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We obtain necessary and sufficient conditions for the existence of solutions of differential equations
bounded on the whole axis in the Fréchet and Banach spaces and a criterion for the existence of almost
periodic solutions. Examples of differential equations that illustrate the proposed theory are presented.

Одержано необхiднi й достатнi умови iснування обмежених на всiй осi розв’язкiв диференцiальних
рiвнянь у просторах Фреше та Банаха, а також критерiй iснування майже перiодичних розв’язкiв.
Наведено приклади диференцiальних рiвнянь, якi iлюструють отриману теорiю.

One of the central questions of the qualitative theory of differential equations is a question of
the behaviour of solutions at infinity. A class of systems whose solutions can both fall towards
zero with exponential speed and increase indefinitely are analyzed with the help of exponential
dichotomy concept on all axes and semi-axes of the considered system. Bounded solutions of
such systems on the entire axis in the finite-dimensional case were considered by O. Perron,
A. Meizel [1] and also W. Coppel [2], R. Sacker, G. Sell [3 – 5], Yu. Mitropolsky, A. Samoilenko,
V. Kulik [6], and it can be read about infinite-dimensional Banach spaces in the monographs
of M. Krein [7], Yu. Daletsky and M. Krein [8], H. Massera and H. Schaffer [9], F. Hartman
[10], I. Chueshov [11]. In these papers, the given task was explored under the assumption of an
exponential dichotomy on the whole axis of the corresponding homogeneous equation.

In K. Palmer’s articles [12, 13] the condition of an exponential dichotomy on the whole
axis of a homogeneous differential system was weakened with the replacement of the condition
of exponential dichotomy on the semi-axes, and for the first time, the noetherianity of the
corresponding operator at the solution of the task about the bounded on the whole axis solutions
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was proved. This idea was further developed in the paper [14], where using generalized-invertible
operators and pseudoinverse byMoore – Penrosematrices the problemof the existence of bounded
on the entire axis solutions for linear and nonlinear perturbations of the system was investigated.
These and other results can be found in the monographs of A. Boichuk and A. Samoilenko
[15, 16].

The concept of exponential dichotomy for evolution equations with unbounded operator
coefficients was studied, in particular, in the famous monograph of D. Henry [17] and in the
article written by G. Rodriguez, J. Filho [18], where under the assumption of an exponential
dichotomy on the semi-axes of the corresponding homogeneous operator equation Fredholm
analogue of alternative is proved. The study of noetherianity of the corresponding differential
equationwith unbounded coefficients operator is presented in the article byA. Baskakov [19 – 22],
Yu. Latushkin, Yu. Tomilov [23]. It should be noted also works of [24 – 33].

This paper presents a number of results in regards to the existence of bounded solutions of
differential equations, which the author received over the past years and new results under the
condition of exponential dichotomy, ν -, µ-dichotomy [34, 35] of the corresponding homogeneous
equation. The examples of applications of the theory to the study of the specific differential
equations and systems of differential equations in Banach and Frechet spaces and general locally-
convex topological spaces are given. Also, some results from the theory of almost periodic
solutions of operator-differential equations are given.

Bounded solutions of linear differential equations in Banach space. In this part, we
explore the question of the existence of the solutions limited on all axis of linear and nonlinear
differential equations with unlimited and unbounded operator coefficients in Banach spaces under
the condition of exponential dichotomy on the axes of the corresponding homogeneous equation.

Linear equations with bounded operator. The main results from the theory of unlimited
solutions of differential equations in Banach space with a limited operator coefficient are given in
the right part of the equation. The main part of these results were obtained in the papers [36 – 41].

Statement of the problem and basic concepts. In Banach space B, we consider the di-
fferential equation

dx(t)

dt
= A(t)x(t) + f(t), (1)

where the vector function f(t) maps elements of R space into the elements of Banach space B,

f(t) ∈ BC(R,B)

BC(R,B) :=

{
f(·) : R→ B, f(·) ∈ C(R,B), |||f ||| = sup

t∈R
‖f(t)‖B <∞

}
,

BC(R,B) is a Banach space of continuos and bounded on R functions; operator valued function
A(t) is strongly continuous with the corresponding norm |||A||| = supt∈R ‖A(t)‖ < ∞, and the
solution x = x(t) of the equation

x(t) = x0 +

t∫
t0

(A(s)x(s) + f(s))ds,

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 3



BOUNDED SOLUTIONS OF EVOLUTION EQUATIONS. I 293

is continuously differentiable at each point t ∈ R is continuously differentiable at each point (1)
everywhere on R. It is necessary to find the solution x(t) of the equation (1) in the space of
Banach functions BC1(R,B), that are continuously differentiable and bounded together with the
derivative on R. Assume that the homogeneous operator equation

dx(t)

dt
= A(t)x(t), (2)

is exponentially dichotomous on the semi-axes R+ and R− with projectors P and Q respectively,
which means that there are projectors P (P 2 = P ) and Q(Q2 = Q), constants k1,2 ≥ 1 and
α1,2 > 0 such that ∥∥U(t)PU−1(s)

∥∥ ≤ k1e−α1(t−s), t ≥ s,∥∥U(t)(I − P )U−1(s)
∥∥ ≤ k1e−α1(s−t), s ≥ t, for any t, s ∈ R+,

and ∥∥U(t)QU−1(s)
∥∥ ≤ k2e−α2(t−s), t ≥ s,∥∥U(t)(I −Q)U−1(s)

∥∥ ≤ k2e−α2(s−t), s ≥ t, for any t, s ∈ R−,

where U(t) = U(t, 0) — evolutionary operator [8] of the equation (2) such that
dU(t)

dt
= A(t)U(t), U(0) = I,

— identity operator.
The following result is valid for the equation (1) [36].
Theorem 1. Suppose that the homogeneous equation (2) is exponentially dichotomous on

the semi-axes R+ and R− with projectors P and Q respectively. If the operator

D = P − (I −Q) : B→ B, (3)

which maps Banach space B to itself, is a generalized-invertible operator then:
(i) so that there are solutions of equations (1), bounded on the whole axis, it is necessary

and sufficient that the vector function f(t) ∈ BC(R,B) satisfies the condition
+∞∫
−∞

H(t)f(t)dt = 0, (4)

where
H(t) = PN(D∗)QU

−1(t) = PN(D∗)(I − P )U−1(t);

(ii) if condition (4) is satisfied, then the solutions of equation (1), bounded on the whole axis
look as follows:

x0(t, c) = U(t)PPN(D)c+ (G[f ])(t) ∀c ∈ B, (5)

where (G[f ])(t) [36] is a generalizedGreen’s operator of the bounded on the whole axis solutions
problem, D− is generalized-invertible to the operator D, projectors PN(D) = I − D−D and
PN(D∗) = I −DD−, c is an arbitrary element of Banach space B.
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Remark 1. I. Recall that if the operator D is generalized-invertible [15], then:
(i) operator D is normally solvable (R(D) = R(D) = ImD );
(ii) the subspace N(D) = kerD has a direct complement in B ;
(iii) the subspace R(D) has a direct complement in B.

If these conditions hold, then there is always a generalized-invertible operator D− for
operator D.

II. In the finite-dimensional case, when B = Rn and operator D is (n × n)-dimensional
matrix, properties (i), (ii), (iii) are always satisfied (since subspaces N(D) and N (D∗) = cokerD

are finite-measurable, and therefore complementary and the operator D has closed set of values).
Note that the condition (4) is equivalent to orthogonality inhomogeneities of equation (1) to the
solutions of the corresponding homogeneous conjugate equation. In such situation, we obtain the
well-known lemma of K. Palmer [12].

