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The problem of preservation of a piecewise continuous invariant toroidal set for a class of multifrequency
systems with impulses at nonfixed moments under perturbations of the right-hand side is considered. New
theorems set constraints on perturbation terms not in the whole phase space, but only in a nonwandering
set of dynamical system, to guarantee the existence of exponentially stable invariant toroidal set.

Poszenanymo 3adauy 36epexceHns KyCKoB80-Henepep8HOl IH8apIaHMHOT MOPOI0aAbHOT MHONCUHU 045 Oe-
AK020 Kaacy 6a2amoy4acnomHUX CUCHEM 3 IMIYAbCAMU 8 HEDIKCOBAHI MOMEHMU Yacy ma 3i 30yPeHHAM
y npasiti wacmuni. Hosi meopemu, ujo 3a0aromov obmexceHHA Ha YaeHu 30YPeHHA He Ha 8CboMY ¢ha3o-
80MY NPOCMOPI, a AuuLe HA HeOAYKAIOUIlL MHOXCUHT OUHAMIYHOL CUCIEMU, 6CIAHOBAIOIOMb ICHYBAHHA
EeKCNOHEHUIAAbHO CIMILLKOL IH8APIAHMHOL MOPOI0AAbHOL MHONCUHU.

1. Introduction. There are several mathematical frameworks to model processes that combine
continuous and discontinuous behavior simultaneously. Among them we would like to emphasi-
ze dynamic equation on time scales [1] and hybrid dynamical systems [3, 4, 16]. However
throughout the paper we will use the framework of impulsive differential equations proposed
in [12]. This framework was first adapted to problems of qualitative analysis of multifrequency
oscillations [10] and is most convenient to consider such problems (see [5, 11] and references
therein for details). It also has a wide application to control theory and a variety of stability-
related problems [2].

In recent years a considerable attention is paid to relaxing the conditions for preservation of
invariant toroidal manifolds of multifrequency systems under perturbations of the right-hand
side [8, 9]. In this paper we will develop new theorems for preservation of the invariant toroidal
set of multifrequency systems with impulses at nonfixed moments. The main object of investi-
gation is a systems of differential equation defined in the direct product of an n-dimensional
torus 7., and an m-dimensional Euclidean space R"”

do
% - a(cp),
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X = A+ 19), ¢ € Ta\T, 1)
Azlger = B(p)z + 9();

where ¢ € T,z € R", A,B € C(Tn), f,9 € Cr(Tm), a € Crip(Tm), C(Tm) (Cr(Tm)) is
a space of continuous (piecewise continuous with first-kind discontinuities in I") functions that
are 2m-periodic with respect to each of the variables ¢;, j = 1,...,m, I' is a smooth compact
submanifold of the torus 7,, of codimension 1.

To the best of our knowledge the problem of existence of invariant sets for such systems
was first considered by Perestyuk in [10] for the case a(¢) = w = const. Later these results
were extended by Tkachenko to a more general case [13]. In [14, 15] a concept of exponenti-
al dichotomy was considered and a problem of its preservation under small perturbation was
investigated. A problem of existence of invariant sets and their smoothness properties were
treated in [13-15] as well. Sufficient conditions for existence of exponential dichotomy for
such class of systems were developed in [17].

In this paper we consider a narrower class of systems of type (1) in the case where the
system has an exponentially stable invariant toroidal set. We prove theorems on preservation
of an exponentially stable invariant set under perturbations of the right-hand side which are
less restrictive than in [15]. We use the techniques proposed in [8] for multifrequency systems
without impulses and extend the results of [6, 7]. The rest of the paper is organized as follows.
In Section 2 we give a short introduction to the invariant tori problem for systems defined in
the direct product of a torus and an Euclidean space. The main results are stated in Section 3.
An example and a short discussion completes the paper.

2. Systems defined in 7, X R"™. In this section we recall the basic approach to consider a
problem of existence of invariant sets for systems (1) based on [6, 13]. Let () be a solution of
the first equation from (1) that satisfies the initial condition pg(p) = ¢. A Lipschitz condition
for the function a(y) guarantees the existence and uniqueness of such a solution.

We assume that the set I' is a smooth submanifold of a torus of codimension 1 and is defi-
ned be the equation ®(¢) = 0, where @ is a continuous scalar function. Denote by ¢;(¢) the
solutions of equation ®(¢:(¢)) = 0 that are the moments of impulsive perturbations in system
(1). Assume that there exists § > 0 such that

ti(p) —ti-1(p) > 0. (2)
Along with system (1), consider a linear system,

% = Alpi(@)x + fer(9)), @ € T\ T,
3)

Az|ger = B(pi(p))x + g(ei(p))

that depends on ¢ € 7™ as a parameter. We get system (3) by substituting ¢ with ¢;(¢) in the
second and the third equations of (1).

