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We discuss the use of periodic successive approximations for the study of the periodic boundary-
value problem for a class of linear functional-differential equations. We describe a version involving
trigonometric polynomial interpolation version. The application of the technique is shown for a numerical
example.

Розглянуто використання перiодичних послiдовних наближень для вивчення перiодичної крайо-
вої задачi для класу лiнiйних функцiонально-деференцiальних рiвнянь. Описано версiю, яка має
в собi варiант интерполяцiї тригонометричними полiномами. Застосування методу показано для
числового прикладу.

1. Introduction. Techniques based on parametrization and successive approximations and
belonging to numerical-analytic methods can be effectively used for the various types of boundary
value problems for ordinary and functional differential equations (see, e.g., [1 – 13] and the
references therein). This technique belongs to the few approaches that allow both to investigate
the existence of a solution and to construct it approximately.

Here, we discuss the method of periodic successive approximations for systems of linear
functional differential equations covering systems with multiple argument deviations
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u′i(t) =
n∑
j=1

pij(t)uj(βij(t)) + φi (t), t ∈ [0, T ], i = 1, . . . , n, (1)

and describe its version using trigonometric polynomial interpolation. The argument deviations
βij : [0, T ] → [0, T ], i, j,= 1, . . . , n, in (1) are continuous functions, pij , i, j = 1 . . . , n, and φi,
i = 1, . . . , n, are continuous. System with argument deviations (1) is a particular case of the
system of functional differential equations

u′i(t) =
n∑
j=1

(lijuj)(t) + φi(t), t ∈ [0, T ] , i = 1, . . . , n, (2)

where lij : C([0, T ],R) → C([0, T ],R) are linear bounded operators and φi, i = 1, . . . , n, are
continuous. Systems (1), (2) will be considered under the T-periodic boundary conditions

u(0) = u(T ). (3)

We consider the case where the coefficients and the argument deviations are continuous
functions. Solutions are sought for in the class of continuously differentiable functions. It is easy
to see that system (2) can be rewritten in the form

u′(t) = (lu)(t) + φ(t), t ∈ [0, T ],

where l = col(l1, l2, . . . , ln) with li : C([0, T ],Rn) → C([0, T ],R), i = 1, 2, . . . , n, given by the
formula

liu :=
n∑
j=1

lijuj , i = 1, 2, . . . , n. (4)

For (1), equality (4) means that

(liu)(t) =

n∑
j=1

pij(t)uj(βij(t)), i = 1, 2, . . . , n, t ∈ [0, T ].

The following notation is used in the sequel. For any vector u = col(u1, .., un) ∈ Rn the
absolute value operation is understood componentwise |u| = col (|u1|, . . . , |un|) and the inequality
between vectors are understood also componentwise; C ([0, T ],Rn) is the Banach space of
continuous vector functions [0, T ] → Rn with the standard uniform norm; r(Q) is the maximal
in modulus eigenvalue of a matrix Q; 1n is the unit matrix of dimension n. For any continuous
function u : [a, b]→ Rn and closed interval J ⊆ [0, T ], we put

δJ(u) := max
t∈J

u(t)−min
t∈J

u(t), (5)

where the operators max and min are understood in the componentwise sense:

max
t∈J

u(t) = col
(

max
t∈J

u1(t), . . . ,max
t∈J

un(t)
)
,

etc.
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2. Periodic successive approximations. Following [1, 5, 6], introduce the vector of parameters
z = col (z1, z2, . . . , zn) and formally put

z = u(0).

This leads us to the problem with two-point linear separated conditions at 0 and T :

u′(t) = (lu)(t) + φ(t), t ∈ [0, T ], (6)

u(0) = z, u(T ) = z. (7)

Instead of (1), (3), we will consider the auxiliary problems (6), (7) keeping z as a free parameter.
To study problem (6), (7), introduce the sequence of functions {um(·, z) : m ≥ 0} by setting

um+1(t, z) := z + φ̃(t) +

t∫
0

(lum(·, z))(s)ds−

− t

T

T∫
0

(lum(·, z))(s)ds, t ∈ [0, T ], m ≥ 0, (8)

u0(·, z) := z,

where

φ̃(t) =

t∫
0

φ(s)ds− t

T

T∫
0

φ(s)ds, t ∈ [0, T ].

