 0.0047 0.96 2790 307 12 3071 10 96 23510 0.0047 0.93 3190 35 3076 13 3152 7 100 23199 0.0047 0.94 3155 26 3145 13 3152 7 100 23199 0.0047 0.97 3052 26 3145 13 3152 7 100 23109 0.0044 0.98 2968 60 3001 26 3077 7 98 233338 0.0044 0.99 248 33 2803 16 3075 <td< td=""><td>2</td><td>20.00 0.849 (</td><td>0.5940 0.0251 20.00 0.849 0</td><td>0.55 0.5940 0.0251 20.00 0.849 (</td><td>9 0.55 0.5940 0.0251 20.00 0.849 (</td></td<>	2	20.00 0.849 (0.5940 0.0251 20.00 0.849 0	0.55 0.5940 0.0251 20.00 0.849 (9 0.55 0.5940 0.0251 20.00 0.849 (
22956 0.0047 0.96 2790 26 2931 14 3048 5 92 23290 0.0049 0.96 2962 37 3022 12 3071 10 96 23210 0.0047 0.93 3190 35 3076 13 3017 9 106 224510 0.0047 0.93 3155 26 3145 13 3152 7 100 23199 0.0047 0.94 3155 26 3145 13 3152 7 100 23199 0.0047 0.97 3052 26 3056 8 3065 3 100 23133 0.0047 0.99 2968 60 3001 26 3077 7 98 233338 0.0047 0.99 2448 33 2803 16 3075 4 80 233338 0.0050 0.92 3200 37 3247 9	3	19.05 0.699 0	0.6330 0.0243 19.05 0.699 0	0.43 0.6330 0.0243 19.05 0.699 0	24 0.43 0.6330 0.0243 19.05 0.699 0
23290 0.0049 0.96 2962 37 3022 12 3071 10 96 22510 0.0047 0.93 3190 35 3076 13 3017 9 106 24510 0.0050 0.94 3155 26 3145 13 3152 7 100 24510 0.00647 0.97 3052 26 3145 13 3152 7 100 23199 0.0047 0.97 3052 20 3056 8 3065 3 100 23501 0.0047 0.98 2968 60 3001 26 3077 7 98 23338 0.0047 0.99 2448 33 2803 16 3075 4 80 23338 0.0054 0.92 3200 37 3230 14 3247 9 98 23450 0.0050 0.93 3088 31 3080 16 3082 12 100	2	16.94 0.643 (0.5416 0.0200 16.94 0.643 (0.28 0.5416 0.0200 16.94 0.643 (11 0.28 0.5416 0.0200 16.94 0.643 0
22510 0.0047 0.93 3190 35 3076 13 3017 9 106 24510 0.0050 0.94 3155 26 3145 13 3152 7 100 23199 0.0047 0.97 3155 26 3145 13 3152 7 100 23199 0.0046 0.97 3052 20 3056 8 3065 3 100 23109 0.0046 0.98 2968 60 3001 26 3027 7 98 23338 0.0047 0.99 2448 33 2803 16 3075 4 80 23338 0.0054 0.92 3200 37 3230 14 3247 9 99 23450 0.0050 0.93 3088 31 3080 16 3082 12 100	2	18.61 0.691 (0.5833 0.0224 18.61 0.691 0	0.43 0.5833 0.0224 18.61 0.691 0	31 0.43 0.5833 0.0224 18.61 0.691 0
24510 0.0050 0.94 3155 26 3145 13 3152 7 100 23199 0.0047 0.97 3052 20 3056 8 3065 3 100 22651 0.0046 0.98 2968 60 3001 26 3 7 98 223338 0.0047 0.99 2948 33 2803 16 3075 7 98 23338 0.0047 0.99 2448 33 2803 16 3075 4 80 25990 0.0054 0.92 3200 37 3230 14 3247 9 99 23450 0.0050 0.93 3068 31 3080 16 3082 12 100	2	19.69 0.737 (0.6405 0.0241 19.69 0.737 (0.07 0.6405 0.0241 19.69 0.737 (2 0.07 0.6405 0.0241 19.69 0.737 0
23199 0.0047 0.97 3052 20 3056 8 3065 3 100 22651 0.0046 0.98 2968 60 3001 26 3027 7 98 23338 0.0047 0.99 2448 33 2803 16 3075 4 80 255900 0.0054 0.92 3200 37 3230 14 3247 9 99 23450 0.0050 0.933 3068 31 3080 16 3082 12 100	<u> </u>	21.14 0.791 0	0.6313 0.0231 21.14 0.791 0	0.55 0.6313 0.0231 21.14 0.791 0	13 0.55 0.6313 0.0231 21.14 0.791 0
22651 0.0046 0.98 2968 60 3001 26 3027 7 98 23338 0.0047 0.99 2448 33 2803 16 3075 4 80 23590 0.0054 0.92 3200 37 3230 14 3247 9 99 23450 0.0050 0.933 3068 31 3080 16 3082 12 100	3	19.29 0.694 (0.6056 0.0218 19.29 0.694 (0.24 0.6056 0.0218 19.29 0.694 (11 0.24 0.6056 0.0218 19.29 0.694 0
23338 0.0047 0.99 2448 33 2803 16 3075 4 80 25990 0.0054 0.92 3200 37 3230 14 3247 9 99 23450 0.0050 0.93 3068 31 3080 16 3082 12 100	2	18.23 0.804 (0.5850 0.0254 18.23 0.804 (0.79 0.5850 0.0254 18.23 0.804 0	38 0.79 0.5850 0.0254 18.23 0.804 (
25990 0.0054 0.92 3200 37 3230 14 3247 9 99 23450 0.0050 0.93 3068 31 3080 16 3082 12 100	G	14.82 0.576 0	0.4619 0.0178 14.82 0.576 0	1.07 0.4619 0.0178 14.82 0.576 0	78 1.07 0.4619 0.0178 14.82 0.576 0
23450 0.0050 0.93 3068 31 3080 16 3082 12 100	G	23.08 0.873 0	0.6429 0.0244 23.08 0.873 0	0.37 0.6429 0.0244 23.08 0.873 0	25 0.37 0.6429 0.0244 23.08 0.873 0
	<u> </u>	19.77 0.767 0	0.6095 0.0227 19.77 0.767 0	0.24 0.6095 0.0227 19.77 0.767 0	3 0.24 0.6095 0.0227 19.77 0.767 C
				119.	zes from 119.