III. Application of the theory of generalized-inverse and pseudoinverse operators allow us to
obtain previously known results and the new facts regarding our initial problem. If we consider
the equation in Rn under the assumption that the corresponding linear homogeneous equation is
exponentially dichotomous on the axes, then the operator

(Lx)(t) = ẋ(t)−A(t)x(t),

can only be Noetherian [14]. And if we consider the equation in Banach space B, the initial
problemwould have much more cases of solutions. It follows from the theorem 1 that the operator
L can be (according to the classification of S. Krein [42]):

(i) normally-solvable operator
(

ImL = ImL
)
;

(ii) d-normal
(
R(L) = R(L), dim cokerL <∞

)
;

(iii) n-normal
(
R(L) = R(L), dim kerL <∞

)
;

(iv) Noetherian (indL = dim kerL− dim cokerL <∞) ;
(v) Fredholm (indL = 0).

Linear and nonlinear equations with unbounded operator. Let us show, that the same
results can be derived for unbounded operators. In Banach space B we consider the homogeneous
differential equation

dx(t)

dt
= A(t)x(t), t ∈ J, (6)

where for each t ∈ J ⊂ R, the unbounded operator A(t) is closed with a dense domain
D(A(t)) = D ⊂ B, which doesn’t depend on t.

Remark 2. Since an arbitrary bounded operator is closed, it follows that the equation (6) is
more general than the equation (2).

Let us remind a couple of classical concepts of the theory of semigroups of operators and the
related with them facts.

Definition 1 [18; 43, p. 237]. The set of bounded and linear operators {T (t, s) | t ≥ s; t, s ∈
∈ J} in Banach Space B is called an evolution operator if conditions:

(i) T (s, s) = I, s ∈ J;
(ii) T (t, σ)T (σ, s) = T (t, s), t ≥ σ ≥ s in J;

if T (t, s) additionally satisfies the condition
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(iii) x ∈ B mapping (t, s) 7→ T (t, s)x continuous t ≥ s,
then T (t, s) is strongly continuous evolutionary operator (or a set of strongly continuous evoluti-
onary operators).

If the Cauchy problem generated by the equation (6) and by the initial condition x(s, s, x0) =

= x0 ∈ D is uniformly correct [43], then we can determine for t ≥ s on J linear operator T (t, s) :
D → B by the rule

T (t, s)x0 = x(t, s, x0).

This result was proved by S. Krein [43, p. 237 – 239].
Statement 1. Suppose that the Cauchy problem for the equation (6) is uniformly correct.

Then the set of linear operators {T (t, s), t ≥ s, t, s ∈ J}, which is defined above, is a strongly
continuous evolutionary operator. In addition, T (t, s)D ⊂ D and, if x ∈ D, then T (t, s)x is
differentiable with respect to the variable t and

∂

∂t
T (t, s)x = A(t)T (t, s)x, t ≥ s, t, s ∈ J.

If the mapping t 7→ A(t) is strongly continuous, then T (t, s)x is differentiable for s < t on J for
all x ∈ D and

∂

∂s
T (t, s)x = −T (t, s)A(s)x.

In this case, it is said, that T (t, s) is evolutionary operator, associated with the equation (6).
For a fixed t ≥ s the operator T (t, s) will be bounded linear operator and since the set D

is dense in B, it can be extended to the whole space B by continuity, which is assumed. The
extension of the evolutionary operator to the whole space will be denoted in the same way.

Definition 2 [17, p. 245]. Evolutionary operator {T (t, s) | t ≥ s; t, s ∈ J} admits an
exponential dichotomy on J, if there exist projector-valued operator function {P (t) | t ∈ J} in
L(B) and the real constants α > 0 and M ≥ 1 such that:

(i) T (t, s)P (s) = P (t)T (t, s), t ≥ s;
(ii) restriction T (t, s) �N(P (s)), t ≥ s of the operator T (t, s) to the kernel N(P (s)) of the

projector P (s) is an isomorphism from N(P (s)) to N(P (t)), T (s, t) we define as inverse

T (s, t) = (T (t, s) �N(P (s)))
−1 : N(P (t))→ N(P (s));

(iii) ‖T (t, s)P (s)‖ ≤Me−α(t−s), t ≥ s;
(iv) ‖T (t, s)(I − P (s))‖ ≤Me−α(s−t), s ≥ t.
One of the most interesting cases is the case of the exponential dichotomy on the semi-axes

R−s = (−∞; s], R+
s = [s;∞) (in this case, the projector-valued functions, which are defined on

the semi-axes, we will denote by P−(t) for all t ≥ s, and P+(t) for all t ≤ s, with constants M1,

α1 and M2, α2 respectively).
Using these concepts, we obtain the necessary and sufficient conditions for the existence of

the weak bounded solutions for an inhomogeneous equation
dx(t)

dt
= A(t)x(t) + f(t), t ∈ J, (7)

where f ∈ BC(J,B) = {f : J → B; f continuous and bounded}. Boundedness we understand
in the sense that |||f ||| = supt∈J ‖f(t)‖ < ∞. The unbounded operator A(t) is closed with the
dense domain D(A(t)) = D ⊂ B, which does not depend on t.
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Definition 3 [18]. Let f : J → B be a continuous vector function, and let T (t, s) be a
strongly continuous evolutionary operator on J, which is associated with (6) u is called weak
(generalized) solution on J of inhomogeneous equation (7), if u : J → B continuous and it
satisfies the equality

u(t) = T (t, τ)u(τ) +

t∫
τ

T (t, s)f(s)ds, t ≥ τ, (8)

for each τ ∈ J.
The main result of this part has the following form.
Theorem 2. Let {T (t, s) | t ≥ s ∈ R} be a strongly continuous evolutionary operator

associated with the equation (6). Assume that the following conditions hold:
(i) T (t, s) admits an exponential dichotomy on the semi-axes R+

0 and R−0 with projector-
valued operator functions P+(t) and P−(t), respectively;

(ii) operator D = P+(0)− (I − P−(0)) is generalized invertible.
Then:
(i) so that there to exist weak solutions of the equation (7), bounded on the whole axis it is

necessary and sufficient that the vector function f ∈ BC(R,B) satisfies the condition

+∞∫
−∞

H(t)f(t)dt = 0, (9)

where H(t) = PN(D∗)P−(0)T (0, t);
(ii) if condition (9) holds, then the weak solutions of the equation (7) have the following

form:

x0(t, c) = T (t, 0)P+(0)PN(D)c+ (G[f ])(t, 0) ∀c ∈ B, (10)

where

(G[f ])(t, s) =



∫ t

s
T (t, τ)P+(τ)f(τ)dτ −

∫ +∞

t
T (t, τ)(I − P+(τ))f(τ)dτ+

+T (t, s)P+(s)D−

[∫ ∞
s

T (s, τ)(I − P+(τ))f(τ)dτ+

+

∫ s

−∞
T (s, τ)P−(τ)f(τ)dτ

]
, t ≥ s,∫ t

−∞
T (t, τ)P−(τ)f(τ)dτ −

∫ s

t
T (t, τ)(I − P−(τ))f(τ)dτ+

+T (t, s)(I − P−(s))D−

[∫ ∞
s

T (s, τ)(I − P+(τ))f(τ)dτ+

+

∫ s

−∞
T (s, τ)P−(τ)f(τ)dτ

]
, s ≥ t,
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is generalized Green operator of the problem of the solutions bounded on the whole axis:

(G[f ])(0+, 0)− (G[f ])(0−, 0) = −
+∞∫
−∞

H(t)f(t)dt,

L(G[f ])(t, 0) = f(t), t ∈ R,

and
(Lx)(t) :=

dx(t)

dt
−A(t)x(t),

D− — generalized-invertible to the operator D; PN(D) = I − D−D, PN(D∗) = I − DD− —
projectors [44] onto the kernel and cokernel of the operator D.

Remark 3. The same theorem remains correct even if the evolutionary operator T (t, s)

admits an exponential dichotomy on the R+
s and R−s axes. Further in this paper (for the reader’s

convenience) the case s = 0 is considered.
Proof. Solutions of equation (7), bounded on the semi-axes R+

0 and R−0 , have the following
form:

x(t, ξ1, ξ2) =



T (t, 0)P+(0)ξ1 −
∫ +∞

t
T (t, τ)(I − P+(τ))f(τ)dτ+

+

∫ t

0
T (t, τ)P+(τ)f(τ)dτ, t ≥ 0,

T (t, 0)(I − P−(0))ξ2 +

∫ t

−∞
T (t, τ)P−(τ)f(τ)dτ−

−
∫ 0

t
T (t, τ)(I − P−(τ))f(τ)dτ, t ≤ 0.