Here, z = col (z1, z2, . . . , zn) ∈ Rn is considered as a vector of parameters. Let us establish
the convergence of the sequence of functions (8).

Let L = (Lij) be the square matrix with the components equal to the norms of the operators
lij in C([0, T ],R) : Lij = ‖lij‖, i, j = 1, . . . , n,

|(liju)(t)| ≤ Lij max
s∈[0,T ]

|u(s)|, t ∈ [0, T ], (9)

for all u ∈ C([0, T ],R). The matrix is well defined since the operators are bounded. For the
system with argument deviations (1),

Lij ≤ max
t∈[0,T ]

|pij(t)|.

Theorem 1. Assume that the spectral radius of L satisfies the inequality

r(L) <
2

T
. (10)

Then for arbitrary fixed z ∈ Rn the following assertions are valid:

ISSN 1562-3076. Нелiнiйнi коливання, 2020, т. 23, № 4
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1. All the functions of sequence (8) are continuously differentiable and satisfy conditions (7).
2. Sequence (8) converges uniformly in t ∈ [0, T ] as m→∞ to a limit function

u∞(t, z) = lim
m→∞

um (t, z) . (11)

3. The limit function u∞(·, z) satisfies the T-periodic boundary condition (7):

u∞(0, z) = z, u∞(T, z) = z.

4. The limit function (11) is a unique continuously differentiable solution of the Cauchy
problem

u′(t) = (lu)(t) + φ(t)− 1

T
∆(z), t ∈ [0, T ],

x(0) = z,

(12)

where

∆(z) :=

T∫
0

((lu∞(·, z))(s) + φ(s)) ds. (13)

5. The estimate

|u∞(t, z)− um(t, z)| ≤ T

4
Qm(1n −Q)−1δ[0,T ](lz + φ) (14)

holds, where
Q :=

T

2
L (15)

and δ[0,T ] is defined by (5).
Here, l is the operator constructed from lij , i, j = 1, . . . , n, according to (4). In (14), lz

stands for its value on the constant vector z.
Lemma 1. Let Λ ⊂ Rk, k ≥ 1, be a closed bounded set and u : [a, b] × Λ → Rn be a

continuous function. Then, for an arbitrary t ∈ [a, b], the componentwise inequality∣∣∣∣∣∣
t∫

0

(
u(τ, λ)− 1

T

T∫
0

u(s, λ)ds

)
dτ

∣∣∣∣∣∣ ≤
≤ 1

2
α1(t)

(
max

(s,λ)∈[0,T ]×Λ
u(s, λ)− min

(s,p)∈[0,T ]×Λ
u(s, λ)

)
(16)

holds, where

α1(t) = 2t

(
1− t

T

)
, t ∈ [0, T ]. (17)

Proof. For Λ = ∅ (i.e., when u does not depend on the second argument), this statement
coincides with [3] (Lemma 3) (see also [5]). The proof is carried out by analogy to [14] and is
based on the inequality∣∣∣∣∣∣

t∫
0

(
u(τ, λ)− 1

T

T∫
0

u(s, λ)ds

)
dτ

∣∣∣∣∣∣ ≤ 1

T

t∫
0

T∫
t

|u(τ, λ)− u(s, λ)| ds dτ.
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Estimating the difference under the integral as

|u(τ, λ)− u(s, λ)| ≤ max
(t,λ)∈[0,T ]×Λ

u(t, λ)− min
(t,λ)∈[0,T ]×Λ

u(t, λ),

we obtain (16).
Proof of Theorem 1. Let us first establish the estimate

max
t∈[a,b]

|um+1(t, z)− um(t, z)| ≤ T

4
Qmδ[0,T ](lz + φ) (18)

for all m ≥ 0, where Q is given by (15).
Introducing the operator

(Ly)(t) :=

t∫
a

y(s)ds− t− a
b− a

b∫
a

y(s)ds, t ∈ [a, b], (19)

for y ∈ C([0, T ],Rn), we can rewrite (8) as

um+1 = z + L(lum + φ) (20)

for m ≥ 0 (we omit the dependence on z for the sake of brevity). In particular,

u1 = z + L(lu0 + φ) = z + L(lz + φ). (21)

By using notation (19) and the equality maxt∈[0,T ] α1(t) =
1

2
T (see (17)), we get from Lemma 1

that the estimate

|(Lu)(t)| ≤ 1

2
α1(t)δ[0,T ](u) ≤ T

4
δ[0,T ](u), t ∈ [0, T ], (22)

holds for any continuous u. Therefore, by (21),

|u1(t)− u0(t)| = |u1(t)− z| = |(L(lz + φ))(t)| ≤ T

4
δ[0,T ](lz + φ),

which coincides with (18) for m = 0.