ISSN 2519-2396. Мінерал. журн. 2020. 42, № 2

Рис. 11. Мікрофотографія філітового сланцю, пр. 24/10, лівий беріг р. Саксагань (палеорусло) в районі рудоуправління ім. Кірова, просвічуючий мікроскоп: *а* — при одному ніколі, *b* — ніколі +

Fig. 11. Microphotograph of phyllite shale, sample 24/10, left bank of the Saksagan River (paleovalley) near of the Kirov mining administration building, transmitted light: a - parallel analysers, b - crossed analysers

Рис. 12. Мікрофотографії кристалів циркону із філітового сланцю, пр. 24/10. Катодолюмінесцентні зображення

Fig. 12. Microphotograph of zircon crystals from phyllite shale, sample 24/10. CL images

Рис. 13. Уран-свинцева діаграма з конкордією для кластогенних ядер у кристалах циркону із філітового сланцю, пр. 24/10

Fig. 13. U-Pb concordia diagram for clastogene cores in zircon grains from phyllite shale, sample 24/10

вого сланцю (пр. 24/10) є в табл. 4 та на рис. 13 (із 119 виконаних аналізів наведено лише 58, конкордантність яких була не нижчою 80 %). Більше 50 % кристалів циркону зі сланцю мають дискордантність понад 20 %, характерно, що як і в інших породах, більш дискордантними виявилися кристали з вищим вмістом урану. Вміст останнього в цілому варіює від 357 до 5 ppm, тоді як для найбільш конкордантних від 82 до 6 ррт (див. табл. 4). Вік за ізотопним співвідношенням ²⁰⁷Pb/²⁰⁶Pb для усіх проаналізованих кристалів, за винятком одного (вік якого становить 1920 млн рр.), варіює в межах 3355—2895 млн рр. (табл. 4). Серед кластогенних кристалів циркону зі сланцю виявлено чотири кристали віком близько 2,9 млрд рр. (табл. 4). Такий вік (близько 2,91 млрд рр.) мають циркони гранітоїдів Кудашівського масиву Придніпров'я [11].

