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In this paper, we consider the longitudinal vibrations of an inhomogeneous beam with Kelvin – Voigt
damping distributed along the length of the beam. We establish the uniform exponential decay of soluti-
on with an explicit form of exponential decay of energy. The result is achieved directly by considering
an energy like Lyapunov functional without using the frequency domain approach in the literature of the
semigroup theory.

Розглянуто поздовжнi вiбрацiї неоднорiдної балки з затуханням типу Кельвiна – Войта, розпо-
дiленим вздовж балки. Встановлено, що розв’язки мають експоненцiальне затухання, i знайдено
явний вигляд експоненцiального зменшення енергiї. Результат отримано безпосереднiм розгля-
дом енергiї у формi функцiонала Ляпунова без використання частотної областi з теорiї напiв-
груп.

1. Introduction. In this paper, we consider an inhomogeneous beam of lengthLwhich is clamped
at both ends. Suppose that it is made of a viscoelastic material with Kelvin – Voigt constitutive
relation (cf. Fung [3, p. 22 – 26]). Consequently, the longitudinal vibrations of the beam satisfies
the differential equation [11]:

ρ(x)
∂2y

∂t2
− ∂

∂x

(
p(x)

∂y

∂x
+ 2δ(x)

∂2y

∂t∂x
x

)
= 0 in (0, L)× R+, (1)

where R+ := (0,∞), ρ ∈ C([0, L]) and p, δ ∈ C1([0, L]). The three coefficients ρ, p, δ are
evidently continuous functions on [0, L] and moreover, these are essentially real valued positive
for such an inhomogeneous beam.

The mathematical theory of stabilization of distributed parameter system is currently of
interest in view of application to vibration control of various structural elements. The questi-
on of energy decay estimates, in the context of boundary stabilization of a wave equation has
earlier been studied by several authors [1, 9, 10] and a list of references cited therein. A parti-
cular problem that was initiated by K. Liu and Z. Liu in [11] wherein, it is not possible to
prove the uniform exponential stability of the beam equation (1) by applying the frequency
domain approach in the literature of the semigroup theory. In our discussion, herein we consi-
der the same mathematical equation (1), keeping in view both the general inhomogeneity and
the viscous damping of Kelvin – Voigt type. This type of material damping mechanism is always
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present, however small it may be, in all real materials as long as the system vibrates (cf. Chri-
stensen [2, p. 16 – 20]). The aim of this paper is to study the uniform exponentially stability
result for the solution of the mathematical problem (1) by means of an explicit form of the
exponentially energy decay estimate. To achieve the result, we adopt here a direct method
by constructing suitable Lyapunov functional related to the energy functional without going
through the literature of semigroup theory. Such exponential result has earlier been obtained
directly, by Gorain [4] for internally damped wave equation in a bounded domain in Rn and by
Gorain and Bose [7] for torsional modes of vibrations. The similar result, for the quasilinear vi-
brations of a beam or a string can be found in Gorain [5, 6]. For a clamped beam, the boundary
conditions are (cf. K. Liu and Z. Liu [11])

y(0, t) = y(L, t) = 0 on R+ (2)

and set the initial conditions as

y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = y1(x) on (0, L). (3)

The functions y0(x) and y1(x) are assumed to be continuous over [0, L] so that the solution
y(x, t) is continuously differentiable on the closer half-strip [0, L]× [0,∞).

For the above system (1) – (3), our objective is here to investigate the behaviour of the real
and smooth solutions y(x, t) at time t → +∞ by means of the total energy of the system.