(11)

Indeed,
‖T (t, 0)P+(0)ξ1‖ ≤ ‖T (t, 0)P+(0)‖‖ξ1‖ ≤M1e

−α1t‖ξ1‖,

and
∂(T (t, 0)P+(0)ξ1)

∂t
= A(t)T (t, 0)P+(0)ξ1.

Thus, the expression T (t, 0)P+(0)ξ1 defines all bounded on R+
0 solutions of the homogeneous

equation (6).
We now prove the boundedness of one of the integrals defined in (11).∥∥∥∥∥∥

+∞∫
t

T (t, τ)(I − P+(τ))f(τ)dτ

∥∥∥∥∥∥ ≤
+∞∫
t

‖T (t, τ)(I − P+(τ))‖‖f(τ)‖dτ ≤

≤ sup
t∈R
‖f(t)‖

+∞∫
t

M1e
α1(t−τ)dτ =

M1

α1
|||f ||| <∞.

The boundedness of other integrals is checked in the same way. Based on the following equation:

∂

(
−
∫ +∞

t
T (t, τ) (I − P+(τ)) f(τ)dτ +

∫ t

0
T (t, τ)P+(τ)f(τ)dτ

)
∂t

=
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= T (t, t)(I − P+(t))f(t)−A(t)

+∞∫
t

T (t, τ)(I − P+(τ))f(τ)dτ+

+ T (t, t)P+(t)f(t) +A(t)

t∫
0

T (t, τ)P+(τ)f(τ)dτ =

= f(t) +A(t)

−
+∞∫
t

T (t, τ)(I − P+(τ))f(τ)dτ +

t∫
0

T (t, τ)P+(τ)f(τ)dτ

 ,

we see that the expression (11) really defines all bounded solutions of the equation (7) on the
semi-axes.

In order for the expression (11) to define weak bounded solutions along the entire axis, it is
necessary and sufficient for the following condition to hold:

x(0+, ξ1, ξ2) = x(0−, ξ1, ξ2).

This condition is equivalent to the solvability of the operator equation

P+(0)ξ1 −
+∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ = (I − P−(0))ξ2 +

0∫
−∞

T (0, τ)P−(τ)f(τ)dτ. (12)

If ξ1 and ξ2 are the solutions of equation (12), then using them in (11) gives us a weak
solution of the equation (7) on the whole axis. Let us show that if conditions of the theorem hold,
then set of weak and bounded on the whole axis solutions of (7) can be found as

x(t, ξ) =



T (t, 0)P+(0)ξ −
∫ +∞

t
T (t, τ)(I − P+(τ))f(τ)dτ+

+

∫ t

0
T (t, τ)P+(τ)f(τ)dτ, t ≥ 0,

T (t, 0)(I − P−(0))ξ +

∫ t

−∞
T (t, τ)P−(τ)f(τ)dτ−

−
∫ 0

t
T (t, τ)(I − P−(τ))f(τ)dτ, t ≤ 0.

(13)

This means that cardinality of weak bounded solutions (11) and (13) coincide and the elements
ξ1 and ξ2 can be chosen as ξ = ξ1 = ξ2. Clearly that any bounded solution of the form (13) is
contained in the set of weak bounded solutions (11) under the conditions of solvability.

Let us rewrite the equation (12) in the following form:

P+(0)ξ1 = (I − P−(0))ξ2 + g, (14)

where

g =

0∫
−∞

T (0, τ)P−(τ)f(τ)dτ +

+∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ.
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By using that P 2
+(0) = P+(0), we obtain for each element ξ1 : P 2

+(0)ξ1 = P+(0)ξ1. Putting
that in (14) we obtain that

P+(0)((I − P−(0))ξ2 + g) = (I − P−(0))ξ2 + g

or
P+(0)(I − P−(0))ξ2 − (I − P−(0))ξ2 = g − P+(0)g.

Now, by using the fact that (I − P−(0))2 = I − P−(0), we obtain the operator equation

P+(0)(I − P−(0))ξ2 − (I − P−(0))2ξ2 = g − P+(0)g,

which can be rewritten in the following way:

D(I − P−(0))ξ2 = (I − P+(0))g. (15)

By the condition of the theorem, the operator D is normally solvable (moreover, generalized-
invertible), therefore [15], the following condition will be necessary and sufficient: PN(D∗)(I −
− P−(0))g = 0 (according to [44] PN(D∗) can be derived by using the equality PN(D∗) =

= I −DD− ). Since PN(D∗)D = 0 (this follows, for example, from the fact that

PN(D∗)D =
(
I −DD−

)
D = D −DD−D = D −D = 0),

or,what is the same, PN(D∗) (P+(0)− (I − P−(0))) = 0, then PN(D∗)(I−P+(0)) = PN(D∗)P−(0).)
Based on this, we find that PN(D∗)g :

PN(D∗)

0∫
−∞

T (0, τ)P−(τ)f(τ)dτ + PN(D∗)

+∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ =

= PN(D∗)

P 2
−(0)

0∫
−∞

T (0, τ)f(τ)dτ + (I − P+(0))2
+∞∫
0

T (0, τ)f(τ)dτ

 =

= PN(D∗)P−(0)

 0∫
−∞

P−(0)T (0, τ)f(τ)dτ +

+∞∫
0

(I − P+(0))T (0, τ)f(τ)dτ

 =

= PN(D∗)P−(0)g = PN(D∗)(I − P+(0))g = 0.

The condition PN(D∗)g = 0 is necessary and sufficient for the solvability of the equation Dξ = g

or Pξ = (I − Q)x + g, which is the equation (14), assuming that ξ = ξ1 = ξ2. Therefore, it is
proved that the set of bounded solutions (11) is a subset of the set of bounded solutions (13) and,
therefore, they are equal. After all that we get that the condition of the existence of bounded on
the whole axis solutions of equation (7) is equivalent to the solvability of the operator equation

Dξ =

∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ +

0∫
−∞

T (0, τ)P−(τ)f(τ)dτ. (16)
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Since the operator D is generalized-invertible, then the equation (16) has the solutions if and
only if

PN(D∗)


∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ +

0∫
−∞

T (0, τ)P−(τ)f(τ)dτ

 = 0.

If this condition holds, then the equation (16) has a set of solutions

ξ = D−

 ∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ +

0∫
−∞

T (0, τ)P−(τ)f(τ)dτ

+ PN(D)c,

where c is an arbitrary element of Banach space B. Substituting the obtained solutions in (11)
we obtain (10).

Let us prove the property of the generalized Green operator with respect to the jump at 0, by
using the notation

(G[f ])(0 + 0)− (G[f ])(0− 0) = −
∞∫
0

T (0, τ)(I − P+(τ))f(τ)dτ + P+(0)D−g−

−
0∫

−∞

T (0, τ)P−(τ)f(τ)dτ − (I − P−(0))D−g =

= −g + P+(0)D−g −D−g + P−(0)D−g =

= (P+(0)− I + P−(0))D−g − g

= DD−g − g = −
(
I −DD−

)
g =

= −PN(D∗)g = −
+∞∫
−∞

H(t)f(t)dt.

The second property of the theorem is verified by a direct substitution of the Green operator in
the equation (7).

The theorem is proved.
To show the relationship between the proved statement and the results of [18] we formulate a

lemma.
Lemma 1. If the projectors P+(0) and P−(0) commute ([P+(0), P−(0)] = 0), then the

operator D = P+(0) − (I − P−(0)) always has a generalized-inverse, which is equal to the
operator D.

Proof. It is clear that the operator D is bounded. First let us find

D2 = (P+(0)− I + P−(0))(P+(0)− I + P−(0))

= P 2
+(0)− P+(0) + P−(0)P+(0)−

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 3



BOUNDED SOLUTIONS OF EVOLUTION EQUATIONS. I 301

− P+(0) + I − P−(0) + P+(0)P−(0)− P−(0) + P 2
+(0) =

= 2P+(0)P−(0)− P+(0)− P−(0) + I.