Обговорення та висновки. Близькі значення віку більшості кристалів кластогенного циркону метапісковиків, філітоподібного сланцю скелюватської світи, поширених в одному зі стратотипових розрізів скелюватської світи (лівий борт долини р. Інгулець, західніше парку відпочинку в житловому масиві ПівднГЗК), та філітового сланцю саксаганської світи (лівий борт р. Саксагань (палеорусло) в районі рудоуправління ім. Кірова), дають змогу припустити єдине джерело (джерела) кластогенного матеріалу. Водночас варто вказати на деякі відмінності. По-перше, на відміну від метапісковиків, у сланцях ми не виявили навіть поодиноких зерен монациту. По-друге, в сланці (пр. 23/10) присутні кристали циркону зі значно вищим вмістом урану (в 6 кристалах понад 150 ррт (табл. 3)), порівняно з метапіс-

ковиком (пр. 20/10). У філітоподібному сланці значна частина кристалів (12 із 27 проаналізованих) виявилися дискордантними (конкордантність менше 80 %), що, можливо, обумовлено пізнішими накладеними процесами (очевидно сланці зазнали інтенсивнішої деформації ніж метапісковики (порівняйте рис. 2 і 8)). Значна кількість кристалів (понад 50 %) виявилися дискордантними в метапісковику (пр. 22/10) верхньої частини розрізу скелюватської світи. Саме ці кристали характеризуються відносно високим вмістом урану (200-500 ррт і більше). Дешо менший вміст урану виявлено в кластогенних кристалах циркону філітового сланцю (пр. 24/10) саксаганської світи (не вище 357 ppm), що може свідчити про деякі зміни в речовині джерела кластогенного матеріалу з часом.

Загалом конкордантні та субконкордантні кристали циркону (зі ступенем конкордантності більше 80 %) в усіх досліджених нами пробах, виявляють відносно невеликий діапазон варіацій ізотопного віку, від 3,0 до 3,3 млрд рр., який повністю відповідає діапазону, визначеному для мезоархейських порід Середньопридніпровського району Українського щита. Саме ці породи поширені в районі і складають фундамент, на якому накопичувалися відклади Криворізької структури. Було також виявлено декілька більш давніх кристалів, віком близько 3,4 млрд рр.

Найбільший інтерес становить група наймолодших кристалів, оскільки саме вона визначає максимальний вік накопичення відкладів скелюватської та саксаганської світ криворізької серії. Вік цих кристалів близько 2,9 млрд pp. Слід зазначити, що раніше у [9] на підставі вивчення цирконів з амфіболітів (метабазальтів) новокриворізької світи, зроблено висновок, що вихідні базальти були сформовані не пізніше 2,96 млрд pp. тому, а Криворізька структура була закладена в мезоархеї. Результати наших досліджень підтверджують цей висновок і вказують на те, що накопичення відкладів скелюватської та саксаганської світ відбувалося, вочевидь, близько 2,8— 2,9 млрд pp. тому.

Звичайно, вік у 2,9 млрд рр. можна трактувати лише як максимальний, а реальний вік осадонакопичення може бути значно меншим. Утім, наприклад, кварцити родіонівської світи інгуло-інгулецької серії, поширені у так званому Правобережному районі, серед інших містять і кластогенні циркони віком до 2,68 млрд рр. [2]. Якщо осадові породи скелюватської та саксаганської світ, згідно з чинною Кореляційною хроностратиграфічною схемою [6], молодші за 2,68 млрд рр., вони також мали б містити циркони цього віку. Окрім того, породи новокриворізької [17] та саксаганської [12] світ перетнуті інтрузивними тілами гранітів Ганнівського масиву, вік яких було визначено у 2,62 млрд рр. Отже, наші дані не заперечують мезоархейський вік відкладів скелюватської та саксаганської світ Криворізької структури.

