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ON NON-EQUILIBRIUM STRONG CORRELATION SYSTEMS 
 

The self-energy-functional theory (SFT) is generalized to describe the real-time 
dynamics of correlated lattice-fermion models far from thermal equilibrium. This is 
based on a reformulation of the original equilibrium theory in terms of double-time 
Green's functions on the Keldysh-Matsubara contour. It is  considered equations for 
non-equilibrium Green’s functions and corresponding solutions describing elemental 
excitations in considered systems. 

 
1. On description of the dynamics of non-equilibrium systems 
The development of new theoretical methods to study the real-time dynamics 

of systems of strongly correlated fermions far from thermal equilibrium has 
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become more and more important recently. Apart from fundamental questions 
related to dynamical phase transitions (see [1] and other open problems in quantum 
statistics [2] this interest is to a large extent triggered by the experimental progress 
which made it possible to control microscopic degrees of freedom with high 
temporal resolution. Examples are given by femtosecond pump-probe spectroscopy 
from transition-metal oxides (see [3] or by the dynamics of ultracold atomic gases 
trapped in optical lattices [4].  

For correlated lattice-fermion models with local interactions, such as the 
Hubbard model [5] as a prototype, a conceptually appealing and pragmatic 
theoretical idea is the mean-field approach [6]. With the invention of dynamical 
mean-field theory (DMFT) [7] we have the optimal mean-field theory at hand that 
comprises a number of important properties, including its non-perturbative 
character and its internal consistency. Those features are also shared by the non-
equilibrium (NE) generalization of the DMFT [8], which has already been applied 
successfully to a number of problems [9].  

DMFT (both for equilibrium and for non-equilibrium) requires the 
computation of the fermion self-energy of an effective impurity model with self-
consistently determined parameters. For the equilibrium case, quantum Monte-
Carlo (QMC) techniques [10] nowadays represent a standard tool to treat the 
many-body impurity problem efficiently and accurately. Employing exact 
diagonalization (ED) as a “solver" represents a competitive alternative in case of 
single-band models. It is easily implemented, computationally efficient and highly 
accurate. A disadvantage of the ED solver consists in the essentially ad hoc 
character of the self-consistency condition that fixes the Weiss field. This 
originates from the impossibility to fit a continuous Weiss field with any finite 
number of bath degrees of freedom, and it becomes a serious problem, if, for 
reasons of limited computational resources, only a small number of bath sites can 
be used in the effective impurity model. 

The ad-hoc character of the bath representation can lead to a violation of 
thermodynamic consistency and conservation laws. This problem could be solved 
within the framework of the self-energy-functional theory (SFT) [11], where the 
DMFT self-consistency condition is replaced by the condition for stationarity of 
the system's grand potential with respect to the bath parameters of the impurity or 
\reference" system. Thereby the bath parameters are efficiently determined by a 
physically meaningful and unique procedure, which provides consistent results for 
impurity models with a few parameters only and recovers the full DMFT in the 
continuum limit. Very precise studies of phase diagrams have been done in this 
way. 

In the non-equilibrium case, the situation is more complicated: QMC-based 
solvers have been employed successfully but suffer from a severe sign (or phase) 
problem contrary to the equilibrium case where the sign problem is absent or mild. 
Simplified, e.g., perturbative approximations, such as the iterative perturbation 
theory [9] the non-crossing approximation or simplified models, such as the 
Falicov-Kimball model [8] have been considered instead, as well as a non-
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equilibrium variant of the dual-fermion approach. For the study of steady-state 
properties, a non-trivial extension of ED-based DMFT has been suggested recently 
[12]. The development of ED-based impurity solvers to compute the real-time 
evolution within DMFT is more challenging, as it is by no means obvious how to 
fix the time-dependent parameters to fit a given Weiss field, i.e., a given non-
homogeneous function of two time variables with certain analytical properties. One 
indeed can find mapping strategies which are accurate and systematic at short 
times, but in general, and in particular for the longtime limit, the reduction of the 
Hamiltonian representation of the Weiss field to a small number of parameters 
remains somehow ad-hoc. 

