PACS numbers: 07.35.+k, 07.79.-Cz, 68.37.Ef, 73.40.Gk, 73.63.Rt, 81.05.uj, 81.07.Lk

Новая СТМ/СТС-методика исследования атомарной структуры поверхности

В. Грушко, Н. Новиков, А. Чайка^{*,**}, Е. Мицкевич, О. Лысенко

Институт сверхтвёрдых материалов им В. Н. Бакуля НАН Украины, ул. Автозаводская, 2, 04074, Киев, Украина *Институт физики твёрдого тела РАН, ул. Академика Осипьяна, 2, 142432 Черноголовка, Московская обл., Россия **CRANN and School of Physics, Trinity College Dublin, Dublin 2, Ireland

Представлена новая методика исследования атомарной структуры поверхности на основе методов сканирующей туннельной микроскопии (СТМ) и сканирующей туннельной спектроскопии (СТС) с алмазным зондом. В основу методики положена идея сравнения СТМ-изображения изучаемого участка поверхности и его СТС-изображения, полученного при малых туннельных напряжениях. Представленная методика может использоваться при нанотехнологических операциях атомарной сборки логических элементов квантовых компьютеров, элементов наноэлектроники, при создании и изучении однофотонных источников и др.

Наведено нову методику дослідження атомарної структури поверхні на основі методів сканівної тунельної мікроскопії (СТМ) і сканівної тунельної спектроскопії (СТС) з діамантовим зондом. В основу методики покладено ідею порівняння СТМ-зображення досліджуваної ділянки поверхні з її СТС-зображенням, одержаним за малих тунельних напруг. Наведена методика може використовуватися при нанотехнологічних операціях атомарного складання логічних елементів квантових комп'ютерів, елементів наноелектроніки, при створенні й вивченні однофотонних джерел тощо.

A new technique to study the atomic structure of the surface on the basis of scanning tunnelling microscopy (STM) and scanning tunnelling spectroscopy (STS) with a diamond tip is represented. The technique is based on the idea of comparing STM images of the studied surface area with its STS-image obtained at low tunnelling voltages. The presented method can be used for fabrication of logic elements of quantum computers and elements of nanoelectron-

81

ics, for development and study of the single-photon sources as well as for other nanotechnological operations.

Ключевые слова: сканирующая туннельная микроскопия, сканирующая туннельная спектроскопия, алмазный зонд, атомарная структура.

(Получено 19 ноября 2013 г.)

1. ВВЕДЕНИЕ

Методы сканирующей туннельной микроскопии (СТМ) [1–5] и сканирующей туннельной спектроскопии (СТС) [6, 7] являются хорошо апробированными и широко используемыми методами изучения атомарной структуры поверхности со времён появления первых туннельных микроскопов в последней четверти прошлого столетия. Оба эти метода основываются на измерении локальной электронной плотности состояний поверхности образца, определяющей величину туннельного тока в зазоре между острием прибора и изучаемым участком поверхности. То есть заключение об атомарной структуре поверхности делается опосредованно, по распределению локальной электронной плотности состояний в плоскости поверхности образца. Изменение локальной плотности состояний вдоль поверхности образца может быть обусловлено как изменением его атомарного рельефа, так и изменением химического состава поверхности. Другими словами, СТМ и СТС имеют тот существенный недостаток, что имеется некоторая неоднозначность трактовки экспериментальных результатов, особенно в случае неупорядоченных атомарных структур с неизвестным химическим составом атомов на поверхности. Предлагаемая в работе комбинированная методика анализа атомарной структуры поверхности призвана существенно уменьшить эту неоднозначность и дать возможность получать реальный профиль поверхности, не зависимо от химической природы атомов её составляющих.

Необходимость предлагаемой методики исследования атомарного состава поверхности продиктована, в первую очередь, практической реализацией идеи квантового компьютера, высказанной Р. Фейнманом ещё в 1959 г. [8]. В последнее десятилетие эта идея получила «второе рождение» и привлекает всё большее внимание специалистов, занятых нанотехнологическими проблемами. Непосредственный интерес в практической реализации этой идеи возникает при попытке детального квантово-механического исследования методами математического моделирования сложных многочастичных наносистем, подобных структуре твёрдого тела или биологическим системам [9, 10]. Пространство квантовых состояний таких систем растёт как экспонента от числа п составляющих их реальных частиц, что делает невозможным моделирование их поведения на современных («классических») компьютерах уже для n = 10. Суть этой идеи в том, что квантовая система из L двухуровневых квантовых элементов (квантовых битов, кубитов) имеет 2^{L} линейно независимых состояний. А значит, вследствие принципа квантовой суперпозиции, пространством состояний такого квантового регистра является 2^{L} -мерное гильбертово пространство. Вычислительная операция в квантовом процессоре соответствует повороту вектора состояния регистра процессора в гильбертовом пространстве. Таким образом, квантовое вычислительное устройство размером Lкубит фактически задействует одновременно 2^{L} классических состояний, что делает принципиально возможным многократное ускорение вычислительного процесса по сравнению с классическим процессором [11].