ЛІТЕРАТУРА

- 1. Артеменко Г.В., Шумлянский Л.В., Беккер А.Ю. U-Pb возраст (*LA-ICP-MS*) кластогенного циркона глееватской свиты Кривбасса (Украинский щит). *Геол. журн.* 2018. № 2. С. 42—57.
- 2. Артеменко Г.В., Шумлянский Л.В., Хоффманн А., Беккер А.Ю. Возраст пород области сноса для кварцитов родионовской свиты ингуло-ингулецкой серии (Желтянский участок Правобережного района). Допов. НАН України. 2019. № 12. С. 65—74.
- 3. Бобров О.Б., Степанюк Л.М., Сергсєв С.А., Пресняков С.Л. Метатоналіти дніпропетровського комплексу та вікові етапи їх формування (геологічна позиція, склад, результати *Shrimp* радіології). *Зб. наук. пр. УкрДГРІ*. 2008. № 1. С. 9–23.
- 4. Бобров О.Б., Степанюк Л.М., Паранько І.С., Пономаренко О.М., Шумлянський Л.В., Дьюйм Б. Генезис та вік циркону із "латівського" горизонту криворізької серії Українського щита. *Мінерал. журн*. 2011. **33**, № 1. С. 30—40.
- 5. Ємець О.В., Пономаренко О.М., Кюні М., Петріченко К.В., Щербак Д.М., Сінелю С. Мінералого-геохімічні особливості та вік уранового зруденіння альбітитів Кіровоградського блоку на прикладі Новокостянтинівської урановорудної ділянки (Новоукраїнський гранітний масив, Український щит). *Мінерал. журн.* 2007. **29**, № 2. С. 102—110.
- Кореляційна хроностратиграфічна схема раннього докембрію Українського щита (поясн. зап.). К.Ю. Єсипчук, О.Б. Бобров, Л.М. Степанюк, М.П. Щербак, Є.Б. Глеваський, В.М. Скобелєв, А.С. Дранник, М.В. Гейченко. УкрДГРІ, НСК України. Київ, 2004. 29 с.
- 7. Паранько І.С., Стеценко В.В., Бутирін В.К., Козар М.А. Путівник геологічних екскурсій IV наук.-виробн. наради геологів-зйомщиків України (8—12 жовт. 2007 р.). Дніпропетровськ, 2007. 62 с.

