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This paper is devoted to establishing some new results on periodic solutions to a class of nonautonomous
impulsive evolution equations with time delays. On making some suitable assumptions such as solutions of
equations are ultimately bounded, we obtain the existence theorem of periodic solutions to such equations
using the Horn’s fixed point theorem. At the end of the paper, an application to a nonautonomous impulsi-
ve partial differential equation with finite time delay is given.

Встановлено новi результати про перiодичнi розв’язки для класу неавтономних еволюцiйних
рiвнянь iз запiзненням. За прийнятними умовами, такими як умова, що розв’язки рiвнянь є зреш-
тою обмеженими, отримано теорему про iснування перiодичних розв’язкiв таких рiвнянь за до-
помогою теореми Хорна про нерухому точку. Також наведено застосування до неавтономного
рiвняння з частинними похiдними з iмпульсами та скiнченним запiзненням.

1. Introduction. Evolution equations with delays (i.e., with some of the past states of the sys-
tems), compared with those without delays, are more realistic to describe many phenomena in
nature, and they have a very strong application background. We refer readers to [8, 9, 11] and
references therein for more comments. Hence this class of equations has been investigated in
various aspects. Among these investigations, several are concerned with the periodic solutions
of evolution equations with time delays taking values in infinite-dimensional spaces; see, e.g., [7,
18, 19, 21, 22]. Let us mention, in particular, that Liu [17] considered the existence of periodic
solutions to the following evolution equation with time delay

u′(t) +Au(t) = f(t, u(t), ut), t > 0,

u(s) = φ(s), s ∈ [−r, 0],

in a Banach space using the boundedness of the solutions, where r > 0 is a positive constant,
A is an unbounded linear operator, and ut(s) = u(t + s), s ∈ [−r, 0], and Li [14] discussed
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the existence and asymptotic stability of periodic solution to evolution equation with multiple
delays of form

u′(t) +Au(t) = f(t, u(t), u(t− τ1), . . . , u(t− τn)), t ∈ R,

in a Hilbert space using the theory of analytic semigroup and an integral inequality with delays,
where τi, i = 1, . . . , n, are positive constants and A is a positive definite selfadjoint operator.

On the other hand, it is known that impulsive evolution equations are adequate mathemati-
cal apparatuses for simulation of numerous evolutionary processes which depend on their pre-
history and are subject to abrupt changes of states at certain moments of time between intervals
of continuous evolution (these changes can be well approximated as being instantaneous chan-
ges as state, that is, in the form of “impulses”). Such processes occur in the theory of optimal
control, biotechnologies, industrial robotics, economics, etc (see, e.g., [5, 20]). Since the end of
the last century, impulsive evolution equations in infinite-dimensional spaces have been investi-
gated by many authors; see [3, 4, 12, 13, 15] and the references therein. We would like to menti-
on that Ezzinbi et al. [10] studied the periodic solutions to the following impulsive evolution
equation:

u′(t) +Au(t) = f(t, u(t)), t > 0, t 6= ti,

u(0) = u0,

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , 0 < t1 < t2 < . . . < ∞,

in a Banach space using the boundedness of the solutions, where A is an unbounded linear
operator and4u(ti) = u(t+i )− u(t−i ), and in [16], Liang et al. extended the results mentioned
in [10, 17] and related papers to the study of periodic solutions to the semilinear impulsive
evolution equation with finite time delay in the form

u′(t) +Au(t) = f(t, u(t), ut), t > 0, t 6= ti,

u(s) = φ(s), s ∈ [−r, 0],

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , 0 < t1 < t2 < . . . < ∞.

When dealing with some parabolic evolution equations, it is usually assumed that the partial
differential operator in the linear part (possibly unbounded) depends on time (i.e., it is the
case of equations being nonautonomous), stimulated by the fact that this class of operators
appears very often in the applications. Hence, it is natural to ask whether it is possible to study
the periodic solutions to impulsive nonautonomous evolution equation with finite time delay.
In fact, to the best of our knowledge, this study is a topic not yet considered in the literature.
Motivated by the consideration above, in this paper, among others, we are interested in studying
the periodic solutions to evolution equation having the form

u′(t) = A(t)u(t) + F (t, u(t), ut), t > 0, t 6= ti,

u(s) = φ(s), s ∈ [−r, 0], (1.1)

∆u(ti) = Ii(u(ti)), i = 1, 2, . . . , 0 < t1 < t2 < . . . < ∞,
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in the Banach space (X, ‖ · ‖), where (A(t))t∈R+ (possibly unbounded), depending on time, is a
family of closed and densely defined linear operators onX and has the domains (D(A(t)))t∈R+ ,
ut(s) = u(t + s), s ∈ [−r, 0], ∆u(ti) = u(t+i ) − u(t−i ) represents the jump of the function u at
ti, and F, Ii, i = 1, 2, . . . , are appropriate functions to be specified later. As one has seen, the
equation above is nonautonomous and Ii, i = 1, 2, . . . , constitute impulsive conditions.