В настоящее время, одним из главных направлений в работе по практической реализации квантового компьютера является создание твердотельных квантовых точек на полупроводниковых и алмазных подложках. В качестве логических кубитов используются либо зарядовые состояния (нахождение или отсутствие электрона в определённой точке), либо направление электронного и/или ядерного спина в данной квантовой точке. Управление в такой системе осуществляется через внешние потенциалы или лазерным импульсом [12–14].

Квантовую точку можно «включить» и, что наиболее важно, «выключить» приложив напряжение. Если напряжение прикладывать с помощью зонда сканирующего туннельного микроскопа (СТМ), имеющего несколько атомов, взаимодействующих с поверхностью на острие, то можно «собрать» из атомов полевые транзисторы — основной логический элемент современных микропроцессоров и запоминающих устройств. При этом такие транзисторы по размерам будут сопоставимые с атомами [15–17]. В качестве СТМзонда, наиболее подходящего для различных манипуляций с поверхностью на атомарном уровне и обладающего наиболее стабильными физико-механическими и химическими характеристиками, можно предложить зонд из синтетического проводящего монокристалла алмаза [18–20].

Но подобная атомарная сборка непременно требует, во-первых, наличия у СТМ атомарного разрешения и, во-вторых, возможности в ходе эксперимента по наноманипулированию различать атомы различных сортов, т.е. атомы поверхности различных химических элементов. Нужно отметить, что кроме задачи практической реализации квантового компьютера, которую можно считать приоритетной по значимости, *in situ* различение химических элементов поверхности на атомарном уровне чрезвычайно важно во многих нанотехнологических операциях, например, для создания элементов наноэлектроники или однофотонных источников [21]. Проблеме различения топографических и фазовых особенностей на поверхности методом туннельной микроскопии с алмазным зондом и посвящена настоящая работа.

2. ПРОБЛЕМА ТРАКТОВКИ СТМ-ИЗОБРАЖЕНИЙ, ПОЛУЧЕННЫХ В РЕЖИМЕ ТУННЕЛЬНОЙ ТОПОГРАФИИ С АТОМАРНЫМ РАЗРЕШЕНИЕМ

Слоистые полупроводники, и особенно, высокоориентированный пиролитический графит (HOPG) является тестовым материалом, на котором, как правило, проверяется наличие атомарного разрешения туннельного микроскопа [22]. Тем не менее, даже на этой тестовой структуре возможны разночтения при трактовке СТМизображений [Whangbo 1994, Ondracek 2011]. Иллюстрацией могут быть результаты сканирования поверхности НОРG полупроводниковым алмазным зондом, разработанным в ИСМ НАНУ, полученные на сверхвысоковакуумном микроскопе GPI-300 (рис. 1, 2).

На рисунке 1 приведены типичные изображения HOPG(0001), которые наиболее часто регистрируются с помощью СТМ. Представленные изображения не соответствуют структуре «пчелиных сот», которой обладает отдельная атомарная плоскость графита [22]. Период и симметрию наблюдаемых СТМ-изображений с гексагональной симметрией объясняют либо различными релаксациями не эквивалентных атомов «А» и «В» на поверхности, приводящими к визуализации только одного из атомов [Whangbo 1994], либо визуализацией центров гексагонов, где при определённых параметрах

Рис. 1. Типичное СТМ-изображение плоскости (0001) поверхности графита. Топографический вид (*a*), и «псевдо-3*D*» вид (*б*). Приведённые изображения не соответствует гексагональной структуре атомарной плоскости (001) графита [16].

Рис. 2. СТМ-изображение плоскости (0001) поверхности графита, полученное с помощью зонда из полупроводникового алмаза. Топографический вид (*a*), и «псевдо-3D» вид (*б*). Приведённые изображения отвечают гексагональной структуре отдельной атомарной плоскости графита [16].

туннелирования наблюдается максимум в локальной плотности состояний поверхности, взаимодействующей с зондом [Ondracek 2011]. Как следствие, на СТМ-изображении HOPG(0001) проявляется поверхностная решётка с межатомными расстояниями 0,246 нм, увеличенными по сравнению с истинными межатомными расстояниями равными 0,142 нм.