The goal of the present study is therefore to explore whether non-perturbative 
and internally consistent approximations based on the exact-diagonalization of a 
reference system with a finite (small) number of bath sites can be formulated by 
means of a proper generalization of the self-energy-functional theory to the non-
equilibrium case. Preceding attempts in this direction are not satisfactory yet. The 
non-equilibrium cluster-perturbation theory [13] does make use of the exact 
diagonalization of a finite reference system out of equilibrium and provides the 
one-particle propagator for a non-equilibrium state of the correlated lattice model. 
However, the approach does not rely on a variational principle at all and does not 
involve any self-consistent or variational optimization of the parameters of the 
reference system. On the other hand, a self-consistent parameter optimization is 
part of a similar ED-based cluster approach, which has been formulated and 
applied to study the steady state of an out-of-equilibrium correlated lattice model. 
Here a physically motivated self-consistency condition is used which, however, is 
not yet shown to derive from a general variational principle that also applies to the 
transient dynamics. 

There are several problems that must be solved in order to construct a non-
equilibrium self-energy-functional theory (NE-SFT): First, a functional [ ]  of 
the double-time non-equilibrium self-energy must be constructed formally and 
shown to be stationary at the physical self-energy of the lattice model. Ideally, the 
functional, if evaluated at the physical self-energy, has a precise physical meaning. 
In the spirit of the equilibrium SFT, the functional should be accessible to an exact 
numerical evaluation for trial non-equilibrium self-energies generated by a 
reference system, which typically consists of a small number of sites such that it is 
tractable by exact diagonalization techniques. Next one must find conditional 
equations for the parameters of the reference system, by demanding stationarity of  
when varying the self-energy through variation of the parameters. 

The NE-SFT should furthermore recover the nonequilibrium DMFT if a 
single-impurity Anderson model, with a continuum of bath degrees of freedom, 
was chosen as a reference. Apart from non-equilibrium dynamical impurity 
approximations (DIA) resulting from Anderson models with a _nite number of 
bath sites, the NE-SFT should also allow for the construction of cluster 
approximations, such as a non-equilibrium generalization of the variational cluster 
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approach (VCA). Adding baths one should, in the limit of a continuum of bath 
degrees of freedom, also recover non-equilibrium analogues of the cellular DMFT 
and the dynamical cluster approximation. Finally, it will be interesting to see how 
the standard SFT is recovered within the general NE-SFT setup in case of an 
equilibrium situation. 

The most important question in the context of any method addressing real-
time dynamics, however, concerns macroscopic conservation laws. Do 
approximations derived within the NE-SFT framework respect the conservation of 
the total particle number, the total spin and the total energy for a U(1) and SU(2) 
symmetric and time-independent Hamiltonian? This \conserving" nature of 
approximations is not easily obtained. The seminal work of Baym and Kadanov 
[14] answers this question for approximations that are “derivable", including 
DMFT and self-consistent perturbation theory, such as the second-order Born 
approximation. While the construction of the NE-SFT makes use of the Luttinger-
Ward functional , the question whether it is conserving must be addressed 
carefully since generic approximations within the NE-SFT cannot be obtained by 
resummations of diagram classes. 

 
2. Non-equilibrium Green's functions 
The self-energy-functional approach relies on functional that are formally 

defined by means of all-order perturbation theory. Therefore, we summarize the 
concept of (non-equilibrium) Green's functions as far as necessary for our 
purposes. Out of the various available formulations we will basically follow the 
formal setup by Wagner [15]. 