Assume that estimate (18) is true for m = m0 ≥ 1. In view the linearity of l, (20) yields

um+1 − um = Ll(um − um−1) (23)

for m ≥ 1. By using (23) with m = m0 + 1 and applying inequality (22), we get

|um0+2(t)− um0+1(t)| = |(Ll(um0+1 − um0))(t)| ≤

≤ T

4
δ[0,T ](l(um0+1 − um0)). (24)

According to the definition (5) of δ[0,T ],

δ[0,T ](lu) ≤ 2 max
t∈[0,T ]

|(lu)(t)|
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for any u and, therefore, (24) gives

|um0+2(t)− um0+1(t)| ≤ T

2
max
t∈[0,T ]

|l(um0+1 − um0)(t)|. (25)

It follows from (9) that the componentwise inequality

|(lu)(t)| ≤ L max
s∈[0,T ]

|u(s)|, t ∈ [0, T ], (26)

holds for an arbitrary u from C([0, T ],Rn). Using (26) in (25) and recalling that estimate (18) is
assumed to be satisfied for m = m0, we get

|um0+2(t)− um0+1(t)| ≤ T

2
max
t∈[0,T ]

|l(um0+1 − um0)(t)| ≤

≤ T

2
L max
t∈[0,T ]

|um0+1(t)− um0(t)| ≤

≤ T

2
L
T

4
Qm0δ[0,T ](lz + φ) =

=
T

4
Qm0+1δ[0,T ](lz + φ),

which means that (18) holds for m = m0 + 1. The uniform convergence of the iterations and
estimate (14) then follow from the inequalities

|um+r(t)− um(t)| ≤
r∑
j=1

|um+j(t)− um+j−1(t)| ≤

≤ T

4

r∑
j=1

Qm+j−1δ[0,T ](lz + φ) =

=
T

4
Qm

r∑
j=1

Qj−1δ[0,T ](lz + φ) ≤

≤ T

4
Qm(1n −Q)−1δ[0,T ](lz + φ)

by passing to the limit as r → ∞. The fact that function (11) is a solution of the Cauchy
problem (12) is established by passing to the limit in (8) as m → ∞ and differentiating the
resulting equation.

3. Determining equations and their solvability. Similarly to [1], it is shown that the
solutions of the original T-periodic boundary value problem (2), (3) are determined by roots of
certain equations for z, for which the solution has form u∞(·, z∗).

Along with system (6), consider the system with a constant forcing term

u′(t) = (lu)(t) + φ(t)− 1

T
µ, t ∈ [0, T ], (27)
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with the initial conditions
u(0) = z, (28)

where µ = col (µ1, . . . , µn) is a control parameter.
Theorem 2. Let z ∈ Rn be fixed. Assume that condition (10) holds. Then, for the solution

of the initial value problem (27), (28) to satisfy the parametrized boundary conditions (7) it is
necessary and sufficient that the control parameter µ in (27) have the form

µ = ∆(z) (29)

with ∆(z) given by (13). Moreover, in this case the solution of (27), (28) coincides with u∞(·, z).
The assertion of Theorem 2 is established similarly to the proof of [15] (Theorem 4.2).
Let us consider the function ∆ : Rn → Rn given by formula (13) for all z, where u∞(·, z) is

the limit function (11). The following statement shows the relation of the limit function u∞(·, z)
to the solution of the original periodic boundary value problem (1), (3).

Theorem 3. Assume that condition (10) holds. Then the limit function u∞(·, z) is a conti-
nuously differentiable solution of the T-periodic boundary value problem (1), (3) if and only if
the vector parameter z satisfies the system of n determining equations

∆(z) = 0. (30)

Proof. It is sufficient to apply Theorem 2 and notice that, for µ of form (29), the differential
equation in (27) coincides with (1) if and only if the parameter z satisfies (30).

