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We establish averaging results for semilinear functional-differential equations with infinite delay on an
abstract phase space of Banach space valued functions defined axiomatically, where the unbounded linear
part generates a non-compact semigroup and the nonlinear part satisfies a condition with respect to the
second argument which is weaker than the usual Lipschitz condition. As a preliminary result, using the
technique of the theory of condensing maps, a theorem on the existence and uniqueness of mild solutions
is established for such equations.

Встановлено результати щодо усереднення напiвлiнiйних диференцiально-функцiональних рiвнянь
iз нескiнченним запiзненням у абстрактному фазовому просторi функцiй зi значеннями в банахо-
вому просторi, визначених аксiоматично у випадку, коли необмежена лiнiйна частина породжує
некомпактну пiвгрупу, а нелiнiйна частина задовольняє умову вiдносно другого аргумента бiльш
слабку, нiж звичайна умова Лiпшiца. З використанням технiки ущiльнюючих вiдображень отрима-
но теорему iснування та єдиностi слабких розв’язкiв цих рiвнянь.

1. Introduction. The averaging principle finds its origins in problems of celestial mechanics
(see [1] and the introduction in [2] for the history of the theory of averaging). It consists in
replacing the non autonomous right hand side of an equation with small parameter by its average
in time. An important step in its history started with the works of Bogoliubov –Mitropolskii
[3] and Krylov –Bogoliubov [4], where a rigorous justification of this principle was given for
finite dimensional nonlinear systems in standard form. Later this principle was justified for several
kinds of finite and infinite dimensional differential equations and functional differential equations
with finite delay (see [1, 2, 5 – 13] and the references therein), and it became one of the most
efficient methods for the study of systems with a small parameter.

We aim in this paper to give an approach which allows to establish the averaging principle
for semilinear functional differential equations with infinite delay on an abstract phase space of a
Banach space valued functions defined axiomatically, where the unbounded linear part generates
a non-compact semi-group and the nonlinear part satisfies a condition with respect to the second
argument which is weaker than the usual Lipschitz condition.
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Let us first explain our approach. Let E be a Banach space. Let us consider the following
semilinear functional differential equations with infinite delay in E, and with a small positive
parameter ε, of the (normal) formz

′(τ) = ε [Az(τ) + f(τ, zτ )] , τ ≥ 0,

z0 = ψ,
(1.1)

where A : D(A) ⊂ E → E, is a linear operator, f : [0,+∞[×B → E, is a given function and
ψ ∈ B, where B is a linear topological space of functions mapping ]−∞, 0] into E. For any z :
]−∞,+∞[→ E and for any τ ≥ 0, the function zτ is defined by, zτ (θ) = z(τ+θ), −∞ < θ ≤ 0.

We are not interested here in specifying the meaning of a solution to (1.1), all that is required:
(1) if w : ]−∞, +∞[→ E is continuous on [0,+∞[ and w0 ∈ B, then, for every τ ∈ [0,+∞[,

we have wτ ∈ B ;
(2) If z : ]−∞, +∞[→ E is a solution to (1.1), then z |[0,+∞[ is continuous and z satisfi-

es (1.1) in some sens.
Parallel to the problem (1.1), we consider the averaged problem:z

′(τ) = ε
[
Az(τ) + f0(zτ )

]
, τ ≥ 0,

z0 = ψ,
(1.2)

where f0 : B → E, is such that for all u ∈ B

f0(u) = lim
t→+∞

1

t

t∫
0

f(s, u)ds. (1.3)

Let D(ψ) be a set defined by

D(ψ) = {ẑ : [0,+∞[→ E, ẑ is continuous, and ẑ(0) = ψ(0)} .