Then

D3 = D2D = (2P+(0)P−(0)− P+(0)− P−(0) + I)(P+(0)− I + P−(0)) =

= 2P+(0)P−(0)P+(0)− P+(0)2 − P−(0)P+(0) + P+(0)− 2P+(0)P−(0)+

+ P+(0) + P−(0)− I + 2P+(0)P−(0)2 − P+(0)P−(0)− P−(0)2 + P−(0) =

= −2P+(0)P−(0) + 2P+(0)P−(0) + P+(0) + P−(0)− I = D.

From the obtained equation it follows that DDD = D, which means that D is generalized-
invertible and D = D−.

Thus, Lemma 1 is proved.
Remark 4. The main results of [18] are obtained under the assumption, that projectors P+(0)

and P−(0) commute. From Lemma 1 and the previous theorem we obtain results from [18].
Remark 5. Note that a similar result is considered in Noetherian case in [23]. Since the

Noetherian operator is generalized-invertible, then this result also satisfies the conditions of the
proved theorem.

Nonlinear differential equations in Banach space with an unbounded operator in the
linear part. In the Banach space B let us consider the differential equation

dx(t, ε)

dt
= A(t)x(t, ε) + εZ(x(t, ε), t, ε) + f(t). (17)

We look for a bounded solution x(t, ε) of equation (17), which turns into one of the solutions
x(t, 0) = x0(t, c) of the generating equation at ε = 0.

To find the necessary condition, we assume that the operator function Z(x, t, ε) satisfies the
requirement:

Z(·, ·, ·) ∈ C[‖x− x0‖ ≤ q]×BC(R,B)× C[0, ε0],

where q is a positive constant (continuity around the generating solution).
We show that this problem can be solved by using the operator equation

F (c) =

+∞∫
−∞

H(t)Z(x0(t, c), t, 0)dt = 0. (18)

We will call it the equation for generated elements.
Theorem 3 (necessary condition). Suppose that the homogeneous equation (6) is an exponen-

tial dichotomous on semi-axes R+
0 and R−0 with projector-valued operator functions P+(t) and

P−(t) respectively, and nonlinear equation (17) as a bounded solution x(·, ε), which turns into
one of the solutions of the generated equation (6) with the element c = c0 : x(t, 0) = x0

(
t, c0

)
for ε = 0. Then this element must satisfy the equation for generating elements (18).
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Proof. If equation (17) has a bounded solutions x(t, ε), then, according to the proven
theorem 2, the solvability condition must be satisfied

+∞∫
−∞

H(t)
{
f(t) + εZ(x(t, ε), t, ε)

}
dt = 0. (19)

By using condition (9), we obtain that condition (19) is equivalent to

ε

+∞∫
−∞

H(t)Z(x(t, ε), t, ε)dt = 0.

After simplification by epsilon ε 6= 0 we obtain
+∞∫
−∞

H(t)Z(x(t, ε), t, ε)dt = 0.

For ε→ 0, x(t, ε)→ x0(t, c
0). Finally (by using the continuity of the operator function Z(x, t, ε)),

we obtain

F
(
c0
)

=

+∞∫
−∞

H(t)Z(x0
(
t, c0

)
, t, 0)dt = 0,

that proves the theorem.
To obtain a sufficient condition for the existence of bounded solutions of equation (17) additi-

onally, we assume that operator function Z(x, t, ε) is strongly differentiable in the neighborhood
of the generated solution

Z(·, t, ε) ∈ C1[‖x− x0‖ ≤ q].

Let us show that this problem can be solved with the help of the operator

B0 =

+∞∫
−∞

H(t)A1(t)T (t, 0)P+(0)PN(D)dt : B→ B,

where A1(t) = Z1(v, t, ε)
∣∣
v=x0;ε=0

(derivative in the sense of Frechet).
Theorem 4 (sufficient condition). Suppose that homogeneous equation (6) admits exponenti-

al dichotomy on semi-axes R+
0 and R−0 with projector-valued operator functions P+(t) and P−(t)

respectively, and the equation (7) has bounded solutions. Suppose that the following conditions
for the operator B0 are satisfied:

(i) the operator B0 is generalized-invertible;
(ii) PN(B∗

0 )
PN(D∗)P−(0) = 0.

Then for an arbitrary element c = c0 ∈ B, that satisfies the equation for generating
elements (18), there is at least one weak bounded solution of equation (17).

This solution can be found by an iterative process

yk+1(t, ε) = εG
[
Z
(
x0
(
τ, c0

)
+ yk, τ, ε

)]
(t, 0),
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ck = −B−0

+∞∫
−∞

H(τ) {A1(τ)yk(τ, ε) +R(yk(τ, ε), τ, ε)} dτ,

yk+1(t, ε) = T (t, 0)P+(0)PN(D)ck + yk+1(t, ε),

xk(t, ε) = x0
(
t, c0

)
+ yk(t, ε), k = 0, 1, 2, . . . , y0(t, ε) = 0,

x(t, ε) = lim
k→∞

xk(t, ε).

Proof. In equation (17) we perform the following substitution of variables x(t, ε) =

= x0
(
t, c0

)
+ y(t, ε), where the element c0 satisfies (18). Thus, we derive the equation in

respect to y :

dy(t)

dt
= A(t)y(t) + εZ

(
x0
(
t, c0

)
+ y(t, ε), t, ε

)
. (20)

It is necessary to find a bounded solution

y(t, ε) : y(·, ε) ∈ BC1(R,B), y(t, ·) ∈ C[0, ε0], y(t, 0) = 0.

It is obvious that the solvability of equation (20) is equivalent to the solvability of equation (17).
This condition for y looks as follows:

+∞∫
−∞

H(t)Z(x0
(
t, c0

)
+ y(t, ε), t, ε)dt = 0. (21)

If condition (21) holds, the set of bounded solutions of equation (20) will look like this:

y(t, ε) = T (t, 0)P+(0)PN(D)c+ y(t, ε),

where
y(t, ε) = εG[Z(x0 + y, τ, ε)](t, 0).

Since the operator Z(x, t, ε) is differentiable by Frechet in the neighborhood of the generating
solution, then the idea holds for it

Z
(
x0
(
t, c0

)
+ y(t, ε), t, ε

)
= Z

(
x0
(
t, c0

)
, t, 0

)
+A1(t)y(t, ε) +R(y(t, ε), t, ε),

where A1(t) = Z(1)(v, t, ε)
∣∣
v=x0,ε=0

, and for members R(y, t, ε) of higher-order for y the
equations hold

R(0, t, 0) = 0, R(1)
x (0, t, 0) = 0.

The condition (21) can then be rewritten as follows:

+∞∫
−∞

H(t)
{
Z
(
x0
(
t, c0

)
, t, 0

)
+A1(t)

{
T (t, 0)P+(0)PN(D)c+ y(t, ε)

}}
dt+
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+

+∞∫
−∞

H(t)R(y(t, ε), t, ε)dt = 0. (22)

By using the notation, we rewrite the condition (22) as an operator equation with respect to c :

B0c = −
+∞∫
−∞

H(t) {A1(t)y(t, ε) +R(y(t, ε), t, ε)} dt. (23)

A necessary and sufficient condition for the solvability of the operator equation (23) will be the
condition

PN(B∗
0 )

+∞∫
−∞

H(t) {A1(t)y(t, ε) +R(y(t, ε), t, ε)} dt = 0,

which holds by assuming (ii) of Theorem 4:

PN(B∗
0)H(t) = PN(B∗

0)PN(D∗)P−(0)T (0, t) = 0.

Then the element c can be selected in the form

c = −B−0

+∞∫
−∞

H(t) {A1(t)y(t, ε) +R(y(t, ε), t, ε)} dt.