This work is a continuation of Liu [17 – 19], Ezzinbi et al. [10], and Liang et al. [16]. The
new results obtained here extend some results in this area for impulsive autonomous evoluti-
on equations with time delays. Moreover, even for corresponding nonautonomous evolution
equation without impulsive conditions or without delays, the results here are new.

2. Preliminaries. Throughout this paper, L(X) stands for the Banach space of all bounded
linear operators from X to X equipped with its natural topology, C([−r, 0];X) is the Banach
space of all continuous functions φ from [−r, 0] to X with the supremum norm

‖φ‖0 = sup
s∈[−r,0]

‖φ(s)‖,

and PC([−r, 0];X) is the Banach space of all piecewise continuous functions ϕ from [−r, 0] to
X with supremum norm

‖ϕ‖PC = sup
s∈[−r,0]

‖ϕ(s)‖.

That is, ϕ ∈ PC([−r, 0];X) if and only if ϕ is continuous in [−r, 0] except for finite points where
ϕ is left continuous and has right limits.

Definition 2.1. A family U = {U(t, τ) : t ≥ τ, t, τ ∈ R+} of bounded liner operators on X
is called an evolution family if

(1) U(t, r)U(r, τ) = U(t, τ) and U(t, t) = I for all t ≥ r ≥ τ and t, r, τ ∈ R+,
(2) the map (t, τ) 7→ U(t, τ)ξ is continuous for all ξ ∈ X, t ≥ τ and t, τ ∈ R+.

Frow now on, Acquistapace and Terreni conditions (AT1) and (AT2) (parabolicity conditi-
ons) below will be assumed throughout.

(AT1) A(t) are linear operators on X and there are constants λ0 ≥ 0, θ ∈
(π

2
, π
)
, and

K1 ≥ 0 such that Σθ ∪ {0} ⊂ ρ(A(t)− λ0) and for all λ ∈ Σθ ∪ {0} and t ∈ R+,

‖R(λ,A(t)− λ0)‖ ≤
K1

1 + |λ|
.

(AT2) There are constants K2 ≥ 0 and α, β ∈ (0, 1] with α+β > 1 such that for all λ ∈ Σθ

and t, τ ∈ R+,

‖(A(t)− λ0)R(λ,A(t)− λ0)[R(λ0, A(t))−R(λ0, A(τ))]‖ ≤ K2|t− τ |α

|λ|β
.

Here Σθ := {λ ∈ C\{0}; |λ| ≤ θ}.
Conditions (AT1) and (AT2), which are initiated by Acquistapace and Terreni [1, 2] for

λ0 = 0, are well understood and widely used in the literature. Furthermore, it is known that
under conditions (AT1) and (AT2), there exists a unique evolution family U = {U(t, τ) : t ≥
≥ τ, t, τ ∈ R+} on X such that
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(i) U(·, τ) ∈ C1((τ,∞),L(X)),
∂U(t, τ)

∂t
= A(t)U(t, τ) for t > τ, and for 0 < t − τ ≤ 1,

k = 0, 1, ‖A(t)kU(t, τ)‖ ≤ C(t− τ)−k,

(ii)
∂+U(t, τ)ξ

∂τ
= −U(t, τ)A(τ)ξ for t > τ and ξ ∈ D(A(τ)) with A(τ)ξ ∈ D(A(τ)).

Definition 2.2. A piecewise continuous function u is called a mild solution of Eqs. (1.1) with
u0 = φ ∈ C([−r, 0];X) if it satisfies the integral equation of form

u(t) = U(t, 0)φ(0) +

t∫
0

U(t, τ)F (τ, u(τ), uτ )dτ +
∑

0<ti<t

U(t, ti)Ii(u(ti)), t ≥ 0.

The following fixed point theorem plays a key role in the proofs of our main results, which
can be found in many books.