For every ẑ ∈ D(ψ), define the function ẑ[ψ] : ]−∞,+∞[→ E by

ẑ[ψ](τ) =

ψ(τ), −∞ < τ ≤ 0,

ẑ(τ), 0 ≤ τ < +∞.
(1.4)

We have for every τ ≥ 0, z[ψ]τ ∈ B, and for every θ ≤ 0,

ẑ[ψ]τ (θ) =

ψ(τ + θ), if −∞ < θ ≤ −τ,

ẑ(τ + θ), if − τ ≤ θ ≤ 0.
(1.5)

It is clear that, if z is a solution to the problem (1.1), then z has the form, z = ẑ[ψ], for some
ẑ ∈ D(ψ) solution to the problemẑ

′(τ) = ε
[
Aẑ(τ) + f (τ, ẑ[ψ]τ )

]
, τ ≥ 0,

ẑ[ψ]0 = ψ.
(1.6)
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It results that the problem (1.1) can be written equivalently as (1.6). Notice that, the expression
ẑ[ψ]0 = ψ, means that ẑ(0) = ψ(0).

Now, suppose that the function ψ satisfies

ψ
( .
ε

)
∈ B for every ε > 0. (1.7)

In the problem (1.6), let us consider the change of variable
θ =

θ′

ε
, τ =

t

ε
, θ ≤ 0, τ ≥ 0,

ψ

(
θ′

ε

)
= ϕ(θ′), ẑ

(
t

ε

)
= y(t).

(1.8)

It is clear that for every ε > 0, the quantity θ′ = θε varies in ]−∞, 0] when θ varies in ]−∞, 0].

Further, by (1.7) and (1.8) the function ϕ ∈ B and ẑ(0) = ψ(0) = y(0) = ϕ(0). We claim that,
ẑ[ψ]τ (θ) = y[ϕ]t(θ

′).

Indeed, we have
ẑ[ψ]τ (θ) = ẑ[ψ]t/ε(θ) =

=

ψ(θ + t/ε), if −∞ < θ ≤ −t/ε,

ẑ(θ + t/ε), if −t/ε ≤ θ ≤ 0,
=

=


ψ

(
1

ε
(θε+ t)

)
, if −∞ < θε ≤ −t,

ẑ

(
1

ε
(θε+ t)

)
, if −t ≤ θε ≤ 0,

=

=

ϕ(θε+ t), if −∞ < θε ≤ −t,

y(θε+ t), if −t ≤ θε ≤ 0,
=

=

ϕ(θ′ + t), if −∞ < θ′ ≤ −t,

y(θ′ + t), if − t ≤ θ′ ≤ 0,
= y[ϕ]t(θ

′).

This proves that our claim is true. Thus, under the change of variable given by (1.8), Problem (1.6)
(consequently Problem (1.1)) takes the formy

′(t) = Ay(t) + f

(
t

ε
, y[ϕ]t

)
,

y[ϕ]0 = ϕ.

(1.9)

Now, setting in (1.9), x(t) = y[ϕ](t), t ∈]−∞,+∞[, we deduce that the problem (1.1) can be
written equivalently as: x

′(t) = Ax(t) + f

(
t

ε
, xt

)
, t ≥ 0,

x0 = ϕ.

(1.10)
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Similarly, under the condition (1.7), the problem (1.2) can be written equivalently asx
′(t) = Ax(t) + f0(xt), t ≥ 0,

x0 = ϕ.

Therefore, we conclude that under the additional condition (1.7) on the phase space B, to establish
the averaging principle for the problem (1.1) in the case of finite time interval one has only to
show that for any fixed time T > 0, the (unique) solution to the problemx

′(t) = Ax(t) + f
(
t
ε , xt

)
, t ∈ [0, T ],

x0 = ϕ,

is approximated (in some sens) by the (unique) solution of the problemx
′(t) = Ax(t) + f0(xt), t ∈ [0, T ],

x0 = ϕ,

as ε→ 0+.

If we consider the problem (1.1) but with finite delay, where the initial condition is written
as z0 = ψ, with ψ ∈ C([−r, 0], E), for some 0 < r < ∞, then using the same reasoning as
above and the change of variable (1.8), we can define equivalently a problem similar to the
problem (1.10) but with the initial condition x(θ) = ϕ(θ), θ ∈ [−εr, 0], that is, the effects of the
delay is negligible and approaches zero in ε, as a consequence, the function x(θ+t), θ ∈ [−εr, 0],

can be approximated by x(t) as ε is small enough. This fact was used as a basic idea in many
works (see [10] (Section 1) for more details). In our case such approach can not be used, because
when θ varies in ]−∞, 0], the quantity θε varies in ]−∞, 0], for every ε > 0. To guarantee that
the problem (1.1) and (1.10) are equivalent we have added a condition given by (1.7). Of course,
such a condition is not satisfied for any choice of a phase space B introduced by Hale and Kato
[14], as shows this simple example:

For γ > 0, take B = Cγ , where Cγ is the space of continuous functions ψ : ]−∞, 0] → R
such that eγθψ(θ) has a limit in R as θ → −∞, endowed with the norm,

‖ψ‖B = sup
{
eγθ|ψ(θ)| : θ ∈]−∞, 0]

}
.