So we obtain this operator system

y(t, ε) = T (t, 0)P+(0)PN(D)c+ y(t, ε),

c = −B−0

+∞∫
−∞

H(t) {A1(t)y(t, ε) +R(y(t, ε), t, ε)} dt, (24)

y(t, ε) = εG [Z(x0 + y, τ, ε)] (t, 0).

Here we need to introduce the vector u = (y, c, y)T ∈ B×B×B, which belongs to the Cartesian
product B3 (T means a transposition operation). Considering the auxiliary operator

L1g = −B−0

+∞∫
−∞

H(t)A1(t)g(t)dt.

Operator system (24) can be rewritten as follows:

u =


0 T (t, 0)P+(0)PN(D) I

0 0 L1

0 0 0

u+


0

−B−0
∫ +∞

−∞
H(t)R(y, t, ε)dt

εG[Z(x0 + y, τ, ε)](t, 0)

.
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This operator system is equivalent to this one:


I −T (t, 0)P+(0)PN(D) −I

0 I −L1

0 0 I

u =


0

−B−0
∫ +∞

−∞
H(t)R(y, t, ε)dt

εG[Z(x0 + y, τ, ε)](t, 0)

. (25)

Let us enter the notation

M :=


I −T (t, 0)P+(0)PN(D) −I

0 I −L1

0 0 I

, g =


0

−B−0
∫ +∞

−∞
H(t)R(y, t, ε)dt

εG[Z(x0 + y, τ, ε)](t, 0)

.

The operator M has a bounded inverse M−1 :

M−1 =


I T (t, 0)P+(0)PN(D) T (t, 0)P+(0)PN(D)L1 + I

0 I L1

0 0 I

.
We can check that so defined operator satisfies the equality

MM−1 = M−1M = I

is checked by direct substitution.
We prove that this equality determines a bounded operator.
We need to prove, that there is a constant c1 > 0, that for all u ∈ B3 the inequality∥∥M−1u∥∥

B3 ≤ c1‖u‖B3 holds. This inequality is equivalent [43] to the following one (with the
constant c2 > 0) : for arbitrary y, c, y ∈ B∣∣∣∣∣∣M−1(y, c, y)T

∣∣∣∣∣∣
B3 ≤ c2 (|||y|||B + |||c|||B + |||y|||B) ,

M−1(y, c, y)T

(
y + T (t, 0)P+(0)PN(D)c+ T (t, 0)P+(0)PN(D)L1y + y

c+ L1yy

)
.

Let’s now prove the boundedness of the norm of each component of the vector in the Banach
space B :∣∣∣∣∣∣y + T (·, 0)P+(0)PN(D)c+ T (·, 0)P+(0)PN(D)L1y + y

∣∣∣∣∣∣
B
≤

≤ |||y|||B +
∣∣∣∣∣∣T (·, 0)P+(0)PN(D)

∣∣∣∣∣∣
B
|||c|||B +

∣∣∣∣∣∣T (·, 0)P+(0)PN(D)L1y
∣∣∣∣∣∣

B
+

+ |||y|||B ≤ |||y|||B + c1 |||c|||B + c2 |||y|||B ;

Similarly,
|||c+ L1y|||B ≤ |||c|||B + |||L1|||B |||y|||B ≤ |||c|||B + c3 |||y|||B .
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So, ∣∣∣∣∣∣L−1(y, c, y)T
∣∣∣∣∣∣

B3 ≤ |||y|||B + (c1 + 1) |||c|||B + (1 + c2 + c3) |||y|||B ≤

≤ c4 (|||y|||B + |||c|||B + |||y|||B) ,

where c4 = max{1, 1+c1, 1+c2+c3}. From this, we obtain the boundedness of the operator L−1.
Then this operator system (24) we write in the form

u = M−1g = M−1S(ε)u,

where the operator S(ε) is generally nonlinear. Varying the parameter ε and by using boundedness
of the operator M−1, we can derive that the operator M−1S(ε) is nonexpanding. Then it follows
from the principle of contracting mappings [43] that the operator system (24) has the only fixed
point, which defines the bounded solution of (17).

The relationship between the necessary and sufficient conditions. To establish a connection
between the necessary and sufficient conditions of the solvability of the equation (17) let us first
define the auxiliary statement.

Corollary 1. Assume that the operator F (c) has a derivative in the sense of Frechet F (1)(c)

for each element c0 of the Banach space B, which satisfies the equation for the generated
elements (18). If the operator B0 has a bounded inverse, then the equation (18) has the only
bounded for each c0 solution on the whole axis.

Proof.

F (1)(c)[h] =

+∞∫
−∞

H(t) Z(1)(v, t, ε)
∣∣∣
v=x0,ε=0

[
x
(1)
0 (t, s, c)[h]

]
dt.

This representation follows from the theorem of the superposition of differential mappings in
Banach space [45]. Let us find the derivative of the solution x

(1)
0 (t, c) for c. Since x0(t, c) =

= T (t, 0)P+(0)PN(D)c+ (G[f ])(t, 0), then [45]

x
(1)
0 (t, c)[h] =

∂x0(t, c+ αh)

∂α

∣∣∣∣
α=0

=

=
∂

∂α

(
T (t, 0)P+(0)PN(D)c+ αT (t, 0)P+(0)PN(D)h+ (G[f ])(t, 0)

)∣∣∣∣
α=0

=

=
∂

∂α
(T (t, 0)P+(0)PN(D)c)

∣∣∣∣
α=0

+
∂

∂α

(
αT (t, 0)P+(0)PN(D)h

)∣∣∣∣
α=0

+

+
∂

∂α
(G[f ])(t, 0)

∣∣∣∣
α=0

=

= T (t, 0)P+(0)PN(D)h,

and
Z(1)(v, t, ε)

∣∣∣
v=x0,ε=0

= A1(t).
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In the end, we will get

F (1)(c)[h] =

+∞∫
−∞

H(t)A1(t)T (t, 0)P+(0)PN(D)dt[h] = B0[h].

Because F (1)(c) = B0 is invertible, the equation (18) has only one solution, and so the equati-
on (17) has the only one bounded on the whole axis solution.

Remark 6. Since the operator F (1)(c) is invertible, then for the operator B0 conditions (i)
and (ii) of Theorem 4 hold. Then the equation (17) will have a unique bounded solution for
each c0 ∈ B. Thus, the condition of invertibility of F (1)(c) connects necessary and sufficient
conditions. In the finite-dimensional case, the condition of invertibility of F (1)(c) is equivalent
to the condition of the simplicity of the root c0 of the solution for generating constants [15].

Generalized bounded solutions of linear evolutionary equations in locally convex functi-
ons. The analysis of differential equations in locally convex and Frechet spaces is an actual task
even today. Such tasks are widely used by many areas in mathematics, in particular, mathematical
physics.

In this part of the paper, the generalization of e-dichotomy for evolutionary equations in
locally convex spaces with unbounded operator function is considered. Necessary and sufficient
conditions for the existence of the generalized bounded solutions for differential equations of the
first order in Frechet space with an unbounded operator are stated.

Statement of the problem. In the complete locally convex space E weconsider inhomogeneous
differential equation with unbounded operator function A(t) :

dx(t)

dt
= A(t)x+ f(t), t ∈ J, (26)

where for each t ∈ J, A(t) is a linear closed operator function with independent from time t,
dense domain D(A(t)) = D ⊂ E, the vector function f(t) is bounded and independent on J.

Assume [46], that there is bounded operator function U(t), t ∈ J, with domain D(U(t)) = D

such that for each x ∈ D it satisfies the equation
d

dt
U(t)x = A(t)U(t)x, U(0) = I.

Since the set D is dense on E, then U(t) can be extended by continuity to the whole space E.
The operator function U(t) is traditionally called the evolutionary operator, which corresponds
to a homogeneous equation

dx(t)

dt
= A(t)x(t), t ∈ J. (27)

For simplicity, we additionally assume that for each t, there is an evolutionary operator U(t) that
has bounded inverse U−1(t) : E → E (so-called parabolic case).