Lemma 2.1 [6]. Let E0 ⊂ E1 ⊂ E2 be convex subsets of a Banach space Z, with E0 and E2

compact subsets and E1 open relative to E2. Let P : E2 → Z be a continuous operator such that
for some integer m, one has

P j(E1) ⊂ E2, 1 ≤ j ≤ m− 1,

P j(E1) ⊂ E0, m ≤ j ≤ 2m− 1,

then P has a fixed point in E2.

Let T > 0 be a constant. We end this section, by introducing the following assumptions:
(H1) The evolution family U = {U(t, τ) : t ≥ τ, t, τ ∈ R+} is exponentially stable, i.e.,

there exist constants M > 0, ω > 0 such that

‖U(t, τ)‖ ≤ Me−ω(t−τ)

for all t ≥ τ.
(H2) U(t+ T, τ + T ) = U(t, τ) for all t ≥ τ and U(t, τ) is compact for all t > τ.
(H3) F (t + T, v, w) = F (t, v, w), t ≥ 0, F (t, v, w) is continuous in (t, v, w) and Lipschitz

continuous in (v, w), and maps a bounded set into a bounded set.
(H4) Ii is Lipschitz continuous and maps a bounded set into a bounded set for each i =

= 1, 2, . . . , and there is a p ∈ N+ such that 0 < t1 < t2 < . . . < tp < T − r, T < tp+1, and
tp+k = tk + T, Ip+k = Ik, k ≥ 1.

3. Periodic solutions. In the present work, we would follow [16, 19] and other related papers
and name “mild solutions” as “solutions”. To show the existence of periodic solutions, we also
assume that solutions of Eqs. (1.1) exist on [0,∞) and are unique. Denote by u(t;φ) the unique
solution with the initial function φ ∈ C([−r, 0];X).

Definition 3.1. Solutions of Eqs. (1.1) are bounded if for each B1 > 0 there is a B2 > 0 such
that {‖φ‖0 ≤ B1, t ≥ 0} implies ‖u(t;φ)‖ < B2.

Definition 3.2. Solutions of Eqs. (1.1) are ultimately bounded if there is a bound B′2 > 0 such
that for each B′1 > 0, there is a K > 0 such that {‖φ‖0 ≤ B′1, t ≥ K} implies ‖u(t;φ)‖ < B′2.
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Now, we introduce an operator P on C([−r, 0];X) as

(Pφ)(s) = uT (φ)(s) = u(T + s;φ), s ∈ [−r, 0].

From (H4) one finds that P maps C([−r, 0];X) into itself. Moreover, we have the following
results.

Lemma 3.1. Let the hypotheses (H1) – (H4) hold. Then
(a) P is continuous,
(b) if the solutions of Eqs. (1.1) are ultimately bounded, then P is compact.

Proof. (a) Given φ1, φ2 ∈ C([−r, 0];X). Assume that v(t) = u(t;φ1) and w(t) = u(t;φ2)
are two solutions of Eqs. (1.1) corresponding to φ1 and φ2, respectively. Let M0 > 0 be a
constant such that ‖U(t, τ)‖ ≤ M0 for all 0 ≤ τ ≤ t ≤ T. Since F is Lipschitz continuous with
respect to the second and third variables and Ii is Lipschitz continuous for each i = 1, 2, . . . , a
direct calculation yields that for t ∈ [0, T ],

‖v(t)− w(t)‖ ≤ ‖U(t, 0)(φ1(0)− φ2(0))‖+

t∫
0

‖U(t, τ)(F (τ, v(τ), vτ )− F (τ, v(τ), wτ ))‖ dτ+

+

t∫
0

‖U(t, τ)(F (τ, v(τ), wτ )− F (τ, w(τ), wτ ))‖ dτ+

+
∑

0<ti<t

‖U(t, ti)Ii(v(ti)− w(ti))‖ ≤

≤ M0‖φ1 − φ2‖0 +M1

t∫
0

‖vτ − wτ‖PCdτ +
∑

0<ti<t

Ci‖v(ti)− w(ti)‖,

where M1 and Ci, i = 1, 2, . . . , are some constants, which implies that for all t ∈ [0, T ],

‖vt − wt‖PC ≤ M0‖φ1 − φ2‖0 +M1

t∫
0

‖vτ − wτ‖PCdτ +
∑

0<ti<t

Ci‖vti − wti‖PC .