The difficulty in the realization of this approach is caused by the fact that the analytic
construction of the limit function u∗(·, z) is possible in exceptional cases only. However, this
obstacle can often be avoided because, as can be shown, it is possible to prove the existence
of a solution of the periodic boundary value problem (2), (3) using the properties of a certain
approximation um(·, z).

For m ≥ 1, let us define the function ∆m : Rn → Rn according to the formula

∆m(z) :=

T∫
0

((lum(·, z))(s) + φ(s)) ds (31)

for arbitrary z ∈ Rn. To investigate the solvability of the problem (1), (3), introduce the m th
approximate determining system

∆m(z) = 0, (32)

where the vector function um(·, z) is defined by the recurrence relation (8).
4. Existence analysis by using successive approximations. Systems (30) and (32) are close

enough to one another for m sufficiently large and one can expect that, under suitable conditions,
the solvability of (30) can be deduced from that of (32). In this way, existence results for the
periodic boundary value problem (1), (3) can be obtained by studying the solutions of the
approximate determining system (32) similarly to [5, 16 – 18].

Note, that unlike (30), them th approximate determining system (32) involves only the function
um : [0, T ]× Rn → Rn known explicitly after m steps of iteration.
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Lemma 2. Under assumption (10), the estimate

|∆(z)−∆m(z)| ≤ T

2
Qm+1(1n −Q)−1δ[0,T ](lz + φ) (33)

holds for any z and m ≥ 0, where Q is given by (15).
Proof. Let us fix an arbitrary z. Using estimate (26), and the linearity of l, equalities (13),

(31), (15) and estimates (14), (26), we get

|∆(z)−∆m(z)| =

∣∣∣∣∣
T∫

0

((lu∞(·, z))(s)− (lum(·, z))(s)) ds

∣∣∣∣∣ ≤

≤
T∫

0

|l (u∞(·, z)− um(·, z)) (s)| ds ≤

≤
T∫

0

L |u∞(s, z)− um(s, z)| ds ≤

≤ LT
2

4
Qm(1n −Q)−1δ[0,T ](lz + φ) =

=
T

2
QQm(1n −Q)−1δ[0,T ](lz + φ),

which yields (33).
According to Theorem 3, the initial values of solutions of problem (2), (3) are determined by

the critical points of the vector field ∆. Let us formulate a statement allowing one to prove the
existence of critical points of ∆ by checking properties of ∆m for some m.

We need a definition from [5]. Let k ≥ 1, V ⊂ Rk. We say that functions g = (gi)
n
i=1 :

Rk → Rn and h = (hi)
n
i=1 : Rk → Rn satisfy the relation g BV h if and only if there exists a

function ν : V → {1, 2, . . . , n} such that gν(z)(z) > hν(z)(z) at every point z ∈ V. In other words,
g BV h means that, at every point z ∈ V, at least one component of g(z) is greater than the
corresponding component of h(z).

Theorem 4. Assume that inequality (10) holds. Let there exist an m ≥ 0 and an open
bounded set Ω ⊂ Rn such that, on the boundary ∂Ω of Ω, the mapping ∆m satisfies the
condition

|∆m|B∂Ω
T

2
Qm+1(1n −Q)−1δ[0,T ](lz + φ) (34)

and, moreover, its Brouwer degree is different from zero:

deg(∆m,Ω, 0) 6= 0.

Then there exists a certain value z∗ ∈ Ω such that the function u∗ = u∞(·, z∗) is a continuously
differentiable solution of the T-periodic boundary value problem (2), (3).
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The proof can be carried by analogy to that of [5] (Theorem 3.28) using Lemma 2. It should
be noted that condition (34) involves the terms which are explicitly known after m iterations. In
particular, by (5), δ[0,T ](lz) is the variation of the value of the right-hand side operator l on the
constant initial approximation. The value lz is computed using the relation (lz)(t) = (l1n)(t) z,

where l1n is the matrix-valued function whose columns are the values of l on the respective
columns of the unit matrix (i. e., l1n = [le1, le2, . . . , len], where ei stands for the unit vector with
1 at the i th position).