Definition 4. If f : J → E is continuous, bounded and U(t) is an evolutionary operator,
then the vector function u(t) is called a generalized (weak) solution of the equation (26), if u(t)

is continuous and the following equality holds for an arbitrary t ∈ J :

u(t) = U(t)U−1(τ)u(τ) +

t∫
τ

U(t)U−1(s)f(s)ds, t ≥ τ. (28)
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Definition 5. We say that the equation (27) admits an exponential dichotomy on J, if there
is a projector P ∈ L(E) such that for an arbitrary semi-norm q ∈ SpecE there exist semi-norm
p ∈ SpecE, constants K ≥ 1, α > 0 such that the following inequalities are satisfied:

q(U(t)PU−1(s)ξ) ≤ Ke−α(t−s)p(ξ), t ≥ s,

q(U(t)(I − P )U−1(s)ξ) ≤ Ke−α(s−t)p(ξ), s ≥ t,

where SpecE is the set of all semi-norms, that are defined on E.
This definition, introduced in the papers [38, 47], helps to analyze the question of the existence

of generalized solutions by analogy with how it was done in Banach space.
Theorem 5. Let the homogeneous equation (27) be exponentially-dichotomous on axes R+

and R− with projectors P+ and P− respectively. Then:
(i) equation (26) has generalized bounded solutions if and only if operator equation

P+ξ1 − (I − P−)ξ2 = g, (29)

has solutions; here

g =

0∫
−∞

P−U
−1(τ)f(τ)dτ +

+∞∫
0

(I − P+)U−1(τ)f(τ)dτ ;

(ii) if the solvability conditions of the equation (29) are satisfied, equation (26) has bounded
on the whole axis solutions, which are defined as follows:

x(t, ξ1, ξ2) =



U(t)P+ξ1 −
∫ +∞

t
U(t)P+U

−1(τ)f(τ)dτ+

+

∫ t

0
U(t)(I − P+)U−1(τ)f(τ)dτ, t ≥ 0,

U(t)(I − P−)ξ2 +

∫ t

−∞
U(t)P−U

−1(τ)f(τ)dτ−

−
∫ 0

t
U(t)(I − P−)U−1(τ)f(τ)dτ, t ≤ 0.

(30)

Proof. The solutions of equation (26), bounded on the semi-axes, have the form (30). We
can prove that for example (30) define bounded solutions for a nonnegative real axis t ≥ 0.

From the definition of evolutionary operator for the equation (26) we have
d(U(t)P+ξ1)

dt
= A(t)U(t)P+ξ1.

From the fact that equation (27) is e-dichotomous, it follows that for an arbitrary semi-norm
q ∈ SpecE there exists a semi-norm p ∈ SpecE such that

q(U(t)P+ξ1) ≤ K1e
−αtp(ξ1), t ≥ 0.

Thus, U(t)P+ξ1 defines the set of bounded solutions of the homogeneous equation (27):

d

(
−
∫ +∞

t
U(t)P+U

−1(τ)f(τ)dτ +

∫ t

0
U(t)(I − P+)U−1(τ)f(τ)dτ

)
dt

=
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= U(t)P+U
−1(t)f(t) +A(t)

t∫
0

U(t)P+U
−1(τ)f(τ)dτ+

+ U(t)(I − P−)U−1(t)f(t)−A(t)

+∞∫
t

U(t)P+U
−1(τ)f(τ)dτ =

= f(t) +A(t)

−
+∞∫
t

U(t)P+U
−1(τ)f(τ)dτ +

t∫
0

U(t)(I − P+)U−1(τ)f(τ)dτ

 .

We prove the boundedness of one of the integrals

q

 +∞∫
t

U(t)P+U
−1(τ)f(τ)dτ

 ≤ +∞∫
t

q(U(t)P+U
−1(τ)f(τ))dτ ≤

≤
+∞∫
t

K1e
−α(t−τ)p(f(τ))dτ ≤ sup

τ∈R
p(f(τ))

K1

α
.

The boundedness of the remaining integrals is proved in the same way. In order the equation (30)
to define generalized bounded solutions on the whole axis, it is necessary and sufficient that

x(0+, ξ1, ξ2) = x(0−, ξ1, ξ2).

This condition is equivalent to the solvability of the operator equation

P+ξ1 − (I − P−)ξ2 =

0∫
−∞

U(t)P−U
−1(τ)f(τ)dτ +

+∞∫
0

U(t)(I − P+)U−1(τ)f(τ)dτ. (31)

Under the condition of solvability of this equation, the generalized bounded solutions of equati-
on (26) are derived by substitution in (30) its solutions.

Thus, Theorem 5 is proved.
Let us say a few words about the theorem. Let us consider an auxiliary operator

S := (P+, P− − I)

and vector ξ = (ξ1, ξ2)
T . Then the equation (29) can be written in the form

Sξ = g.

Since the introduced operator S is not necessarily normally solvable (for an arbitrary sequence
gn ∈ R(S) such that gn → g, n→∞, we have that there exist a sequence

zn =
(
z1n, z

2
n

)T : gn = Szn = P+z
1
n + (P− − I)z2n.
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But from this representation and the convergence of gn to the element g in the space F it doesn’t
follow that separately each of the sequences P+z

1
n and (P− − I)z2n are convergent. Therefore,

it can not be guaranteed that g ∈ R(S)) and in the general case a condition P(S∗)g = 0 does
not guarantee the solvability of equation (29). Therefore, equation (29) may not be normally
solvable [48]. Here, the representation (30) gives generalized (weak) bounded solutions only on
semi-axes. To obtain a complete result on the entire axis, the additional conditions are required on
operator P+− I +P−, which will allow obtaining the solvability of equation (29). Therefore, we
will consider the same equation, but in the space of Frechet F. His geometry makes it possible to
introduce the notion of strong generalized-invertible operator [49] and thus clarify the obtained
theorem and formulate the completed result.

Remark 7. Recall that since Frechet space is decomposed into direct algebraic sum of
subspaces, it also decomposes into a topological direct sum of these subspaces [50]. This fact
makes the whole study of the equation (29) simpler in Frechet space than in general topological
spaces, and helps to complete the obtained theorem.

Remark 8. Depending on the which topology of the solutions in zero points the gluing is
made

x (0+, ξ1, ξ2) = x(0−, ξ1, ξ2), (32)

we obtain the different types of solutions of the equivalent operator equation (29). Everything
depends on the space in which we define these solutions. If evolutionary operator U(t) is defined
on the whole space F (for example, when the corresponding operator function A(t) is strongly
continuous |||A||| = supt∈R ‖A(t)‖ <∞), then the solution of the operator equation (31), which is
equivalent to the condition (32) is contained in the initial space F and depending on whether the
right side of the set of values of the operator S (operator S is normally-solvable (R(S) = R(S)))
we have either a general solution or a quasi-solution of the operator equation (31). If the operator
S is not normally-solvable, then when the right side of the operator equation belongs to the
closure of image of the operator S and do not belong to its set of values (g ∈ R(S)/R(S)) we
obtain generalized solutions. In the general case of unbounded operator coefficients, the evolution
operator U(t) can be determined not on the whole space F but the condition of the solvability of
operator equation (31) does not guarantee that g ∈ R(S). Then for the operator equation (31) the
following case is possible, when g ∈ R(S), but g /∈ R(S). Moreover, under these conditions it
can happen that ξ1, ξ2 ∈ F/F, where the space F is obtained by the complement the output space
according to a certain topology. Depending on the way the topology is determined, we will have
different types of solutions of operator equation (31) and accordingly to the equation (29) and the
original equation. Note also that it is possible to obtain the situation when ξ1, ξ2 ∈ D(A(t)) = D

and g ∈ R(S). So we obtain the classical solutions. If ξ1, ξ2 /∈ D(A(t)) = D and g ∈ R(S)

then we obtain the classical solutions [51]; if ξ1, ξ2 ∈ F, g ∈ R(S)/R(S) or ξ1, ξ2 ∈ D(A(t)),

g ∈ R(S)/R(S) we get generalized solutions. If the right-hand side of g /∈ R(S), g ∈ F/R(S)

we get generalized quasi-solutions. If the operator S is normally-solvable, then generalized
quasi-solutions (g ∈ F/R(S)) coincide with quasi-solutions [52].