Совсем другую картину можно наблюдать на СТМ-изображениях, приведённых на рис. 2. Эти изображения были получены при малых (< 0,1 В) туннельных напряжениях и расстояниях между иглой и образцом в интервале 2,5-4,5 Å, при которых модификация электронной структуры и релаксации атомов поверхности незначительны [23]. Эти изображения демонстрируют корректные межатомные расстояния в гексагонах, составляющие примерно 0,14 нм.

В этом случае, вследствие химического сродства алмазного зонда и поверхности графита, ближайший к этой поверхности атом углерода зонда начинает образовывать с атомом углерода поверхности туннельный канал малых токов благодаря электронам ковалентной связи. Как можно видеть на рис. 2, *б*, глубины провалов внутри «сот» превышают 1,0 Å.

Для СТМ-топографии поверхности углеродосодержащих поверхностей, с точки зрения наибольшей достоверности получаемых СЗМ-топограмм, представляется целесообразным использование алмазных игл, которые, к тому же, отлично зарекомендовали себя в качестве инденторов при работе СТМ в режиме наномодификации поверхности [18, 19, 26]. Но кроме оптимального выбора материала зонда для топографии поверхности, чрезвычайно важно подобрать

Рис. 3. Модельное представление (в «псевдо-3*D*») атомарной структуры с добавочным атомом на поверхности (*a*) и той же структуры со встроенным инородным атомом (*б*). Пунктирной линией показано направление сканирования при СТМ-топографии.

Рис. 4. Топографический вид модельной структуры поверхностей, соответствующий рис. 3.

оптимальный режим и метод сканирования. Особенно остро эта проблема стоит на поверхностях со сложной атомарной структурой, в состав которой входят атомы различных химических элементов. В этом случае на СТМ-топограмме непросто отличить, например, добавочный атом на однородной поверхности от инородного атома, встроенного в её структуру (рис. 3, 4), поскольку оба эти случая могут иметь сходные особенности [27–30].

Далее, на рисунке 5 мы привели возможные профили сканирования, регистрируемые за один проход СТМ-зонда вдоль оси сканирования для структур с добавочным атомом на поверхности и с инородным атомом в её структуре.

Конкретный вид профилей сканирования, представленных на рис. 5, зависит как от размеров адсорбированного на поверхность и встроенного в её структуру атома, так и от места, занимаемых этими атомами в электрохимическом ряду напряжений, т.е. от вели-

Рис. 5. Возможный вид профилей сканирования вдоль оси сканирования, указанной на рис. 4 и 5 для участка с добавочным атомом на поверхности (*a*) и с инородным атомом в поверхностной структуре (*б*).

чины электроотрицательности атома [27]. Это обстоятельство может приводить даже к тому, что вместо выпуклости на профиле, связанной с наличием адатома, будет иметь место вогнутость, как в случае отсутствующего атома в поверхностной структуре [30]. Подобная картина характерна, например, для атомов O или F на атомарно гладких металлических поверхностях.

Чтобы различить отмеченные выше особенности локальной структуры поверхности, обычно прибегают к дополнительным исследованиям, а именно к сканирующей туннельной спектроскопии (СТС) [30], в результате чего устанавливается зависимость $I_t(V_t, \mathbf{r}_t)$ туннельного тока от туннельного напряжения в локальной к острию зонда (задаваемым вектором \mathbf{r}_t) области поверхности. Поскольку зависимость $I_t(V_t, \mathbf{r}_t)$ напрямую связана с энергетической структурой атома, электронные оболочки которого задействованы в туннелировании, это даёт возможность отличить одну энергетическую структуру от другой, т.е. атом одного химического элемента на поверхности от другого.

3. Т-МЕТОДИКА СТМ-ТОПОГРАФИИ ПОВЕРХНОСТИ

Зависимость $I_t(V_t)$, по которой определяется наличие инородного атома в структуре атомарно однородной поверхности [31], может быть использована для обеспечения такого режима сканирования, при котором система обратной связи СТМ будет регистрировать преимущественно изменения рельефа поверхности, а не её атомарного (фазового) состава.

Теоретические оценки, выполненные как в рамках теории возмущений [32], так и в рамках непертурбативных теорий [33, 34], дают основания полагать, что при малых величинах туннельных напряжений V_t зависимость $I_t(V_t, \mathbf{r}_t)$ слабо зависит от V_t , т.е. слабо «чувствует» энергетическую структуру атомов поверхности в локальной к острию области.