We assume that the system at initial time 0t  t0 is prepared in a thermal state 
with inverse temperature  and chemical potential , as given by a density 
operator 

 exp( )
Tr exp( )

ini

ini

H
H

 (1) 

with  ini iniH H N , where 

 ( ) ( )1
2

ini ini
iniH T c c U c c c c  (2) 

is the initial Hamiltonian and N the total particle number operator. Greek indices 
refer to one-particle basis states, which typically are characterized by a lattice site, 
an orbital index and a spin-projection quantum number. For times 0t t  the 
system's time evolution shall be governed by the possibly time-dependent 
Hamiltonian 

 ( ) ( )1
2

fin fin
finH T c c U c c c c . (3) 

For the sets of time-dependent hopping and interaction parameters we write 
T  and U  for short, and, whenever necessary or convenient, we indicate the 
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dependence of the Hamiltonian on those parameters as ,T UH . In the Heisenberg 
picture with respect to ( ) ( )finH t H t N , an arbitrary, possibly time-dependent 
observable ( )A t  is given by  

0 0( ) ( , ) ( ) ( , )HA t U t t A t U t t  

Here 
'

( , ') exp ( )
t

t

U t t i dzH z  is the time evolution operator for times 

't t , where ( ) is chronological (anti-chronological) time-ordering operator. 
Noting that 0 0exp( ) ( , )iniH U t i t , the time-dependent expectation value of 
the observable ( )A t , namely ( ) Tr( ( ))HA t A t , can be written as  

 .
,

,

Tr exp ' ( ') ( )
( )

Tr exp ' ( ')

C T UC

C T UC

dz H z A t
A t

dz H z
.. (4) 

Here, the time integration is carried out along the contour C  in the complex 
time plane, which extends from 0'z t  to  'z along the real axis (upper 
branch) and back to 0'z t  (lower branch) and finally from 0'z t  to 0'z t i  
along the imaginary axis (Matsubara branch). We also refer to the upper and the 
lower branch as the Keldysh contour. For a concise notation, we define ( )H z  for 
contour times z as ( ) ( )finH z H t  if 0z t t and as ( ) ( )iniH z H t  if 0z t i  
with 0 . In the same way, we define ( )T z  and ( )U z . CT  denotes the 
ordering operator along the contour and, after expanding the exponential, places an 
operator 1( )H z  to the left of 2( )H z  if 1z  is \later" than 2z , where 0t i  is the 

\latest" time. Obviously, CT  replaces T on the upper and T  on the lower branch. 
When the contour ordering operator CT  acts on ( )A t  in the numerator of Eq. 

(5), it places 2z at the position 0z t  on C , where the expectation value is 
evaluated. Because the integrations along the upper and the lower branches cancel 
each other in the interval 't z , the integration along the Keldysh branch is 
limited to 'z t , and it does not matter whether ( )A t is placed at z t  on the 
upper or the lower branch of the contour. For the denominator, only the Matsubara 
branch contributes and results in Tr iniH .  

For a system speci led by the parameters .. and U  we de fine the elements of 
the contour-ordered Green's function ,T UG  as 

 , ; ' , ',( , ')T U C H HiG z z T c c . (5) 

Here Tr ...  denotes the expectation value in the initial state. 
Furthermore, the annihilation and creation operators are given in their Heisenberg 
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picture with respect to ( )H t , z , 'z  denote arbitrary points on the contour, and CT  
is the time ordering of annihilation and creation operators on C  which yields an 
additional (fermionic) sign for each transposition. Note that the Green's function 
also depends on  and  via the initial thermal state. These dependencies are 
implicit in the notations. 

The “free" Green's function ,0TG  is obtained by setting 0U  in Eq. (5). 
Using the Heisenberg equation of motion for the annihilation operator, we find 

 1
, ,0; ' , ' ' ' '( ( , ') ( '), ')T T C zz z i T zG z z          (6) 

where C is the contour delta-function, and the matrix inverse refers to both one-
particle basis indices and time variables. With the help of the free and the 
interacting Green's functions we can also introduce the self-energy via the Dyson 
equation 

 , ,0 ,0 , ,T U T T T U T UG G G G .    (7) 
By switching to the interaction picture, the interacting Green's function can be 

cast into the form:    

 

0,,

0,,

'' ( '')

'
,0

, ; ' '' ( '')

,0

( ) ( ')
( , ')

UC

UC

i dz H z

C
T

T U i dz H z

C
T

e c z c z
iG z z

e
. (8) 

Here the time dependence of all operators is due to ,0TH  only. Likewise, the 

expectation value 
,0

...
T

 is defined with the “free" density operator exp 

( ,0 ,0exp( ) / Tr(- )T TH H . Hence, Wick's theorem applies and therewith the 
standard techniques of perturbation theory. 