Definition 1. By an invariant toroidal manifold of system (1) we call a manifold that is defined
by a function u(yp) € Cr(Ty) such that the function z(t,p) = u(pi(p)) is a solution of system
(3) for every ¢ € T™.
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Suppose C(¢) € Cr(Ty,) is an arbitrary square matrix and X! () is a fundamental matrix
of the linear system

dx
o = ez, ¢ € Tu\T,
4)
Azl er = B(oi(p))w
that depends on ¢ as a parameter.
Definition 2. The function

~ X2p)C(er(9)), T <0,
Colr9) = { “XO)E - Clor(@)), 7> 0,

is called a Green— Samoilenko function of the invariant tori problem for system (1) if the follo-
wing inequality holds:

+00
/ IGo(r. o)l dr < K < oo,

The existence of a Green—Samoilenko function along with (2) guarantees existence of an
invariant toroidal set of system (1) of the form

+o0
z =u(p) = / Go(r, ) f(er(@)dr + D Golti(p) +0,0)9(21,)(©), @ € T,

—oo<ti(p)<oo

for arbitrary f,g € Cr(Tp).
Throughout this paper we will consider a special case where a fundamental matrix X () of
system (4) satisfies the estimate

IXL(p)|| < Ke =) for &> 7. )
From (5) it directly follows that a Green — Samoilenko function exists and has the form

Golr, ) = { éf?(@)c(w(@)% : i 8? ()

An invariant toroidal set then is called asymptotically stable as it is stable and attracts all
trajectories from a vicinity.
3. Main results. Along with system (1), we consider a perturbed system,

do
% = a(¢)7
%f = [A(p) + A1(p)]z + f(p), © € Tm \ T, (™

Az|,er = [Ble) + Bi(p)]z + g(p),
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where perturbation terms Ay, By € C(7,,). Since the function A; and B; are continuous on
compact manifold there exist sup 7, A1(¢) = a1 and sup,er, Bi(p) = b1. In [15] a more
general problem was considered for a system that possesses an invariant toroidal set (without
exponential stability property) and with a perturbation term in the first equation of (7). It was
proven that the perturbation terms should be sufficiently small to guarantee the existence of an
invariant toroidal set of the perturbed system. In this paper we consider the case where system
(1) has an exponentially stable invariant toroidal set and develop theorems with less restrictive
constraints.
Theorem 1. Let the fundamental matrix XL(p) satisfy estimate (5)

HXﬁ(go)H < Ke 7(t=7) for t>r71

with some K > 1,v > 0. If

1
Ka1—|—5ln(1+Kbl) < 7, (®)

then system (7) has an exponentially stable invariant toroidal manifold for arbitrary f,g €

Proof. The fundamental matrix of the perturbed system can be represented as

() = Xi(y / X)) A1 (ps (@) (0)ds + > XL (0)Brn)(©)% P ()
0<t;i(p)<t)

Taking estimate (5) into account we have

16| < Ke™* + /K S0y Qs+ Y Ke T, 0f ()
0<ti(p)<t)

(|92 ()|| <K+/K675a1 128(p)llds + Y Kerile blHQ )H
0<ti(9)<t)

Utilizing a Gronwall — Bellmann type inequality for piecewise continuous functions [12] (Lem-
ma 2) we get
e “S26(¢)“ < K(l + K bl)i(ovt)eK(nt7

where i(a, b) is the number of impulsive perturbation in the interval (a, b). Finally, from (2),
HQS(@) H < Ke~(-Ka—gn(+Kb))t gor 4 5 ).

From condition (8) it directly follows that the fundamental matrix of the perturbed system
satisfies an estimate of type (5) with the same constant K and possibly different ¥ = v — Ka; —

1
~3 In (14 Kbp). It means that there exists a Green —Samoilenko function of the form (6) and

an exponentially stable invariant toroidal set for arbitrary functions f,g € Cr(7,).
Theorem 1 is proved.
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Next we will relax the dwell-time condition (8). In particular we will show that it is sufficient
to set restrictions on perturbations not on the whole surface of the torus 7,,, but only in a

. . . . d
nonwandering set of trajectories of the dynamical system d—f = a(p).