So, an application of [16] (Lemma 2.5) yields that

‖vt − wt‖PC ≤ M2‖φ1 − φ2‖0, t ∈ [0, T ],

where M2 is a positive constant. This proves that

‖P (φ1)− P (φ2)‖0 ≤ M2‖φ1 − φ2‖0,

which implies that P is a continuous operator.
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(b) One can easily show, along the same lines as in the proof of [16] (Theorem 2.10), that if
the solutions of Eqs. (1.1) are ultimately bounded, then they are also bounded. Hence, it suffices
to show that when the solutions of Eqs. (1.1) are bounded, P is a compact operator.

LetG be a bounded subset ofC([−r, 0];X). In view of the fact that the solutions of Eqs. (1.1)
are bounded we see that P (G) ⊂ C([−r, 0];X) is bounded.

For s ∈ [−r, 0], we have

(Pφ)(s) = U(T + s, 0)φ(0) +

T+s∫
0

U(T + s, τ)F (τ, u(τ), uτ )dτ+

+
∑

0<ti<T+s

U(T + s, ti)Ii(u(ti)) := (P1φ)(s) + (P2φ)(s),

where

(P1φ)(s) =

T+s∫
0

U(T + s, τ)F (τ, u(τ), uτ )dτ, s ∈ [−r, 0],

(P2φ)(s) = U(T + s, 0)φ(0) +
∑

0<ti<T+s

U(T + s, ti)Ii(u(ti)), s ∈ [−r, 0].

For any ε > 0 with ε < T − r we define a mapping Pε as

(Pεφ)(s) =

T+s−ε∫
0

U(T + s, τ)F (τ, u(τ), uτ )dτ =

= U(T + s, T + s− ε)
T+s−ε∫
0

U(T + s− ε, τ)F (τ, u(τ), uτ )dτ, φ ∈ G.

From (H2) it follows that U(T + s, T + s− ε) is compact for any 0 < ε < T − r and s ∈ [−r, 0].
Also, as assumed in (H3), F maps a bounded set into a bounded set. This, together with the
fact that the solutions of Eqs. (1.1) are bounded, implies that the set {F (τ, u(τ), uτ ) : τ ∈
∈ [0, T ], φ ∈ G} is bounded. Hence, we get that the set {(Pεφ)(s) : φ ∈ G} is precompact for
each s ∈ [−r, 0]. At the same time, we note that

‖(P1φ)(s)− (Pεφ)(s)‖ ≤
T+s∫

T+s−ε

‖U(T + s, τ)F (τ, u(τ), uτ )‖dτ → 0 as ε → 0.

Accordingly, the set {(P1φ)(s) : φ ∈ G} is precompact for each s ∈ [−r, 0].

Set F ∗ := max{F (τ, u(τ), uτ ) : τ ∈ [0, T ], φ ∈ G}. Let δ > 0 be small enough such that
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δ < T − r. For −r ≤ s1 < s2 ≤ 0, we have

‖(P1φ)(s2)− (P1φ)(s1)‖ ≤
T+s1∫

T+s1−δ

‖(U(T + s2, τ)− U(T + s1, τ))F (τ, u(τ), uτ )‖ dτ+

+

T+s1−δ∫
0

‖(U(T + s2, τ)− U(T + s1, τ))F (τ, u(τ), uτ )‖ dτ+

+

T+s2∫
T+s1

‖U(T + s2, τ)F (τ, u(τ), uτ )‖ dτ ≤

≤ MF ∗
T+s1∫

T+s1−δ

(
e−ω(T+s2−τ) + e−ω(T+s1−τ)

)
dτ+

+ F ∗ sup
τ∈[0,T+s1−δ]

‖(U(T + s2, τ)− U(T + s1, τ)‖
T+s1−δ∫

0

dτ+

+MF ∗
T+s2∫
T+s1

e−ω(T+s2−τ)dτ → 0 as s2 − s1 → 0, δ → 0.

Accordingly, the set {(P1φ)(·) : φ ∈ G} is equicontinuous. Hence, an application of Arzela –
Ascoli theorem yields that P1 is a compact operator.

Now, we treat P2. According to (H4) we have tp < T − r and T < tp+1. This gives

(P2φ)(s) = U(T + s, 0)φ(0) +
∑

1≤i≤p
U(T + s, ti)Ii(u(ti)), s ∈ [−r, 0].