It is clear that the function ψ(θ) = e−γθ belongs to B, but for every 0 < ε < 1,∥∥∥ψ( .
ε

)∥∥∥
B

= sup
θ∈]−∞,0]

eγθe−γ(θ/ε) = sup
θ∈]−∞,0]

eγθ(1−1/ε) = +∞.

The paper is organized as follows. In Section 2 we recall some necessary preliminaries. In
Section 3 we establish a theorem (Theorem 2) on the existence and uniqueness of mild solutions
for semilinear functional differential equations in a Banach space with infinite delay on an abstract
phase space B, where the unbounded linear part generates A a non-compact semi-group and the
nonlinear part f, satisfies a condition with respect to the second argument which is weaker than
the usual Lipschitz condition.
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In Section 4, we consider a semi-linear functional differential equation in E with a small
positive parameter ε, of the formx

′(t) = Ax(t) + f

(
t

ε
, xt

)
, t ∈ [0, T ],

x0 = ϕ.

(Pε)

Parallel to the problem (Pε ), ε > 0, we consider the averaged problem:x
′(t) = Ax(t) + f0(xt), t ∈ [0, T ],

x0 = ϕ,
(P0)

where A generates a strongly continuous semigroup (S(t))t≥0, and the function f0 : B → E, is
such that, for all u ∈ B and t1, t2 ∈ [0, T ] with 0 ≤ t1 ≤ t2 ≤ t1 + ∆0, for some ∆0 > 0,

lim
ε→0+

t2∫
t1

S(t2 − θ)
[
f

(
θ

ε
, u

)
− f0(u)

]
dθ = 0. (1.11)

By strengthening the conditions on f and, adding axioms on the phase space B, we establish
averaging result for the problem (Pε)ε>0 (Theorem 3). Condition (1.11) is inspired from [15].

(3) Finally, in Section 5 we replace (1.11) by a more natural hypothesis, then we establish the
averaging principle in the traditional form (Theorem 4).

The notion of measure of non-compactness is used only in Section 3, where an existence result
is established. For the proofs of our averaging results, we make direct estimations by generalizing
the approach given in [15] to our case.

2. Preliminaries. Let E be a Banach space and (Y,≤) a partially ordered set. Denote by
P(E) the collection of all nonempty bounded subsets of E .

A map Ψ : P(E)→ Y is called a measure of non-compactness in E if

Ψ(Ω) = Ψ(coΩ)

for every Ω ∈ P(E), where coΩ denotes the closed convex hull of Ω.

The measure Ψ is called
(i) nonsingular if for every a ∈ E , Ω ∈ P(E), Ψ ({a} ∪ Ω)= Ψ(Ω) ;
(ii) monotone, if Ω0, Ω1 ∈ P(E) and Ω0 ⊆ Ω1 imply Ψ(Ω0) ≤ Ψ(Ω1) .

If Y is a cone in a Banach space, we say that
(iii) Ψ is regular if Ψ(Ω) = 0 is equivalent to the relative compactness of the set Ω.

Oneofmost important example of ameasure of non-compactness possessing all these properti-
es is the Hausdorff measure of non-compactness, defined by

χ(Ω) = inf {ε > 0 : Ω has a finite ε-net in E} .

Recall that, in a metric space M, a finite ε-net of a subset Ω is a finite set (xi) of points of M
such that Ω ⊂ ∪iBi, where Bi denotes the open ball of radius ε centered on xi.
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Let Ψ be a measure of non-compactness in E . A multimap G : Z → E , where Z ⊂ E is a
closed subset, is called Ψ-condensing if for every bounded set Ω ⊂ Z, the relation Ψ(G(Ω)) ≥
≥ Ψ(Ω) implies the relative compactness of Ω. For more details, see, e.g., [8, 16, 17].