ISSN 2519-2396. Мінерал. журн. 2020. 42, № 2

- 8. Самсонов А.В., Пухтель И.С., Журавлев Д.З., Чернышев И.В. Геохронология архейского аульского комплекса и проблема фундамента зеленокаменных поясов Украинского щита. *Петрология*. 1993. **1**, № 1. С. 29—49.
- 9. Степанюк Л.М., Бобров О.Б., Паранько І.С., Пономаренко О.М., Сергєєв С.А. Генезис та вік циркону із амфіболіту новокриворізької світи Криворізької структури. *Мінерал. журн.* 2011. **33**, № 3. С. 69—76.
- Степанюк Л.М., Паранько І.С., Пономаренко О.М., Довбуш Т.І., Висоцький О.Б. Уран-свинцевий вік кластогенного монациту із метапісковика скелюватської світи Криворізької структури. *Мінерал. журн.* 2011. 33, № 4. С. 80–90.
- 11. Степанюк Л.М., Курило С.І. Геохімія двопольовошпатових гранітоїдів Середнього Придніпров'я. Київ: Наук. думка, 2019. 207 с.
- Тіхлівець С.В. Мінеральний склад зон контакту дайки граніту та порід залізисто-кремнистої формації Криворізького басейну. *Proc. of the Int. Sci. Conf. "International Trends in Science and Technology"* (October 17, 2017, Warsaw, Poland), C. 4–7.
- Шестопалова Е.Е., Степанюк Л.М., Довбуш Т.И., Котвицкая И.Н. Уран-свинцовый возраст циркона гранитоидов Корсунь-Новомиргородского плутона (Ингульский мегаблок УЩ). *Мінерал. журн.* 2014. 36, № 4. С. 95–106.
- 14. Шестопалова Е.Е., Степанюк Л.М., Довбуш Т.И., Котвицкая И.Н. Изотопный возраст циркона габброидов Городищенского массива (Корсунь-Новомиргородский плутон, Ингульский мегаблок УЩ). *Мінерал. журн.* 2015. **37**, № 2. С. 63—75.
- Шумлянський Л.В. Постколізійний мафіт-ультрамафітовий магматизм Українського щита і кімберлітоутворення. Зб. тез Міжнар. наук. конф. "Моделі утворення алмазу та його корінних джерел. Перспективи алмазоносності Українського щита і суміжних територій", Київ, 11—13 верес. 2012. С. 226—227.
- Щербак Н.П., Артеменко Г.В., Бартницкий Е.Н., Верхогляд В.М., Комаристый А.А., Лесная И.М., Мицкевич Н.Ю., Пономаренко А.Н., Скобелев В.М., Щербак Д.Н. Геохронологическая шкала докембрия Украинского щита. Киев: Наук. думка, 1989. 144 с.
- 17. Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита. Архей. Киев: Наук. думка, 2005. 243 с.
- Claesson S., Bibikova E., Shumlyanskyy L., Dhuime B., Hawkesworth C. The oldest crust in the Ukrainian Shield Eoarchean U-Pb ages and Hf-Nd constraints from enderbites and metasediments. Eds. Van Kranendonk, N.M.W., Parman, S., Shirey, S., Clift, P.D. *Continent Formation Through Time. Geological Society, London, Special Publ.*, 2015. 389. C. 227–259.
- Shumlyanskyy L., Hawkesworth C., Billström K., Bogdanova S., Mytrokhyn O., Romer R., Dhuime B., Claesson S., Ernst R., Whitehouse M., Bilan O. The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian Shield: new U-Pb ages and Hf isotopes in zircon. *Precam. Res.* 2017. 292. P. 216–239. https://doi.org/10.1016/j. precamres.2017.02.009
- Shumlyanskyy L., Mitrokhin O., Billström K., Ernst R., Vishnevska E., Tsymbal S., Cuney M., Soesoo A. The ca. 1.8 Ga mantle plume related magmatism of the central part of the Ukrainian shield. *GFF*. 2016. 138. P. 86–101.
- Shumlyanskyy L., Ernst R., Söderlund U., Billström K., Mitrokhin O., Tsymbal S. New U-Pb ages for mafic dykes in the Northwestern region of the Ukrainian shield: coeval tholeiitic and jotunitic magmatism. *GFF*. 2016. 138. P. 79–85.

Надійшла 23.03.2020

REFERENCES

- 1. Artemenko, G.V., Shumlyanskyy, L.V. and Bekker, A.Yu. (2018), Geol. zhurn., No. 2, Kyiv, UA, pp. 42-57 [in Russian].
- 2. Artemenko, G.V., Shumlyanskyy, L.V., Hoffmann, A. and Bekker, A.Yu. (2019), *Dopov. Nac. akad. nauk Ukr.*, No. 12, Kyiv, UA, pp. 65-74 [in Russian].
- 3. Bobrov, O.B., Stepanyuk, L.M., Serheev, S.A. and Presniakov, S.L. (2008), *Zb. nauk. pr. UkrDGRI*, No. 1, Kyiv, UA, pp. 9-23 [in Ukrainian].
- 4. Bobrov, O.B., Stepanyuk, L.M., Paranko, I.S., Ponomarenko, O.M., Shumlyanskyy, L.V. and Dhuime, B. (2011), *Mineral. Journ. (Ukraine)*, Vol. 33, No. 1, Kyiv, UA, pp. 30-40 [in Ukrainian].
- 5. Emetz, O.V., Ponomarenko, O.M., Cuney, M., Petrichenko, K.V., Shcherbak, D.M. and Sinelu, S. (2007), *Mineral. Journ. (Ukraine)*, Vol. 29, No. 2, Kyiv, UA, pp. 102-110 [in Ukrainian].
- 6. Yesypchuk, K.Yu., Bobrov, O.B., Stepanyuk, L.M., Shcherbak, M.P., Glevaskiy, E.B., Skobelev, V.M., Drannik, V.S. and Geichenko, M.V. (2004), *Correlated chronostratigraphic scheme of Early Precambrian of the Ukrainian Shield (scheme and explanatory note)*, UkrSGRI, NSC Ukraine, Kyiv, UA, 29 p. [in Ukrainian].
- 7. Paranko, I.S., Stetsenko, V.V., Butyrin, V.K. and Kozar, M.A. (2007), *Putivnyk heolohichnoi ekskursii IV naukovo*vyrobnychoyi narady heolohiv-zyomshchykiv Ukrayiny, 8-12 zhovtnia 2007 r., Dnipropetrovsk, UA, 62 p. [in Ukrainian].
- 8. Samsonov, A.V., Pukhtel, I.S., Zhuravlev, D.Z. and Chernyshev, I.V. (1993), *Petrologiya*, Vol. 1, No. 1, RU, pp. 29-49 [in Russian].
- 9. Stepanyuk, L.M., Bobrov, O.B., Paranko, I.S., Ponomarenko, O.M. and Serheev, S.A. (2011), *Mineral. Journ. (Ukraine)*, Vol. 33, No. 3, Kyiv, UA, pp. 69-76 [in Ukrainian].