From (H4) we note that Ii maps a bounded set into a bounded set for each 1 ≤ i ≤ p. This, to-
gether with the fact that the solutions of Eqs. (1.1) are bounded, implies that the set {Ii(u(ti)) :
φ ∈ G} is bounded for each 1 ≤ i ≤ p. Hence, by the compactness of U(t, τ) for t > τ, we
conclude that the set {U(T + s, ti)Ii(u(ti)) : φ ∈ G} is precompact for each s ∈ [−r, 0] and
1 ≤ i ≤ p. Also, one finds that the set {U(T + s, 0)φ(0) : φ ∈ G} is precompact for each
s ∈ [−r, 0]. We thus obtain that the set {(P2φ)(s) : φ ∈ G} is precompact for each s ∈ [−r, 0].

As proved above, there exists a ki > 0 such that ‖Ii(u(ti))‖ ≤ ki for each 1 ≤ i ≤ p.
Since 0 < ti < T − r ≤ T + s ≤ T for each s ∈ [−r, 0] and 1 ≤ i ≤ p, we obtain that for
−r ≤ s1 < s2 ≤ 0, 1 ≤ i ≤ p,

‖U(T + s2, ti)Ii(u(ti))− U(T + s1, ti)Ii(u(ti))‖ ≤ ki‖U(T + s2, ti)− U(T + s1, ti)‖ →

→ 0 as s2 − s1 → 0,
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which implies that {U(T + ·, ti)Ii(u(ti)) : φ ∈ G} is equicontinuous for each 1 ≤ i ≤ p.
Along the same lines one can show that {U(T + ·, 0)φ(0) : φ ∈ G} is equicontinuous. Thus,
{(P2φ)(·) : φ ∈ G} is equicontinuous. Again using Arzela – Ascoli theorem we get the com-
pactness of P2.

Lemma 3.1 is proved.
Now we are in a position to prove our existence result of periodic solutions.

Theorem 3.1. Let the hypotheses (H1) – (H4) hold. Suppose in addition that the solutions of
Eqs. (1.1) are ultimately bounded. Then Eqs. (1.1) has a T -periodic solution.

Proof. Let u(t;φ) be a solution of Eqs. (1.1) with u0 = φ ∈ C([−r, 0];X) and y(t) :=
:= u(t+ T ;φ).

To prove the theorem, we first show that u(t;φ) is a T -periodic solution of Eqs. (1.1) if and
only if φ is a fixed point of P. Note that

y(t) = U(t+ T, 0)φ(0) +

t+T∫
0

U(t+ T, τ)F (τ, u(τ), uτ )dτ+

+
∑

0<ti<t+T

U(t+ T, ti)Ii(u(ti)) := J1(t) + J2(t).

From (H2) we have

J1(t) =U(t+ T, 0)φ(0)+

T∫
0

U(t+ T, τ)F (τ, u(τ), uτ )dτ+

t+T∫
T

U(t+ T, τ)F (τ, u(τ), uτ )dτ =

=U(t+ T, T )U(T, 0)φ(0)+

T∫
0

U(t+ T, T )U(T, τ)F (τ, u(τ), uτ )dτ+

+

t∫
0

U(t+ T, z + T )F (z + T, u(z + T ), uz+T )dz =

=U(t, 0)U(T, 0)φ(0)+U(t, 0)

T∫
0

U(T, τ)F (τ, u(τ), uτ )dτ+

t∫
0

U(t, τ)F (τ, y(τ), yτ )dτ.

Also, for ti > T , it is clear that i = p+k and ti = tp+k = tk+T and Ii = Ip+k = Ik. Therefore,
we get

J2(t) =
∑

0<ti<T

U(t+ T, ti)Ii(u(ti)) +
∑

T<ti<t+T

U(t+ T, ti)Ii(u(ti)) =

=
∑

0<ti<T

U(t+ T, T )U(T, ti)Ii(u(ti)) +
∑

0<tk<t

U(t+ T, tk + T )Ip+k(u(tk + T )) =
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= U(t, 0)
∑

0<ti<T

U(T, ti)Ii(u(ti)) +
∑

0<tk<t

U(t, tk)Ik(y(tk)).