2. Total energy of the system. For every real and smooth solution y = y(x, t) of the system
(1) – (3), we define the energy of y at instant t by the functional

E(y, t) :=
1

2

L∫
0

[
ρ

(
∂y

∂t

)2

+ p

(
∂y

∂x

)2
]
dx for t ≥ 0. (4)

A differentiation with respect to t and then replace of
∂2y

∂t2
by the governing equation (1) yields

dE

dt
=

L∫
0

[
∂y

∂t

∂

∂x

(
p
∂y

∂x
+ 2δ

∂2y

∂t∂x

)
+ p

∂y

∂x

∂2y

∂t∂x

]
dx. (5)

On integration by parts in classical sense and application of the boundary conditions in (2), the
above becomes

dE

dt
= −2

L∫
0

δ

(
∂2y

∂t∂x

)2

dx ≤ 0 for t ≥ 0. (6)

We choose the solution y of the system so smooth that the partial derivative
∂2y

∂t∂x
involved in

(6) is to be a continuous function on the closer half-strip [0, L] × [0,∞). The result (6) impli-
es that energy E of the system (1) – (3) is a decreasing function of time. The negativity of the

ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 2



EXPONENTIAL STABILIZATION OF LONGITUDINAL VIBRATIONS . . . 159

integral in (6) shows that some amount of energy of the system is dissipating due to considerati-
on of small Kelvin – Voigt damping of the structure. Hence, every regular and smooth solution
of the system satisfies the energy estimate E(y, t) ≤ E(y, 0), where

E(y, 0) =
1

2

L∫
0

[
ρ(x)y21 + p(x)y′0

2
]
dx for t ≥ 0. (7)

As the system (1) – (3) is a nonconserving and also energy dissipating, naturally, the question
arises as to whether the solution of this system decays with time uniformly or not. To obtain an
affirmative answer, we are focussing directly a method that will explicitly establish the uniform
exponential energy decay estimate of the system. In other words, our aim is to establish the
following result:

E(y, t) ≤ Me−µtE(y, 0) for t ≥ 0 (8)

explicitly, for some reals µ > 0 and M > 1. Here the constant µ and M depend on the interval
[0, L] and eventually on the initial values {y0, y1}.

It can be easily verified that the above system must have nontrivial solution, unless both y0,
y1 are identically zero on [0, L]. As a simple example, we observe that

y(x, t) = e−
p
δ
t sin

π

L
x (9)

is a nontrivial solution of the system (1) – (3), in the case of constants ρ, p, δ with L2ρp = π2δ2

for the initial values

y0(x) = sin
π

L
x and y1(x) = −

p

δ
sin

π

L
x. (10)

3. Main result. As the system evolves from its initial state (y0, y1) to the state (y, dy/dt)
at instant t ∈ R+, the energy E(y, t) diminishes from its initial value E(y, 0) driven by the
work done due to Kelvin – Voigt damping. The result of the uniform exponential energy decay
estimate for the solution of system (1) – (3) can be found in the ensuing theorem.

Theorem 1. Let y(x, t) be a smooth solution of the initial boundary-value problem (1) – (3).
Then the solution tends to zero exponentially as time t → +∞. In other words, the energy functi-
onal E as defined by (4) satisfies the result (8).

The theorem will be proved after some preliminary steps. We need firstly, the following two
inequalities.

For any real constant c > 0, we have a trivial inequality

|uv| ≤ 1

2

(
c|u|2 + |v|

2

c

)
. (11)

Also, we have Poincaré type Scheeffer’s inequality (cf. Mitrinović et. al. [12, p. 67])

L∫
0

y2 dx ≤ L2

π2

L∫
0

(
∂y

∂x

)2

dx, (12)
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as y satisfies the boundary condition (2).
Since ρ(x), δ(x), p(x) are continuous functions of x over [0, L], by the application of the

mean value theorem of integral calculus, we have real numbers ξ1, ξ2, η1, η2, ζ ∈ [0, L] satisfying

L∫
0

δ

(
∂y

∂x

)2

dx = δ(ξ1)

L∫
0

(
∂y

∂x

)2

dx, (13)

L∫
0

δ

(
∂2y

∂t∂x

)2

dx = δ(ξ2)