- 10. Stepanyuk, L.M., Paranko, I.S., Ponomarenko, O.M., Dovbush, T.I. and Vysotsky, O.B. (2011), *Mineral. Journ. (Ukraine)*, Vol. 33, No. 4, Kyiv, UA, pp. 80-90 [in Ukrainian].
- 11. Stepanyuk, L.M. and Kurylo, S.I. (2019), *Geochemistry of two-feldspar granitoids of the Middle Dnieper area*, Nauk. dumka, Kyiv, UA, 207 p. [in Ukrainian].
- 12. Tikhlivets, S.V. (2017), Proc. of the Int. Sci. Conf. "International Trends in Science and Technology", Warsaw, October 17, 2017, Warsaw, Poland, pp. 4-7 [in Ukrainian].
- 13. Shestopalova, E.E., Stepanyuk, L.M., Dovbush, T.I. and Kotvitskaya, I.N. (2014), *Mineral. Journ. (Ukraine)*, Vol. 36, No. 4, Kyiv, UA, pp. 95-106 [in Russian].
- 14. Shestopalova, E.E., Stepanyuk, L.M., Dovbush, T.I. and Kotvitskaya, I.N. (2015), *Mineral. Journ. (Ukraine)*, Vol. 37, No. 2, Kyiv, UA, pp. 63-75 [in Russian].
- 15. Shumlyanskyy, L.V. (2012), Abstract volume of the Int. sci. conf. "Models of formation of diamond and its source rocks", *Kyiv, Septem. 11-13, 2012,* UA, pp. 226-227 [in Ukrainian].
- Shcherbak, M.P., Artemenko, G.V., Bartnitskiy, Ye.N., Verkhoglyad, V.M., Komaristyy, A.A., Lesnaya, I.M., Mitskevich, N.Yu., Ponomarenko, O.M., Skobelev, V.M. and Shcherbak, D.N. (1989), *Geochronological scale of the Precambrian of the Ukrainian Shield*, Nauk. dumka, Kyiv, UA, 144 p. [in Russian].
- 17. Shcherbak, N.P., Artemenko, G.V., Lesnaya, I.M. and Ponomarenko, A.N. (2005), *Geochronology of Early Precambrian of the Ukrainian Shield. Archean*, Nauk. dumka publ., Kyiv, UA, 244 p. [in Russian].
- Claesson, S., Bibikova, E., Shumlyanskyy, L., Dhuime, B. and Hawkesworth, C. (2015), *Continent Formation Through Time*, in Van Kranendonk, N.M.W., Parman, S., Shirey, S. and Clift, P.D. (eds), *Geological Society, London, Special Publ.*, Vol. 389, pp. 227-259.
- Shumlyanskyy, L., Hawkesworth, C., Billström, K., Bogdanova, S., Mytrokhyn, O., Romer, R., Dhuime, B., Claesson, S., Ernst, R., Whitehouse, M. and Bilan, O. (2017), *Precam. Res.*, Vol. 292, pp. 216-239. https://doi.org/10.1016/j.precamres.2017.02.009
- Shumlyanskyy, L., Mytrokhyn, A., Billström, K., Ernst, R., Vishnevska, E., Tsymbal, S., Cuney, M. and Soesoo, A. (2016), *GFF*, Vol. 138, pp. 86-101.
- 21. Shumlyanskyy, L., Ernst, R., Söderlund, U., Billström, K., Mitrokhyn, O. and Tsymbal, S. (2016), *GFF*, Vol. 138, pp. 79-85.