Definition 3. A point ¢ is called wandering if there exist its neighbourhood U (¢) and a posi-
tive number T' > 0 such that

Ule) Npi(U(p)) =0 for t=>T. 9
Let W be a set of all wandering points of a dynamical system and Q2 = T, \ W be a set

of nonwandering points. From compactness of a torus it follows that the set () is nonempty and
compact. Since the function Ay and B are continuous on a compact set there exist SUP,cq Ai(p) =

= a1 and sup,cq B1(p) = by.
Theorem 2. Let the fundamental matrix X! (p) satisfy estimate (5),
| XE(e)| < Ke &7 for t> 7

with some K > 1,~v > 0. If the following dwell-time condition holds
1 =
Kal—i—gln(l—i—Kbl) < 7, (10)

then system (7) has an exponentially stable invariant toroidal set for arbitrary f,g € Cr(Tm).
Proof. The fundamental matrix of the perturbed system can be represented as

Oh(p) = Xi(e / X)Ao@ B(@)ds + S XL (@B () (9P ().
0<t;(¢)<t)

Taking estimate (5) into account we have
t
98] < Ke '+ [ K I s+

+ Y Ke OBy (o, ) (D125 ()],

0<ti(p)<t

(11)

e[ < K+/K6W!Al(sos(@))HHQS(w)Hder

+ Y KO By @) I ().
0<ti(p)<t

Now we will employ an approach used in [8]. Let U.(2) be an e-neighbourhood of the set (2.

We will show that for any fixed ¢ > 0 there exists a finite time 7" > 0 that does not depend on
@ such that p;(¢) € U-(Q2) fort > T.
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Indeed, since 7, is a compact set and U.(£2) is an open set, the set 7,,, \ U (2) is compact and
consists of wandering points. Thus, for every point ¢ € 7,,,\U:(£2), there exists a neighbourhood
U () satisfying condition (9) for ¢ < T'(y). Since the phase space is compact, we can choose
finitely many neighbourhoods of this kind, Uy, Us, . .., Uy, such that

U U =Tu\U(9)

k=1,...,n

and denote the corresponding numbers 7'(¢) by 71,15, ..., Tn.

Let ¢ € T, \ Us(Q2) be an arbitrary point from the neighbourhood U, . According to (9),
for a period of time not larger than 7,,,, it leaves this neighbourhood forever. Assume that it
then appears in the neighbourhood U,,, and leaves it for a time that does not exceed T;,,, etc.
Finally, for a time not greater than ch\;l Ty, the point necessarily appears in U (2) because,
according to (9), it cannot return to any of the neighbourhoods Uy, k = 1,..., N.

Thus the time of stay of the point ¢ € Ty, \ U:(2) is limited to

k=1

Since the matrices A1, B1 € C(Ty,), for any fixed ¢,,¢, > 0 there exist a positive constant
¢ > 0 and a finite time 7" that does not depend on ¢ such that, for every ¢ € T, \ U-(Q),

1A (e (@)l < a+ea,  [1Bilpe(9))ll < D+ep for ¢ >T.

Then from (11) we get

() < K+/Ke”sHAl(@s(sO))HHQS(@)IIdSJr

+ Y K9 |Biley J(@))11925 )II+/K6”’5(61+€a)||98(90)||d8+
0<t;(¢)<T
+ Y KO (b +2) 257 (o). (12)
T<t;(¢)<t
Estimating
K+ [ Ke™ [[A1(ps(0)| 1926(9) [|ds + Ke™i#) || By ( N 269 < &
€ 1{Ps P S € 1Pt (¢ =
0<t;(p)<T
we have

t
()| < K + / Ke¥ (i +ea) |Q(o)llds + Y Ke(by + &) ‘Q )Hs
T

T<t;(p)<t
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t
/ (a4l ds+ 3 KO F; 4+ 2,) |05 ()]
, 0<t; ()<t

Utilizing a Gronwall - Bellmann type inequality for a piecewise continuous function [12] ([Lem-
ma 2) we obtain

| Qh(0)]| < K1+ K(by + &) O Caten)t,

Q% (0)|| < KeO-K@+ea)—gn(+KGi+e)t for ¢ > 0,0 € Tr, \ U:(Q)

Now consider the case where ¢ € U(€2). It means that for every initial value ¢ € U.(Q2)
there exists a constant 77 () such that

1A (pe (@)l < atea,  [1Bilpe(9))ll < b+ep for t € [0,Ti(0)] U[Ti(p) + T, +00). (13)

Remark 1. If ¢ € () it means that the trajectory never leaves the nonwandering set of the
dynamical system and estimates (13) are valid for any ¢ > 0. The same situation can happen
when ¢ € U.(Q2), but the trajectory ¢.(¢) never leaves the neighbourhood U.(f2). However
next we will treat the worst case, where the trajectory that starts in U.(Q2) leaves it in a time
T (¢) that depends on .