Формально, в области небольших V_t зависимость $I_t(V_t, \mathbf{r}_t)$ может быть разложена в ряд по малому параметру V_t :

$$I_t(V_t, \mathbf{r}_t) = I_t(0, \mathbf{r}_t) + I'_t(0, \mathbf{r}_t)V_t + \frac{1}{2}I''_t(0, \mathbf{r}_t)V_t^2 + \dots$$
(1)

На практике, малость параметра *V*_t означает такой режим сканирования, при котором удовлетворяется условие:

$$V_{t} << 1$$
 B.

Учитывая, что

$$I_t(\mathbf{0},\mathbf{r}_t)=\mathbf{0}\,,$$

и пренебрегая слагаемыми с квадратичной степенью V_t и выше, можно записать:

$$I_t(V_t, \mathbf{r}_t) \approx I'_t(0, \mathbf{r}_t) V_t.$$
⁽²⁾

Это значит, что справедливо соотношение:

$$T \equiv \frac{dI_t(V_t, \mathbf{r}_t)}{dV_t} \approx I_t'(0, \mathbf{r}_t) = \text{const}, \qquad (3)$$

т.е. производная от туннельного тока по туннельному напряжению при малых значениях последнего не зависит от величины V_t , а значит и от энергетической структуры подложки. Вместе с тем, топографическая функция T сильно зависит от положения острия зонда над поверхностью, т.е. $T = T(\mathbf{r}_t)$. Из этого следует, что, измеряя значение этой функции, окажется возможным регистрировать профиль поверхности вдоль оси сканирования.

Таким образом, мы предлагаем в качестве топографического режима СТМ, при котором регистрируется преимущественно рельеф поверхности, а не её атомарный состав, использовать режим малых туннельных напряжений ($V_t \ll 1$ В), с обратной связью не по величине туннельного тока, как это обычно делается, а по величине T.

Поскольку использование в качестве основы обратной связи при СТМ-топографии величины $T(\mathbf{r}_t)$ вместо $I_t(\mathbf{r}_t)$ увеличит время сканирования поверхности, нам представляется целесообразным использовать этот режим для сравнения *in situ* участков обычных СТМ-топограмм с *T*-топограммами в случае, когда существует принципиальная необходимость установить достоверность наблюдаемого на СТМ-топограмме рельефа.

В случае совпадения особенностей рельефа СТМ-топограммы с Tтопограммой, можно делать вывод о том, что такая СТМ-топограмма достоверно отражает рельеф поверхности. Наоборот, если на T- и СТМ-топограммах наблюдаются существенные отличия, то это значит, что на исследуемом участке поверхности, в тех его областях, где имеется отличие СТМ- и *Т*-топограмм, имеют место фазовые особенности на поверхности, т.е. присутствуют атомы инородных элементов.

4. ЗАКЛЮЧЕНИЕ

Представленный нами метод *Т*-топографии поверхности может быть использован для выявления фазовых особенностей в структуре поверхности, связанных с её неоднородным атомарным составом на CTM-топограммах.

В основу метода положена стабилизация системой обратной связи СТМ с алмазным зондом, работающим в режиме топографии по-

верхности величины $T(\mathbf{r}_t) \equiv \frac{dI_t(V_t, \mathbf{r}_t)}{dV_t}$, которая, как мы показали,

слабо зависит от величины V_t -туннельного напряжения (при $V_t << 1$ В), а значит и от энергетической структуры атома. Вместе с тем, эта величина сильно зависит от радиус-вектора острия зонда \mathbf{r}_t и может быть использована для туннельной топометрии поверхности.

Корректность нашего предположения о независимости величины *T* от атомарного состава (энергетической структуры) поверхности

соответствует пренебрежению величиной $rac{1}{2}I_{\scriptscriptstyle t}^{\scriptscriptstyle \prime\prime}(0,{f r}_{\scriptscriptstyle t})V_{\scriptscriptstyle t}^{\scriptscriptstyle 2}$ и более высо-

кими степенями туннельного напряжения в разложении (1).