Theorem 6. Let homogeneous equation (27) admits an exponentially dichotomy on semiaxes
R+ and R− with projectors P+ and P− respectively, and the operator

D = P+ − I + P− : F → F

is strong (X,Y ) generalized-invertible.
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Then:
(i) in order for there to exist generalized bounded on the whole axis solutions (26), it is

necessary and sufficient for the vector function f ∈ BC(R, F ) to satisfy the condition

+∞∫
−∞

H(t)f(t)dt = 0, (33)

where H(t) =
(
I −DD−X,Y

)
P−U

−1(t), D is an extension of operator D on the complement of
the space F ;

(ii) if condition (33) is satisfied, then generalized solutions of the equation (26) will have the
form

x0(t, c) = U(t)P+PN(D)c+ (G[f ])(t) ∀c ∈ F , (34)

where

(G[f ])(t) =



∫ t

0
U(t)U−1(τ)P+f(τ)dτ −

∫ +∞

t
U(t)U−1(τ)(I − P+)f(τ)dτ+

+U(t)P+D
−
X,Y

[∫ ∞
0

U−1(τ)(I − P+)f(τ)dτ+

+

∫ 0

−∞
U−1(τ)P−f(τ)dτ

]
, t ≥ 0,∫ t

−∞
U(t)U−1(τ)P−f(τ)dτ −

∫ 0

t
U(t)U−1(τ)(I − P−)f(τ)dτ+

+U(t)(I − P−)D−X,Y

[∫ ∞
0

U−1(τ)(I − P+)f(τ)dτ+

+

∫ 0

−∞
U−1(τ)P−f(τ)dτ

]
, t ≤ 0,

is generalized Green’s operator, extended on F , D−X,Y is strong (X,Y ) generalized-invertible
to the operator D.

Taking into account the introduced definitions, the ideas of proofs are the same as before.
Corollary 2. Let the homogeneous equation (27) in a complete locally convex space E

is exponentially-dichotomous on the whole axis with projector P. Then for an arbitrary and
bounded on the whole axis and continuous vector function f, there is a unique bounded solution
of equation (26). This solution looks like this

x(t) =

+∞∫
−∞

G(t, τ)f(τ)dτ, (35)
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where

G(t, τ) =

U(t)PU−1(τ), t ≥ τ,

−U(t)(I − P )U−1(τ), t < τ.

Proof. There are subspaces E1 = PE and E2 = (I − P )E that are connected to projectors
P and I − P respectively. The subspace E1 consists of those initial values of solutions of the
equation (27), which remain bounded when t →∞, and subspace E2 from the initial values of
solutions, which remain bounded when t → −∞. Since these subspace intersects only at zero,
then equations (27) have no trivial bounded solutions. Therefore, equation (26) has a unique
solution, which is defined by (35).

Remark 9. In the case when E is a Banach space and the operator function A(t) for each t
is continuous and bounded operator (A(t) ∈ L(E)), we obtain the known results [8].

Remark 10. In the case when E is quasi-complete barreled space and the operator A(t) = A

is regular (A : E → E ), we obtain the results of [46]. Here the condition of dichotomy is
equivalent to the fact that the spectrum of the operator A does not interact with the imaginary
axis. Thus, in this case for spectral projectors P1 = P and P2 = I−P the following representation
holds [46]:

Pk =
1

2π

∫
Гk

Rλdλ,

and, accordingly, the Green’s function G(·) can be written as

G(t) =


etAP1 =

1

2π

∫
Г1

eλtRλdλ, t > 0,

−etAP2 = − 1

2π

∫
Г2

eλtRλdλ, t < 0.

If A is a sectorial operator, we obtain the results of bounded solutions, which are given in [17].
Corollary 3. Let the homogeneous equation (27) is exponentially dichotomous on semi-axes

R+ and R− with projectors P+ and P− respectively and the operator

D = P+ − I + P− : F → F,

has generalized-invertible.
Then:
(i) in order for equations (26) bounded on the whole axis to exist, it is necessary and

sufficient, that the vector function f ∈ BC(R, F ) satisfies the condition
+∞∫
−∞

H(t)f(t)dt = 0, (36)

where H(t) = (I −DD−)P−U
−1(t);

(ii) if condition (36) holds, the bounded solutions of the equation (26) will look as follows:

x0(t, c) = U(t)P+PN(D)c+ (G[f ])(t), c ∈ F, (37)

where

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 3



BOUNDED SOLUTIONS OF EVOLUTION EQUATIONS. I 313

(G[f ])(t) =



∫ t

0
U(t)U−1(τ)P+f(τ)dτ −

∫ +∞

t
U(t)U−1(τ)(I − P+)f(τ)dτ+

+U(t)P+D
−

[∫ ∞
0

U−1(τ)(I − P+)f(τ)dτ+

+

∫ 0

−∞
U−1(τ)P−f(τ)dτ

]
, t ≥ 0,

∫ t

−∞
U(t)U−1(τ)P−f(τ)dτ −

∫ 0

t
U(t)U−1(τ)(I − P−)f(τ)dτ+

+U(t)(I − P−)D−

[∫ ∞
0

U−1(τ)(I − P+)f(τ)dτ+

+

∫ 0

−∞
U−1(τ)P−f(τ)dτ

]
, t ≤ 0,

is generalized Green operator.
Example 1. Consider the equation (26) as a countable system with a diagonal operator

A(t) = diag

tanh t, . . . , tanh t︸ ︷︷ ︸
k

,− tanh t,− tanh t, . . .


in spaces l2loc(C)

(
with a system of semi-norms

∥∥(x1, x2, . . . , xn, . . .)
∥∥2
n,l2loc

=
∑n

i=1
|xi|2, n ∈

∈ N
)
or Kothe space with different weight vectors (see definition, for example, in [46]). Then

equation (26) is exponentially dichotomous on semi-axes with projectors

P+ = diag

0, . . . , 0︸ ︷︷ ︸
k

, 1, 1, . . .

 , P− = diag

1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . .

 ,

respectively.
The evolutionary operator has the form

U(t) = diag


et + e−t

2
, . . . ,

et + e−t

2︸ ︷︷ ︸
k

,
2

et + e−t
,

2

et + e−t
, . . .

 .

Thus, according to the theorem we get that

D = P+ − I + P− = 0, PN(D) = PN(D∗) = I,

and since dim R
[
PN(D∗)P−

]
= k, then operator PN(D∗)P− is finite-dimensional, H(t) =

= diag{Hk(t), 0}, where Hk(t) = diag
{

2/
(
et + e−t

)
, . . . , 2/

(
et + e−t

)}
is (k×k)-dimensional
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matrix. Necessary and sufficient condition of the existence of generalized bounded solutions in
Frechet space will take the following form:

+∞∫
−∞

Hk(t)f(t)dt = 0 ⇔



∫ +∞

−∞

f1(t)

et + e−t
dt = 0,

. . .∫ +∞

−∞

fk(t)

et + e−t
dt = 0.

In contrast to the case of Banach spaces, the topology of this Frechet space is determined by
a set of semi-norms ‖(x1, x2, . . . , xn, . . .)‖2n,l2loc

∑n

i=1
|xi|2, which are not norms, and therefore

such functions do not form a Banach space.
Bounded and almost periodic solutions. In this section, the results of previous researches

are applied for finding bounded and almost periodic solutions of operator-differential equations.
Definition 6 [8]. A continuous vector function f(t) with values in Banach space E, defined

for t ∈ R, is almost periodic if for any ε > 0 there exist such L > 0, that each interval of length
not less than L contains a point τ, for which

‖f(t)− f(t+ τ)‖ < ε.