Received 23.03.2020

L.M. Stepanyuk, DrSc (Geology), Corresponding Member of NAS of Ukraine, Prof., Deputy Director, M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine 34, Acad. Palladin Ave., Kyiv, Ukraine, 03142 E-mail: stepaniuk@nas.gov.ua https://orcid.org/0000-0001-5591-5169 L. Shumlyanskyy, DrSc (Geology), Senior Research Fellow. Leading Researcher. M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine 34, Acad. Palladin Ave., Kyiv, Ukraine, 03142 E-mail: lshumlyanskyy@yahoo.com http://orcid.org/0000-0002-6775-4419 A. Hoffmann, PhD (Geology), Graduate Student, University of California, Department of Earth Sciences 900, University Ave., Riverside, USA, CA 92521 E-mail: ahoff003@ucr.edu M. Hofmann, PhD (Geology), Head of the Lab. Senckenberg Naturhistorische Sammlungen, Dresden, Germany E-mail: mandy.hofmann@senckenberg.de Scopus ID: 35334126200 A. Kovalick, PhD (Geology), Graduate Student. University of California, Department of Earth Sciences 900, University Ave., Riverside, USA, CA 92521 E-mail: fkova001@ucr.edu A. Bekker, PhD (Geology), Prof. University of California, Department of Earth Sciences 900, University Ave., Riverside, USA, CA 92521 E-mail: andreyb@ucr.edu http://orcid.org/0000-0002-1154-0585 ON THE MESOARCHEAN AGE OF DETRITAL ZIRCONS

FROM META-TERRIGENOUS ROCKS OF THE SKELYUVATKA AND SAKSAGAN SUITES OF THE KRYVYI RIH STRUCTURE, ACCORDING TO THE RESULTS OF U-Pb DATING

Convincing geochronological data regarding the time of accumulation of deposits that fill the Kryvyi Rih structure, Ukraine, are still lacking, and in the current Chronostratigraphic chart they are attributed to the Paleoproterozoic. Thus, dating of detrital minerals that allows determination of the maximum age of sedimentation, is especially important. The paper presents results of the U-Pb LA-ICP-MS dating of zircons from two quartzite and two phyllite samples from the Kryvyi Rih structure.

Three of these samples are from metaterrigenous sediments of the Skelyuvatka Suite, whereas one sample was collected from the Saksagan Suite. The study was carried out applying LA-ICP-MS method. Most of the obtained results are highly discordant due to the high degree of metamictization caused by high concentrations of Th and U. Only results of U-Pb dating with the degree of concordance higher than 80% were further considered. Zircons from all four samples yielded ages that fall within a narrow interval of 2.9-3.3 Ga that corresponds to the age of the basement rocks of the Middle Dnieper Domain that underlies the Kryvyi Rih structure. The youngest measured age of ca. 2.9 Ga corresponds to the age of detrital monazite (2.85 Ga) found earlier in sandstones of the Skelyuvatka Suite. It is somewhat younger than the age of metamorphosed basalts of the New Kryvyi Rih Suite (2.96 Ga), whose outpouring indicated initial formation of the Kryvyi Rih and Saksagan suites, also confirms their at least Neoarchean age. Currently available geochronological data indicate Meso- to Neoarchean deposition age of the New Kryvyi Rih, Skelyuvatka and Saksagan suites.

Keywords: Kryvyi Rih structure, detrital zircons, LA-ICP-MS, Skelyuvatka Suite, Saksagan Suite.