 
3.  Luttinger-Ward functional 
The non-equilibrium Luttinger-Ward functional  [ ]U G  can be defined by 

means of all-order perturbation theory in close analogy to the equilibrium case. It is 
obtained as the limit of the infinite series of closed renormalized skeleton 
diagrams, and is thus given as a functional of the contour-ordered Green's function. 
Usually the skeleton-diagram expansion cannot be summed up to get a closed form 
for [ ]U G , and the explicit functional dependence is unknown even for the most 
simple types of interactions  like the Hubbard interaction. As an alternative to the 
diagrammatic definition of the Luttinger-Ward functional, a non-equilibrium path-
integral formalism may be used for an entirely non-perturbative construction. 
Again, this can be done analogously to the equilibrium case. Both variants allow 
deriving the following four properties that will be used extensively for constructing 
the non-equilibrium SFT.  

The Luttinger-Ward functional vanishes in the non-interacting limit 
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 [ ] 0 for  0U G U = , (9) 
since there is no zero -order diagram. 

The functional derivative of the Luttinger-Ward functional with respect to its 
argument is 

 [ ] 1 (1,2)
(1,2) 2
U

U
G G

G
, (10) 

with the short-hand notation ( , )i ii z . Diagrammatically, the functional 
derivative corresponds to the removal of a propagator from each of the  
diagrams. Taking care of topological factors, one ends up with the skeleton-
diagram expansion of the self-energy which, independently from the definition, Eq. 
(7), gives the self-energy as a functional of the Green's function [ ]U G . 
Evaluating the functional  at the exact (“physical") Green's function ,T UG  yields 
the physical self-energy 
 , ,[ ]U T U T UG        (11) 

Since any diagram in the series depends on U and on G  only, the Luttinger-
Ward functional is “universal", i.e., it is independent of T  . Two systems with the 
same interaction U  but different one-particle parameters T  are described by the 
same Luttinger-Ward functional. This implies that the functional [ ]U G  is 
universal, too.  

If evaluated at the physical Green's function ,T UG  of the system with 
Hamiltonian ,T UH , the Luttinger-Ward functional provides a quantity ,[ ]U T UG  

,T U .  ,T U  depends on the initial equilibrium state of the system only, as 
contributions from the Keldysh branch cancel each other. It is related to the grand 
potential of the system via the expression 

     
0

1
, , ,0 , , ,

1 Tr lnT U T U T U T U T UG G G  .            (12) 

Here, we defined the trace as Tr ( , )
C

A dzA z z . where z  is infinitesimally 

later than z  on C . The factor 
0

1
,0G  with 0  has to be introduced to 

regularize the Tr ln term. It will be omitted in the following, as it does not affect 
the results. Equation (12) can be derived using a coupling-constant integration or 
by integrating over the chemical potential . The proof is completely analogous to 
the equilibrium case. 

We assume the functional [ ]U G  is invertible locally to construct the 
Legendre transform of the Luttinger-Ward functional 

 1[ ] [ ] Tr [ ]
2U U UF G .    (13) 
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Here [ [ ]]U UG G G  and  

 [ ] 1 [ ](2,1)
(1,2) 2
U

U
F G  (14) 

We now define the self-energy functional as  

 
11

, ,0
1[ ] Trln [ ]
2T U T UG F .  (15) 

It’s functional derivative is 

 
1, 1

,0

[ ] 1 [ ]
(1,2)
T U

T UG G .  (16) 

The equation 
 

11
,0[ ]U TG G  (17) 

is a (highly non-linear) conditional equation for the self-energy of the system 
,T UH . Equations (7) and (11) show that it is satisfied by the physical self-energy 

,T U . Note that the left-hand side of Eq. (17) is independent of T  but depends 
on U  (due to the universality of [ ]UG ), while the right-hand side is independent 
of U  but depends on T  via 1

,0TG . 
The obvious problem of finding a solution of Eq. (17) is that there is no 

closed form for the functional [ ]UG . Solving Eq. (21) is equivalent, however, to a 
search for the stationary point of the grand potential as a functional of the self-
energy , / 0T UG . This equation is the starting point for non-equilibrium self-
energy-functional theory.  