Consider equation (26) in Banach space with a constant (in general case with unbounded)
operator and almost periodic free term f(t). Let us define ∆(f) “the set that is not almost
periodic” [53]. Recall that the point λ ∈ J is called the point “almost-periodicity” function f,

if there is such a neighborhood of this point that the convolution f ∗ ϕ is an almost periodic
function for any ϕ̂ ∈ C∞0 with the support, which belongs to this neighborhood (ϕ̂ is Fourier
transformation for ϕ). The complement to this set is called “set of almost periodicity”. Let also
c0 be the space of sequences (xn)n∈N, the elements of which are convergent to zero.

The following statement is fair.
Statement 2. If the set ∆(f) is sparse and fulfil one of the following conditions:
(a) the space F does not contain the c0 as a subspace;
(b) vector function f is weakly compact;

then, under the condition of existence of (29), any bounded solution of (26) in the form (30) is
almost periodic.

This statement is a consequence of the Theorem 4.6 and Theorem 5 from [53]. Note that if
there exist a wider class of almost periodic problems, namely, an equation with an asymptotic
almost periodic functions.

Definition 7 [54]. The continuous function x(t) is called asymptotically almost periodic if
it can be given as

x(t) = f(t) + r(t), t ∈ R,

where f is almost periodic, r is a continuous function that satisfies the condition

lim
t→∞

r(t) = 0.
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This definition can be demonstrated on such examples.
Examples. In order to emphasize once again the difference in the study of the questions

concerning the existence of bounded solutions in the Frechet and Banach spaces, we present the
following example. Consider the equation

ẋm(t) + thtxm(t) = e−
t
m , m ∈ N, (38)

in Frechet space, the topology of which is generated by the system of semi-norms:

|x|n = sup
t∈[−n;∞)

|x(t)|, n ≥ 0.

Note that in contrast to Banach space of continuous and bounded on the entire axis functions
BC(R,R) the right-hand side of this equation does not belong to the space BC(R,R), but belongs
to Frechet space defined above. So,

sup
t∈R

∣∣∣e− t
m

∣∣∣ = +∞,

but ∣∣∣e− t
m

∣∣∣
n

= e
n
m < +∞

for each n. This means that the given function is unbounded in Banach space; however, it
is bounded in Frechet space. Frechet space of asymptotically almost periodic functions with
the defined above topology is denoted as AAP (R,R) [54], which means the function e−

t
m ∈

∈ AAP (R,R). Then equation (38) has an asymptotically almost periodic bounded on the whole
axis solution in the following form:

xm(t) =
2cm

et + e−t
+

e(1−
1
m)t(

1− 1

m

)
(et + e−t)

− e−(1+ 1
m)t(

1 +
1

m

)
(et + e−t)

.

Another example of the existence of a bounded solution in Frechet space could be such a
differential equation in the space of generalized functions D′(R) :

x′(t) + tanh t x(t) = δ(t), (39)

where δ is delta-function of Dirac. Equation (39) can be written in the form(
x′, ϕ

)
+ (tanh t x, ϕ) = (δ, ϕ) ∀ϕ ∈ D(R)

or, by definition, (
x,−ϕ′ + tanh tϕ

)
= (δ, ϕ). (40)

According to the theorem of the existence of bounded solutions, we obtain that the equation (39)
can solve if and only if the right-hand side of (39) is orthogonal to bounded solutions of a
homogeneous conjugate equation

−ϕ′(t) + tanh t ϕ(t) = 0.
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It is easy to see that the only bounded solution of the homogeneous equation is zero solution. For
it, we get that

(δ, ϕ) = (δ, 0) = 0,

and so the solvability condition for equation (39) in the generalized sense (40) always holds. The
generalized bounded solution can be given as

x(t) =
θ(t)

cosh t
,

where θ(t) a Heaviside step function. In fact, x(t) is a bounded solution, because

(
x,−ϕ′ + tanh tϕ

)
=

∫
R

x(τ)
(
−ϕ′(τ) + tanh τϕ(τ)

)
dτ = −

+∞∫
0

ϕ′(τ)

cosh τ
dτ+

+∞∫
0

sinh τ

cosh2 τ
ϕ(τ)dτ.

Integrating the first integral by parts gives us the following:

− ϕ(t)

cosh t

∣∣∣∣+∞
0

−
+∞∫
0

sinh τϕ(τ)

cosh2 τ
dτ +

+∞∫
0

sinh τ

cosh2 τ
ϕ(τ)dτ = ϕ(0) = (δ, ϕ).

It is known [55] that x(t) =
θ(t)

cosh t
is called the fundamental solution of the equation (39). By

using this representation, we can see that for an arbitrary bounded on the entire axis generalized
function f(t) ∈ D′(R) bounded on the whole axis solution x(t) of the equation

x′(t) + tanh tx(t) = f(t)

can be found in this form
x(t) =

θ(t)

cosh t
∗ f(t),

where ∗ means the convolution operation [55].
If we consider the Banach space B with the topology generated by the set of semi-norms

B � x→ |ϕ(x)|, ϕ ∈ B∗,

then we obtain a locally convex space, denoted by Bw, which is valid for the following definition.
Definition 8 [54]. The mapping x : R → B is called weakly almost periodic, if for an

arbitrary ϕ ∈ B∗, the mapping ϕ(x(t)) ∈ AP (R,C). The space of weak, almost periodic vector
functions is denoted as WAP (R,B).

Let us consider the equation ẋ(t) = f(t) in Banach space B with the right-side f(t) ∈
∈ AP (R,B). As known from [56], in a finite-dimensional space, the boundedness of the operator∫ t

0
f(s)ds, t ∈ R, from an almost periodic function guarantees that the solution x(t) will be

almost periodic. In the Banach space, there is no such result, but the following fact is well known.
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Theorem 7 [54]. If f(t) ∈ AP (R,B) and

x(t) =

t∫
0

f(s)ds, t ∈ R,

then the boundedness x on R guarantees that x ∈WAP (R,B). For x ∈ AP (R,B), is necessary
and sufficient that Rx = {x(t); t ∈ R} be relatively compact in B.

From this theorem, the above statement and theorem 6 the next result follows.
Corollary 4. Let homogeneous equation (27) be an exponentially dichotomous on semi-axes

R+ and R− with projectors P+ and P− respectively, and the operator

D = P+ − I + P− : F → F

has generalized-inverse, where F is Banach space with a strong topology.
Then:
(i) in order to exist weak almost periodic solutions of equation (26), it is necessary and

sufficient that the vector function f ∈ AP (R, F ) satisfies the condition

+∞∫
−∞

H(t)f(t)dt = 0, (41)

where H(t) = (I −DD−)P−U
−1(t);

(ii) if the condition (41) is satisfied, the weak almost periodic solutions of equation (26) will
look as follows:

x0(t, c) = U(t)P+PN(D)c+ (G[f ])(t), c ∈ F, (42)

where

(G[f ])(t) =



∫ t

0
U(t)U−1(τ)P+f(τ)dτ −

∫ +∞

t
U(t)U−1(τ)(I − P+)f(τ)dτ+

+U(t)P+D
−

[∫ ∞
0

U−1(τ)(I − P+)f(τ)dτ+

+

∫ 0

−∞
U−1(τ)P−f(τ)dτ

]
, t ≥ 0,

∫ t

−∞
U(t)U−1(τ)P−f(τ)dτ −

∫ 0

t
U(t)U−1(τ)(I − P−)f(τ)dτ+

+U(t)(I − P−)D−

[∫ ∞
0

U−1(τ)(I − P+)f(τ)dτ+

+

∫ 0

−∞
U−1(τ)P−f(τ)dτ

]
, t ≤ 0,

is generalized Green operator.
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Proof. The validity of the solvability condition (41) follows from the previous theorem. The
fact that f ∈ AP (R, F ) guarantees that if the condition (41) holds the expression (42) defines the
set of bounded on the entire axis solutions (26). Then, from the previous theorem [54, p. 144],
follows that each solution is weakly almost periodic in Frechet space Fw with a weak topology
(x0(t, c) ∈WAP (R, Fw)).

Remark 11. Note that from the previous theorem (Theorem 5.3 [54, p. 140]) follows that the
solution x0(t, c) belongs to AP (R, F ) if and only if it has a relatively compact set of values in
the space F.
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