5. Iterations with trigonometric interpolation. Obtaining higher-order approximations
according to the above-mentioned scheme requires the analytic computation of iterations involving
parameters. For this purpose, it is convenient to use software allowing one to perform symbolic
calculations. The analytic computation of functions (8) and, as a consequence, the explicit
construction of approximate determining equations (32) may be difficult or impossible if the
expression (lu)(s) + φ(s) in (8) involves complicated terms causing problems with symbolic
integration. In order to facilitate the computation of um(·, z), m ≥ 1, one can use a trigonometric
polynomial version of the iterative scheme (8), in which the results of iteration are replaced by
suitable trigonometric interpolation polynomial before passing to the next step. In this case, the
iterations have the form of trigonometric polynomials. This scheme is described below.

For a given continuous T-periodic function y : [0, T ]→ R and a natural q, denote by Tqy the
trigonometric interpolation polynomial of degree q of the form

a0 + a1 cosωt+ b1 sinωt+ . . .+ aq cos qωt+ bq sin qωt, (35)

where ω =
2π

T
, such that

(Tqy)(ti) = y(ti), i = 0, 1, 2, . . . , 2q, (36)

at the equidistant nodes
ti =

T

2q + 1
i, i = 0, 1, 2, . . . , 2q. (37)

We need some relations between the coefficients and values of the trigonometric polynomi-
al (35). Using the coefficients aj and bj , construct the 2q + 1 dimensional vector

T cq y = col(a0, a1, b1, . . . , aq, bq) (38)

and call it the vector of the coefficients of the trigonometric polynomial (35). Introduce also the
(2q+ 1)-dimensional vector of the values of the trigonometric polynomial (35) at the equidistant
points (37)

T vq y = col
(
Tqy(t0), Tqy(t1), . . . , Tqy(t2q)

)
. (39)

The vector of coefficients and vector of values are in one-to-one correspondence. There exists a
nondegenerate linear transformation realizing the transition from vector (38) to vector (39) and
vice versa. More precisely, for any y, the vectors of values and coefficients of the corresponding
triginometric interpolation polynomial Tq = Tqy are related by the equalities

T vq = MT cq , T cq = GT vq . (40)
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where the elements of the mutually inverse matrices M = (Mij) and G = (Gij) have the form

Mij =



1 if j = 1,

cos

(
(i− 1)j

π

2q + 1

)
if j = 2, 4, . . . , 2q,

sin

(
(i− 1)(j − 1)

π

2q + 1

)
if j = 3, 5, . . . , 2q + 1

for i = 1, 2, . . . , 2q + 1 and

Gij =



1

2q + 1
if i = 1,

2

2q + 1
cos

(
i(j − 1)

π

2q + 1

)
if i = 2, 4, . . . , 2q,

2

2q + 1
sin

(
(i− 1)(j − 1)

π

2q + 1

)
if i = 3, 5, . . . , 2q + 1

(41)

for j = 1, 2, . . . , 2q + 1 (see [1, p. 124]).
We extend componentwise the operation and notation Tqy(t) used in (36) for scalar functions

to continuous vector functions y : [0, T ]→ Rn by putting

Tqy(t) := col
(
Tqy1(t), Tqy2(t), . . . , Tqyn(t)

)
. (42)

The vector of coefficients and vector of values are extended componetwise for the vector tri-
gonometric polynomials (42) in a similar way,

T cq y := col(T cq y1, T cq y2, . . . , T cq yn),

T vq y := col(T vq y1, T vq y2, . . . , T vq yn).
(43)

Let us modify the recurrence relation (8) replacing the term lum(·, z)+φ by the corresponding
trigonometric interpolation polynomial

Tq (lum(·, z) + φ) (t) = Am0 (z) +

q∑
j=1

(Amj (z) cos jωt+Bm
j (z) sin jωt), t ∈ [0, T ], (44)

where the coefficients of the polynomials depend on m and on the parameter z :

Amj (z) = col(Am1j(z), A
m
2j(z), . . . , A

m
nj(z)), j = 0, 1, . . . , q,

Bm
j (z) = col(Bm

1j(z), B
m
2j(z), . . . , B

m
nj(z)), j = 1, . . . , q.