Note that, while there are various symmetry relations between the elements 
' ( , ')z z of the self-energy at different times z  and 'z , the elements of _ have 

to be treated as independent of each other for the functional differentiation to 
ensure the equivalence of the variational principle Eq. (22) with the fundamental 
Dyson equation Eq. (17). As will become clear below, the stationarity with respect 
to some of the variational directions just ensures the correct symmetry relations 
between the elements of ' ( , ')z z , while the other variational directions fix the 
actual value of ' ( , ')z z . 

 
4. Dynamical mean-field theory 
Non-equilibrium dynamical mean-field theory is recovered within the SFT 

framework when we choose the reference system as a set of completely decoupled 
correlated sites  with an infinite number of bath sites , i.e., as a set of decoupled 
single-impurity Anderson models. For completely decoupled correlated sites  the 
trial self-energies are local, i.e., diagonal with respect to the spatial indices, and the 
Euler equation (26) thus explicitly reads as 
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1 2

11
1 2 ,0 ' ',

,

1
T UC

i

dz dz G G  

 1 2

1 2

'
', ; ', 2 1

', 1 2',

( , )
( , ) 0.

'( )
U ii

U ii

z z
G z z

z
 (18) 

Here, i is a site index and i  refers to the local orbital and spin degrees of 
freedom. Equation (18) would be trivially satisfied if the bracket in the integrand 
vanished. Because the vanishing of the bracket is nothing but the standard self-
consistency equation of DMFT, we see that non-equilibrium SFT yields (non-
equilibrium) DMFT as a stationary point provided that the DMFT self-energy can 
be represented as the self-energy ',U  of a single-impurity Anderson Hamiltonian 
with single-particle (bath) parameters ' .  

The representability of the DMFT action by an actual impurity Hamiltonian 
with the number uncorrelated sites 1 is not straightforward to see for non-
equilibrium Green's functions but can be shown under rather general conditions.37 
When one considers finite single-impurity models with a small number of bath 
orbitals, the bracket in Eq. (18) will in general not vanish because the discrete pole 
structure of the impurity Green's function cannot be reconciled with the branch cuts 
of the Green's function for the original model. Due to the presence of the projector 

' / ' , however, stationarity of the self-energy functional is nevertheless 
possible. This allows to generate non-perturbative and consistent approximations to 
DMFT by solving reference systems with a few degrees of freedom only. In the 
equilibrium case, this has been shown to be a highly efficient strategy. 

 
5. Conclusions 
Self-energy-functional theory (SFT) addresses the problem of strongly 

correlated fermions with local Hubbard-type interactions on a low-dimensional 
lattice. One of the main advantages of the standard equilibrium SFT is that it 
unifies and extends different approximations within a single theoretical framework. 
This comprises \two-site" approximations and the linearized DMFT, dynamical 
impurity approximations (DIA), but also dynamical mean-field theory (DMFT) and 
its cluster extensions, i.e., the cellular DMFT (C-DMFT) as well as the dynamical 
cluster approximation (DCA) finally the cluster perturbation theory (CPT) and 
its variational extension, the variational cluster approach (VCA). The SFT has been 
extended into several directions, e.g., to systems with non-local interactions, to 
disordered and to bosonic systems. 

The present study has shown how to generalize the SFT and the different 
approximations that can be constructed within the SFT to the general non-
equilibrium case. Essentially, the main idea is to reformulate the entire theory in 
terms of the one-particle Green's functions and the self-energy on the Keldysh-
Matsubara contour in the complex time plane. While the basic structure of the 
theory remains unchanged in this way, a much more general approach is gained. 
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