Then from (11), considering sufficiently large ¢ > Ti(¢) + 7' and utilizing a Gronwall-
Bellmann type inequality for piecewise continuous functions [12](Lemma 2), we get

| ()| < Kedo KllAr(esenlds 1 (+EK|Bienm@)]) <
0<ti(p)<t

< KoKtz dri ) KA (e)lds I (1+KG+2) «
0<ti(p)<t

« H (1+KHBl(§0tl(g&)<§0))H) < K K(ai+ea)t 11n(1+K(b1+€b))t,
T1(p)<ti(p)<T1(p)+T

where the constant K does not depend on ¢. Indeed,

KT Kl Aol 11 (1+ K [|Biero) (0)]) <
T1(p)<ti(@)<T1(p)+T

Ty (p)+T _
< Kelri) —Kads H (1+ Kby) < KeXaT(1 4+ Kb)s = K.
T1(p)<ti(p)<Ti(@)+T

Then the estimate for a fundamental matrix has the form
()] < Re-OmR@ra-bnORG2D for ¢ 5 0,0 € U.(0).
Finally, denoting K = max{K, K} we arrive at the estimate

HQS(@H < Ke (—K(@aitea) =g n(1+K(Gite))t  gor ¢ > 0,0 € Trn.
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If the dwell-time condition (10) holds then the fundamental matrix of the perturbed system
satisfies the estimate of a type (5) but with possibly different constants K and ~ since we can
choose ¢, and ¢;, to be arbitrarily small. It means that there exists a Green —Samoilenko functi-
on of the form (6) and an exponentially stable invariant toroidal set for arbitrary functions
fv g € Cr (Tm)

Theorem 2 is proved.

4. Example and discussion. Consider an example that shows the advantages of the proposed

theorems.
Example.
der . 2 P1 do
g s, =W ¢ €Ta
(14)
dx
o= —z+ f(p), ¢ e T\I, Azleer = g(p),

where w is a constant. System (14) has an invariant toroidal manifold and the fundamental
matrix X! (o) satisfy the estimate (5) with constants K = v = 1

IXL)| < e for &> 7.
Now perturb system (14) to get

dpy .91 dp2
g s =W, 0 €T,

d
d—”; = (-1+Asingn)z + f(9), @€ T\T, (15)

Az|,cp = Bsinpr -z + g(p),

where A and B are arbitrary constants. Suppose that the set I is such that the estimate (2) for
the moments of impulsive perturbation holds. The question is does the perturbed system (15)
has an exponentially stable invariant set for arbitrary functions f,g € Cr(72)?

The following estimates for the perturbation terms hold:

sup Asinp; = A, sup Bsinyp; = B.
pET2 pET2

The previously known perturbation theorem for a more general class of systems [15] demands
the norms of the perturbations to be not more than some particular value. However by adjusting
constants A and B one could make it bigger than any fixed J. So we cannot conclude about the
existence of invariant set of the perturbed system (15). However the unperturbed system (14)
possesses an exponentially stable invariant toroidal set. So we can try to use Theorem 1 or
Theorem 2.

A dwell-time conditions (8) has the form

A+%ln(1+Kb) <1
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It is obvious that by adjusting the constants A and B one could make it false. It means that
Theorem 1 couldn’t answer in the affirmative to the example’s question.

However a dynamical system on a two-dimensional torus has a very simple structure of the
limit sets and recurrent trajectories. In particular the nonwandering set €2 consists of only one
meridian ¢; = 0,

Q={peTa:p1=0,p2 € Ti}.

A point that starts on the meridian is spinning with a constant speed, all other trajectories tend
to Q) by spirals. The estimates for the perturbation terms are

sup Asingp; = 0, sup Bsing; = 0.
pEeN e

1 1
Then the dwell-time condition has the form 0 + —In1 < 1. It is obvious that for every ) < 00

there exist sufficiently small constants €,, ¢, > 0 such that the dwell-time condition ¢, + ¢, < 1
holds. From Theorem 2 it follows that system (15) has an exponentially stable invariant toroidal
set for arbitrary f,g € Cr(73) if only the time sequence of impulsive moments is such that
estimate (2) holds.

Proved theorems allow to investigate the qualitative behavior of solutions of a class of
impulsive systems that have a simple structure of limit sets and recurrent trajectories. The
constraints of Theorem 2 are less restrictive than those of Theorem 1. A perturbed system
should satisfy the dwell-time condition not for every ¢ € T, but only for ¢ € 2. However it is
worth to note that if the first equation of system (7) is ¢ = w = const, that is very frequent in
applications, then its nonwandering set ) coincides with a whole torus and Theorem 2 has no
advantages compared to Theorem 1.
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