L∫
0

(
∂2y

∂t∂x

)2

dx, (14)

L∫
0

ρy2 dx = ρ(η1)

L∫
0

y2 dx, (15)

L∫
0

ρ

(
∂y

∂t

)2

dx = ρ(η2)

L∫
0

(
∂y

∂t

)2

dx, (16)

L∫
0

p

(
∂y

∂x

)2

dx = p(ζ)

L∫
0

(
∂y

∂x

)2

dx, (17)

and define

α := sup

{
L

π

√
ρ(η1)

p(ζ)

}
, β := sup

{
2δ(ξ1)

p(ζ)

}
, γ := sup

{
L2

π2
ρ(η2)

δ(ξ2)

}
(18)

for all ξ1, ξ2, η1, η2, ζ ∈ [0, L].

Next, we require the following lemmas.

Lemma 1. Let y(x, t) be a smooth solution of the initial boundary-value problem (1) – (3).
Then the time derivative of the functional G defined by

G(y, t) :=

L∫
0

ρy
∂y

∂t
dx+

L∫
0

δ

(
∂y

∂x

)2

dx for t ≥ 0, (19)

yields

dG

dt
=

L∫
0

[
ρ

(
∂y

∂t

)2

− p
(
∂y

∂x

)2
]
dx. (20)

Proof. See the Appendix.

ISSN 1562-3076. Нелiнiйнi коливання, 2013, т . 16, N◦ 2



EXPONENTIAL STABILIZATION OF LONGITUDINAL VIBRATIONS . . . 161

Lemma 2. Let y(x, t) be a smooth solution of the initial boundary-value problem (1) – (3).
Then the functional G defined by (19) satisfies

−αE(y, t) ≤ G(y, t) ≤ (α+ β)E(y, t) for every t ≥ 0. (21)

Proof. See the Appendix.
To establish the main theorem, we proceed as in [6, 8, 9] and introduce an energy like

Lyapunov functional V defined by

V (y, t) := E(y, t) + εG(y, t) for t ≥ 0, (22)

where ε > 0 is a small but fixed real number. The Lemma 2 yields for the functional V that
estimates

(1− αε)E(y, t) ≤ V (y, t) ≤ [1 + (α+ β)ε]E(y, t) for t ≥ 0, (23)

where we choose ε < 1/α, so that V (y, t) ≥ 0 for t ≥ 0.
Now, taking the time derivative of (22) and applying the result (6) and (20), we obtain

dV

dt
= −2

L∫
0

δ

(
∂2y

∂t∂x

)2

dx+ ε

L∫
0

[
ρ

(
∂y

∂t

)2

− p
(
∂y

∂x

)2
]
dx =

= −2εE(y, t)− 2

L∫
0

δ

(
∂2y

∂t∂x

)2

dx+ 2ε

L∫
0

ρ

(
∂y

∂t

)2

dx (by (4)) =

= −2εE(y, t)− 2

L∫
0

δ

(
∂2y

∂t∂x

)2

dx+ 2ερ(η2)

L∫
0

(
∂y

∂t

)2

dx (by (16)) ≤

≤ −2εE(y, t)− 2

L∫
0

δ

(
∂2y

∂t∂x

)2

dx+ 2ερ(η2)
L2

π2

L∫
0

(
∂2y

∂t∂x

)2

dx (by (12) ≤

≤ −2εE(y, t)− 2(1− γε)
L∫

0

δ

(
∂2y

∂t∂x

)2

dx (24)

by the relations (14) and (18). Since ε > 0 is small, we assume that

0 < ε < ε0 = min

{
1

α
,
1

γ

}
. (25)

Hence (24) leads to the differential inequality

dV

dt
+ µV ≤ 0 (26)
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in view of (23), where

µ :=
2ε

1 + (α+ β)ε
> 0. (27)

Multiplying (26) by eµt and integrating over the time interval [0, t] for t ≥ 0, we obtain

V (y, t) ≤ e−µtV (y, 0). (28)

Invoking the inequality (23) again in (28), we finally obtain the result

E(y, t) ≤ Me−µtE(y, 0) for t ≥ 0, (29)

where

M :=
1 + (α+ β)ε

1− αε
> 1,

µ is in (27) and E(y, 0) is in (7). Hence the theorem.
The result of the theorem shows that the smooth solution of the system y(x, t) → 0 uni-

formly exponentially as time t → ∞. Again, it follows from (27) that

dµ

dε
=

2

[1 + (α+ β)ε]2
> 0.