(45)

Substituting expression (44) into (8) instead of lum(·, z) + φ and renaming um(·, z) to uqm(·, z),
we obtain

uqm+1(t, z) = z +

t∫
0

(
Am0 (z) +

q∑
j=1

(Amj (z) cos jωs+Bm
j (z) sin jωs)

)
ds−
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− t

T

T∫
0

(
Am0 (z) +

q∑
j=1

(Amj (z) cos jωs+Bm
j (z) sin jωs)

)
ds,

which, after computation, gives the formula

uqm+1(t, z) = z +
1

ω

q∑
j=1

1

j

(
Amj (z) sin jωt−Bm

j (z) cos jωt
)
, (46)

t ∈ [0, T ], m ≥ 0.

For any q ≥ 1, formula (46) defines a trigonometric vector polynomial uqm+1(·, z) of degree q.
In particular, all the members of the sequence {uqm(·, z) : m ≥ 0} are continuously differentiable
and satisfy conditions (7).

As an approximation to the m th approximate determining system (32) used to check the
solvability of system (30), one can use its trigonometric polynomial version obtained by replacing
u∞(·, z) in (30) by uqm(·, z) :

T∫
0

(
Am0 (z) +

q∑
j=1

(Amj (z) cos jωs+Bm
1 (z) sin jωs

)
ds = 0. (47)

We see that, in fact, (47) means that
Am0 (z) = 0. (48)

Under suitable assumptions ensuring that every term inserted into Tq on the left-hand side of
(44) satisfies the Dini-Lipschitz condition (see, e.g. [19, p. 50]), the corresponding trigonometric
interpolation polynomials (44) constructed over the equidistant nodes (37) uniformly converge
as q grows to ∞.

The coefficients (45) of the trigonometric polynomials can be computed without solving
any linear systems of algebraic equations as follows. At every step m of iteration, we first
componentwise calculate the values of the function

y(t, z) =
(
luqm(·, z)

)
(t) + φ(t) (49)

at nodes (37) and collect them into a vector of type (43):

Y v(z) = col
(
Y v

1 (z), Y v
2 (z), . . . , Y v

n (z)
)
, (50)

where
Y v
i (z) = col

(
yi(t0, z), yi(t1, z), . . . , yi(t2q, z)

)
, i = 1, 2, . . . , n.

Function (49) and vectors (50) both depend on the parameter z. Then we componentwise obtain
the vectors of coefficients Y c

i (z) = T cq yi(·, z),

Y c
i (z) = col

(
Ami0, A

m
i1, B

m
i1 , . . . , A

m
iq , B

m
iq

)
, i = 1, 2, . . . , n,
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of the corresponding trigonometric polynomials Tqyi(·, z) according to (40):

Y c
i (z) = GY v

i (z), i = 1, 2, . . . , n, (51)

where the matrix G has form (41). Thus, at every step m, the scheme of obtaining approximate
solutions consists of:

1. Computation of values (50) at nodes (37).
2. Computation of the coefficients according to formula (51).
3. Finding the roots of the approximate determining equation (48).
4. Substitution of the roots to formula (46).
A rigorous justification of the scheme of periodic successive approximations involving tri-

gonometric interpolation polynomials can be carried out similarly to [20] (Theorem 4.1) in the
case of Lagrange polynomial interpolation (this is not treated here).

6. Example. Let us consider the system of differential equations of form (1) on the interval
[0, T ], T = 1/2,

u′1(t) =
1

2
u2(t) + sin(2πt)u3

( t
2

)
− π

4
sin(4πt),

u′2(t) = u1(t) + u3(t2) +
1

16
cos(4πt2) +

(
π

4
− 1

16

)
cos 4πt,

u′3(t) = u2(t) +
1

2
u3

( t
2

)
+

(
π

4
− 1

16

)
sin(4πt) +

1

32
cos 2πt

(52)

under the T-periodic boundary conditions

u1(0) = u1(T ),

u2(0) = u2(T ), (53)

u3(0) = u3(T ).