Hence, we obtain

y(t) =U(t, 0)U(T, 0)φ(0) + U(t, 0)

T∫
0

U(T, τ)F (τ, u(τ), uτ )dτ +

t∫
0

U(t, τ)F (τ, y(τ), yτ )dτ+

+ U(t, 0)
∑

0<ti<T

U(T, ti)Ii(u(ti)) +
∑

0<tk<t

U(t, tk)Ik(y(tk)) =

= U(t, 0)

U(T, 0)φ(0) +

T∫
0

U(T, τ)F (τ, u(τ), uτ )dτ +
∑

0<ti<T

U(T, ti)Ii(u(ti))

+

+

t∫
0

U(t, τ)F (τ, y(τ), yτ )dτ +
∑

0<tk<t

U(t, tk)Ik(y(tk)) =

= U(t, 0)u(T ) +

t∫
0

U(t, τ)F (τ, y(τ), yτ )dτ +
∑

0<ti<t

U(t, ti)Ii(y(ti)),

which yields that y(t) = u(t + T ;φ) is a solution of Eqs. (1.1) with y0 = uT (φ) = Pφ. Since
solutions of Eqs. (1.1) are unique, we have u(t + T ;φ) = u(t;Pφ). Noticing this, a similar
argument as in the proof of [16] (Lemma 2.7) shows that unT (φ) = Pnφ, n ≥ 1.

Now, if P has a fixed point φ, i.e., Pφ = φ, then one has u(t + T ;φ) = u(t;φ) due to u(t +
+T ;φ) = u(t;Pφ), which implies that u(t;φ) is a T -periodic solution of Eqs. (1.1). Conversely,
if u(t;φ) is a T -periodic solution of Eqs. (1.1), i.e., uT (φ) = u0(φ), then Pφ = uT (φ) = u0(φ) =
= φ. This proves that φ is a fixed point of P.

Next, to obtain the existence of T -periodic solution of Eqs. (1.1) it suffices to show that P
has a fixed point φ. Assume that B > 0 is the bound in the definition of ultimate boundedness.
As shown in Lemma 3.1, if the solutions of Eqs. (1.1) are ultimately bounded, then they are also
bounded. From this, we see that there is a constant B1 > B such that

‖u(t;φ)‖ < 1

2
B1 for all t ≥ 0

when ‖φ‖0 ≤ B. Similarly, there is a constant B′1 > B1 such that

‖u(t;φ)‖ < B′1 for all t ≥ 0

when ‖φ‖0 < B1. Also, from the ultimate boundedness it is clear that there exists a positive
integer m such that

‖u(t;φ)‖ < B for all t ≥ (m− 2)T
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when ‖φ‖0 ≤ B1. Hence, in view of unT (φ) = Pnφ, n ≥ 1, we see that

‖P j−1(φ)‖ = ‖u((j − 1)T + ·;φ)‖ < B′1 for 1 ≤ j ≤ m− 1 and ‖φ‖0 ≤ B1,
(3.1)

‖P j−1(φ)‖ = ‖u((j − 1)T + ·;φ)‖ < B for j ≥ m and ‖φ‖0 ≤ B1.

Denote

A := {φ ∈ C([−r, 0];X) : ‖φ‖0 < B}, E0 := cov.(P (A)),

C := {φ ∈ C([−r, 0];X) : ‖φ‖0 < B′1}, E2 := cov.(P (C)), (3.2)

D := {φ ∈ C([−r, 0];X) : ‖φ‖0 < B1}, E1 := D ∩ E2.

Then from the compactness of P and the fact that a convex hull of a precompact set is also
precompact, we obtain that E0 ⊂ E1 ⊂ E2 are all convex subsets of C([−r, 0];X), E0 and
E2 are compact subsets of C([−r, 0];X), and E1 is open relative to E2. Therefore, according to
(3.1) and (3.2) we deduce that

P j(E1) ⊂ E2, 1 ≤ j ≤ m− 1, P j(E1) ⊂ E0, m ≤ j ≤ 2m− 1.

Thus, by Lemma 2.1 P has a fixed point, i.e., there exits φ ∈ C([−r, 0];X) such that Pφ = φ.
As proved above, we know that the solution u(t;φ) of Eqs. (1.1) corresponding to the initial
value u0 = φ is just T -periodic. Therefore u(t;φ) is a T -periodic solution of Eqs. (1.1).

Theorem 3.1 is proved.