Hence, the exponential energy decay rate µ as function of ε will be maximum for largest admi-
ssible value of ε. In view of (25), an upper bound of which is given by ε0 that depends explicitly
on α and γ. As defined in (18), it signifies that the decay of energy will be slower for a longer
beam.

4. Conclusions. This mathematical study deals with a unform exponential stability result
of an inhomogeneous beam, modeled by the differential equation (1) for longitudinal modes
of vibrations. We have achieved the uniform decay of solution following an explicit form of
exponential decay of energy. By the application of frequency domain approach in the literature
of semigroup theorem, establishment of this result has not been possible (cf. [11]). As the system
is uniformly stable, it is controllable in particular, from an arbitrary initial state to a desired final
state. Our discussion here, has significantly covered the case of uniform stability of the other
structural vibrations, like the vibrations of strings, rods etc. satisfying (1), from mathematical
point of view.

Appendix. Proof of Lemma 1. If we differentiate (19) with respect to t and use of the
governing equation (1), then we have

dG

dt
=

L∫
0

y

[
∂

∂x

(
p(x)

∂y

∂x
+ 2δ(x)

∂2y

∂t∂x

)]
dx+

L∫
0

ρ(x)

(
∂y

∂t

)2

dx+ 2

L∫
0

δ(x)
∂y

∂x

∂2y

∂t∂x
dx.

Integrating by parts and applying the boundary conditions in (2), the lemma follows immedi-
ately.
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Proof of Lemma 2. It follows from (13) and (17) that

0 ≤
L∫

0

δ

(
∂y

∂x

)2

dx =
δ(ξ1)

p(ζ)

L∫
0

p

(
∂y

∂x

)2

dx ≤ βE(y, t) for t ≥ 0, (30)

with the help of (4) and (18). Again by the inequality (11), we can write for every t ≥ 0,∣∣∣∣∣∣
L∫

0

ρy
∂y

∂t
dx

∣∣∣∣∣∣ =
L∫

0

∣∣∣∣√ρ∂y∂t
∣∣∣∣ |√ρy| dx ≤

≤ L

2π

√
ρ(η1)

p(ζ)

L∫
0

ρ

(
∂y

∂t

)2

dx+
π

2L

√
p(ζ)

ρ(η1)

L∫
0

ρy2 dx ≤

≤ L

2π

√
ρ(η1)

p(ζ)

L∫
0

ρ

(
∂y

∂t

)2

dx+
π

2L

√
p(ζ)

ρ(η1)

L∫
0

y2 dx ≤

≤ L

2π

√
ρ(η1)

p(ζ)

L∫
0

ρ

(
∂y

∂t

)2

dx+
L

2π

√
p(ζ)

ρ(η1)

L∫
0

(
∂y

∂x

)2

dx =

=
L

2π

√
ρ(η1)

p(ζ)

 L∫
0

ρ

(
∂y

∂t

)2

dx+ p

(
∂y

∂x

)2

dx

 ≤ αE(y, t),

by the use of the relations (15), (12), (17) and (18) successively. The above leads to satisfy the
inequalities

−αE(y(t) ≤
L∫

0

ρy
∂y

∂t
dx ≤ αE(y(t) for t ≥ 0. (31)

Thus the inequalities (30) and (31) yield for G(y, t) defined by (19) that estimates (21).
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