This system is a particular case of (1), where the coefficients and argument deviations are

p11(t) = 0, p12(t) =
1

2
, p13(t) = sin 2πt,

p21(t) = 1, p22(t) = 0, p23(t) = 1,

p31(t) = 0, p32(t) = 1, p33(t) =
1

2

and

β12(t) = t, β13(t) = t/2,

β21(t) = t, β23(t) = t2,

β32(t) = t, β33(t) = t/2.
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One can verify that the triplet of functions

u∗1(t) =
1

16
cos(4πt),

u∗2(t) =
1

16
sin(4πt), (54)

u∗3(t) = − 1

16
cos(4πt)

is a solution of the T-periodic boundary value problem (52), (53).
It is clear that, for this problem,

L =


0 1/2 1

1 0 1

0 1 1/2


and, by (15),

Q =


0 1/8 1/4

1/4 0 1/4

1 1/4 1/8

.
Since r(Q) ≈ 0.417 < 1, it follows that condition (10) of Theorem 1 is satisfied.

The sequence of functions (8) for this example is thus uniformly convergent, so we can
proceed to constructing the approxiations.

For m = 0, the approximate determining system (48) has the form

0.25z2 + 0.3077683536z3 = 0,

0.5z3 + 0.5z1 = −0.01792763393,

0.5z2 + 0.25z3 = −0.003125000056

(55)

and the unique solution of (55) is

z1 ≈ −0.044, z2 ≈ −0.01, z3 ≈ 0.0085.

For obtaining higher approximations, in order to facilitate computation according to the
iterative scheme (8), we apply the trigonometric polynomial version in the form (46).

Let us choose q = 2, ω = 2π/T and 5 equidistant points on the interval [0, 1/2] :

t0 = 0, t1 =
1

10
, t2 =

1

5
, t3 =

3

10
, t4 =

2

5
.

Using (46) and applyingMaple 15 for different values of m and solving the approximate determi-
ning system of 5 scalar algebraic equations (47), we find the values of introduced parameters z1,

z2 and z3, which are presented in Table 1.
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Табл. 1. The approximate initial values at several steps of iteration

m z1 z2 z3

0 −0.044404334102 −0.01052453669 0.008549073165

1 0.06082366111 −0.00390838963 −0.06023572474

2 0.06226807361 −0.00042084810 −0.06205671658

3 0.06248688086 −0.1639537 · 10−4 −0.06249209425

4 0.06249988743 −4.5938 · 10−7 −0.06250010385

5 0.06249998782 1.837 · 10−8 −0.06249990547

6 0.06250000014 −1.63 · 10−9 −0.06250000510

∞ 0.0625 0 −0.0625

(a) First component. (b) Second component. (c) Third component.

Fig. 1. The sixth approximation for problem (52), (53).

The graphs of the exact solution (54) and its sixth approximation are shown on Fig. 1. The
absolute error of the sixth approximation is shown on Fig. 2.

As is seen from figures, the graph of the exact solution practically coincides with those of its
trigonometric approximations. For example, the errors of the first and sixth approximations (i.e.,
the uniform deviation of the first trigonometric approximation from the exact solution) are

|u∗1(t)− u2
11(t)| ≤ 0.18 · 10−2, |u∗2(t)− u2

12(t)| ≤ 0.4 · 10−2,

|u∗3(t)− u2
13(t)| ≤ 0.24 · 10−2, |u∗1(t)− u2

61(t)| ≤ 6 · 10−10,

|u∗2(t)− u2
62(t)| ≤ 2 · 10−9, |u∗3(t)− u2

63(t)| ≤ 5.5 · 10−9,

where

u2
61(t) = 3.5 · 10−10 + 0.06249999981 cos(4πt)− 1.14 · 10−10 sin(4πt)
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(a) First component. (b) Second component. (c) Third component.

Fig. 2. The error of the sixth approximation for (52), (53).

− 2.163859143 · 10−11 cos(8πt) + 2.7410−11 sin(8πt),

u2
62(t) = −1.4964 · 10−9 − 1.361 · 10−10 cos(4πt) + 0.06249999971 sin(4πt)

+ 2.51 · 10−12 cos(8πt)− 4.5770775 · 10−11 sin(8πt),

u2
63(t) = −4.75 · 10−9 − 0.06250000033 cos(4πt)− 2.4457 · 10−10 sin(4πt)

− 2.2981539 · 10−11 cos(8πt)− 2.4457 · 10−10 sin(8πt).
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