4. An example. To illustrate our abstract results, let us consider the partial differential
equation in the form

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
+ d(t)u(t, x) = sin t cosu(t, x) cosu(t+ θ, x), t > 0, t 6= ti, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R+,
(4.1)

u(θ, x) = φ(θ, x), θ ∈
[
−π

4
, 0
]
, x ∈ [0, π],

4u(ti, x) = (−1)iesin(u(ti,x)), ti =
2i− 1

2
π, i = 1, 2, . . . , q, x ∈ [0, π],

where q is a given positive integer, d : R+ → R is continuously differentiable, d(t+ 2π) = d(t)
for all t ∈ R+, and

dmin := min
t∈R+

d(t) > −1.

Take X = L2([0, π]) with norm ‖ · ‖2 and inner product (·, ·)2. Define

D(A(t)) := D(B), t ∈ R+,

A(t)ξ := Bξ − d(t)ξ, ξ ∈ D(A(t)),
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where the operator B : D(B) ⊂ X → X is given by the following form:

Bξ =
∂2ξ

∂x2
, ξ ∈ D(B),

D(B) := {ξ ∈ X : ξ, ξ′ are absolutely continuous, ξ′′ ∈ X, and ξ(0) = ξ(π) = 0}.

It is well-known that B has a discrete spectrum and its eigenvalues are −n2, n ∈ N+ with the

corresponding normalized eigenvectors yn(x) =

√
2

π
sin(nx). Clearly, (A(t))t∈R+ satisfies the

conditions (AT1) and (AT2). Hence, A(t) generater an evolution family U = {U(t, s) : t ≥
≥ s, t, s ∈ R+} and

U(t, s)ξ =

∞∑
n=1

e
−

∫ t

s
d(τ)dτ + n2(t− τ)


(ξ, yn)2yn for all t ≥ s, ξ ∈ X.

A direct calculation gives the following estimate:

‖U(t, s)‖ ≤ e−(1+dmin)(t−s) for all t ≥ s.

Note also that for each t > s, s ∈ R+, the operator U(t, s) is a nuclear operator, which yields
the compactness of U(t, s) for t > s.

Define

u(t)(x) = u(t, x),

φ(t)(x) = φ(t, x),

F (t, u(t), ut(θ))(x) = sin t cosu(t, x) cosu(t+ θ, x),

Ii(u(ti))(x) = (−1)iesin(u(ti,x)).

Then it is clear that t2+i = ti + 2π, I2+i = Ii and

F (t+ 2π, ξ1, ξ2) = F (t, ξ1, ξ2) for all t ∈ R+, ξ1, ξ2 ∈ X,

‖Ii(ξ1)− Ii(ξ2)‖2 ≤ e‖ξ1 − ξ2‖2, i = 1, 2, . . . , q, ξ1, ξ2 ∈ X,

‖Ii(ξ)‖2 ≤ e
√
π, i = 1, 2, . . . , q, ξ ∈ X.

Moreover, it is easy to verify that the hypotheses (H1) – (H4) are satisfied.
Note that the partial differential equation (4.1) can be reformulated as the abstract Eqs.

(1.1). Let φ ∈ C
([
−π

4
, 0
]

;L2([0, π])
)

and B > 0 be a constant with ‖φ‖0 ≤ B. If u(t;φ) is a
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solution of Eq. (1.1), then we have that for t > 0,

‖u(t)‖2 ≤ ‖U(t, 0)φ(0)‖2 +

t∫
0

‖U(t, τ) sin τ cosu(τ) cosuτ‖2dτ +
∑

0<ti<t

‖U(t, ti)Ii(u(ti))‖2 ≤

≤ BMe−(1+dmin)t +M
√
π

t∫
0

e−(1+dmin)(t−τ)dτ +Me
√
π
∑

0<ti<t

e−(1+dmin)(t−ti) =

= BMe−(1+dmin)t +
M
√
π

(1 + dmin)
(1− e−(1+dmin)t) +Me

√
π
∑

0<ti<t

e−(1+dmin)(t−ti).

Taking K(B) > tq, one can find a constant M ′ > 0 such that

BMe−(1+dmin)K(B) +
M
√
π

(1 + dmin)
+Me

√
π

∑
0<ti<K(B)

e−(1+dmin)(K(B)−ti) ≤ M ′.

Accordingly, when ‖φ‖0 ≤ B, it follows that ‖u(t;φ)‖2 < M ′ for all t ≥ K(B), which implies
that u(t;φ) is ultimately bounded and hence a 2π-periodic solution of (4.1) due to Theorem 3.1.
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