С точки зрения достоверности экспериментальных данных, использование T-топографии для сравнительного анализа СТМ-топограмм, полученных с помощью полупроводниковых алмазных игл, представляется особенно целесообразным при нанотехнологических операциях атомарной сборки на таких углеродосодержащих объектах как графен, нанотрубки, алмазоподобные плёнки и другие перспективные для создания квантовых компьютеров и элементов наноэлектроники структурах.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА-REFERENCES

- 1. G. Binnig and H. Rohrer, *Helv. Phys. Acta*, 55: 726 (1982).
- G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, *Phys. Rev. Lett.*, **50**, No. 2: 120 (1983).
- 3. G. Binnig and H. Rohrer, Surf. Sci., 152: 17 (1985).
- 4. G. Binnig and H. Rohrer, Rev. Mod. Phys., 59, No. 3: 615 (1987).
- 5. G. Binnig, C. F. Quate, and Ch. Gerber, *Phys. Rev. Lett.*, 56, No. 9: 930 (1986).
- 6. A. Bonnel, Scanning Tunneling Microscopy and Spectroscopy Techniques and Application (New York: VCH: 1993).
- 7. E. L. Wolf, *Principles of Electron Tunneling Spectroscopy* (New York–Oxford: Oxford University Press: 1989).

- 8. R. P. Feynman, Int. J. Theor. Phys., 21, No. 6: 467 (1982).
- 9. Y. Ozhigov, Chaos Soliton Fract., 10: 1707 (1999).
- 10. A. Kholevo, V Mire Nauki, No. 7 (2008) (in Russian).
- 11. G. Brassard, I. Chuang, S. Lloyd, and C. Monroe, *Quant. Comp.*, **95**: 1103 (1998).
- 12. S. Kilin, Uspekhi Fizicheskikh Nauk, 169: 507 (1999) (in Russian).
- 13. K. Valiev, Uspekhi Fizicheskikh Nauk, 169: 691 (1999) (in Russian).
- 14. A. M. Steane and E. G. Rieffel, *IEEE Computer*, 33, No. 1: 38 (2000).
- 15. S. Kilin, Prog. Opt., 42: 1 (2001).
- 16. K. Valiev, Uspekhi Fizicheskikh Nauk, 175: 3 (2005) (in Russian).
- 17. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, *Nature*, **464**: 45 (2010).
- O. Lysenko, N. Novikov, V. Grushko, A. Shcherbakov, A. Katrusha, S. Ivakhnenko, V. Tkach, and A. Gontar, *Diam. & Relat. Mater.*, 17: 1316 (2008).
- 19. O. Lysenko, N. Novikov, A. Gontar, V. Grushko, A. Shcherbakov, J. Phys.: Conf. Ser., 61: 740 (2007).
- 20. O. G. Lysenko, N. V. Novikov, A. G. Gontar, V. I. Grushko, S. N. Ivanov, and A. Shcherbakov, J. Superh. Mat., 28, No. 6: 9 (2006).
- N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, and S. Yamasaki, *Nat. Photonic*, 6: 209 (2012).
- 22. I. Batra, N. Garsia, H. Rohrer, H. Salemink, E. Stoll, and S. Ciraci, *Surf. Sci.*, 181: 126 (1987).
- 23. M.-H. Whangbo, W. Liang, J. Ren, S. N. Magonov, and A. Wawkuschewski, J. Chem. Phys., 98: 7602 (1994).
- 24. M. Ondracek, P. Pou, V. Rozsival, C. Gonzalez, P. Jelinek, and R. Perez, *Phys. Rev. Lett.*, **106**: 176101 (2011).
- V. Grushko, O. Lübben, A. N. Chaika, N. Novikov, E. Mitskevich, A. Chepugov, O. Lysenko, B. E. Murphy, S. A. Krasnikov, and I. V. Shvets, *Nanotechnology*, 25, No. 2: 025706 (2014).
- 26. O. Lysenko, A. Mamalis, V. Andruschenko, and E. Mitskivich, *Nanotechnology Perceptions*, **6**, No. 1: 41 (2010).
- I. Tilinin, M. Rose, J. Dunphy, M. Salmeron, and M. Van Hove, *Surf. Sci.*, 418, No. 3: 511 (1998).
- 28. M. Sumetskii, A. Kornyshev, and U. Stimming, *Surf. Sci.*, **307**, No. 1: 23 (1994).
- K. Kumamoto, T. Hoshino, K. Kokubun, T. Ishimaru, and I. Ohdomari, *Phys. Rev. B*, 52: 10784 (1995).
- M. Göthelid, T. Grehk, M. Hammar, U. Karlsson, and S. Flodström, *Phys. Rev.* B, 48: 2012 (1993).
- 31. N. Lang, Phys. Rev. B, 34: 5947 (1986).
- 32. J. Simmons, J. Appl. Phys., 34: 1793 (1963).
- V. Grushko and O. Lysenko, Nanosistemi, Nanomateriali, Nanotehnologii, 2, Iss. 3: 795 (2004) (in Ukrainian).
- 34. W. Sacks and C. Noguera, *Phys. Rev. B*, 43: 14 (1991).