For the existence result, we will need the following fixed point theorem (see [16]
(Theorem 1.5.11) and its generalization in the Subsection 1.5.12).

Theorem 1. If G is a closed convex subset of a Banach space E , and Γ : G → G is a
continuous Ψ-condensing map, where Ψ is a nonsingular measure of non-compactness in E ,
then Γ has at least one fixed point.

3. Existence results. Let σ be a real number and T > 0 be a fixed time. By C([σ, σ+T ]; E)

we denote the space of continuous functions defined on [σ, σ+ T ] with values in a Banach space
(E, ‖.‖), endowedwith the uniform convergence norm. For any function z : ]−∞, σ+T ]→ E and
for every t ∈ [σ, σ+T ], zt represents the function from ]−∞, 0] into E defined by zt(θ) = z(t+θ),

−∞ < θ ≤ 0. Let B be a linear topological space of functions mapping ]−∞, 0] into E endowed
with a seminorm ‖.‖B and, satisfying the following axioms:

if z : ]−∞, σ+T ]→ E is continuous on [σ, σ+T ] and zσ ∈ B, then, for every t ∈ [σ, σ+T ],

we have
(B1) zt ∈ B ;
(B2) ‖zt‖B ≤ K(t−σ) supσ≤s≤t ‖z(s)‖+N(t−σ) ‖zσ‖B , where K,N : [0,+∞[−→ [0,+∞[,

are independent of z, K is positive and continuous and, N is locally bounded;
(B3) the function t 7→ zt is continuous.
Such a space B was introduced by Hale and Kato [14] and has been considered as a phase

space in the theory of functional differential equations with infinite delay.
Let us denote by the symbol C(]−∞, σ + T ];E) the linear topological space consisting of

functions z : ]−∞, σ + T ] → E such that zσ ∈ B and the restriction z |[σ, σ+T ] is continuous,
endowed with a seminorm

‖z‖C = ‖zσ‖B +
∥∥z |[σ, σ+T ]∥∥C([σ,σ+T ];E)

.

Let us consider the following semilinear functional differential equation in E of the formx
′(t) = Ax(t) + f(t, xt), t ∈ [σ, σ + T ],

xσ = ϕ,
(3.1)

where
(A) A is the generator of a C0 semigroup (S(t))t≥0 on E.

The function f is acting from [σ, σ + T ]× B to E and satisfies
(f1) for all u ∈ B, the mapping t→ f(t, u) is measurable;
(f2) for all (u, v) ∈ B × B,

‖f(t, u)− f(t, v)‖ ≤ L(t, ‖u− v‖B), a.e. t ∈ [σ, σ + T ],

where L : [σ, σ + T ]× [0,+∞[→ [0,+∞[ is a given mapping such that
(i) L(·, θ) is locally integrable for each θ ∈ [0,+∞[ and for a.e. t ∈ [σ, σ + T ], L(t, ·) is

continuous, monotone nondecreasing and, L(t, 0) = 0 ;
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(ii) for every nonnegative continuous function h : [σ, σ+T ]→ [0,+∞[ and for every constant
ζ, the following implication holds true:∀t ∈ [σ, σ + T ], h(t) ≤ ζ

t∫
σ

L
(
s, h(s)

)
ds

⇒ h ≡ 0; (3.2)

(f3) there exists a function α ∈ L1
(
[σ, σ + T ],R+

)
such that, for all u ∈ B,

‖f(t, u)‖ ≤ α(t)(1 + ‖u‖B) a.e. t ∈ [σ, σ + T ].

Remark 1. Concrete examples of such a function L can be found, e.g., [18 – 20].
Remark 2. Let L : [a, b]× [0,+∞[→ [0,+∞[ be a mapping satisfying Hypotheses (i) and (ii)

of (f2). According to [19] (Lemma 2.2), if a nonnegative monotone nondecreasing function h :
[a, b]→ [0,+∞[ such that h(a) = 0 satisfies (3.2) for some constant ζ > 0, then h(t) = 0 for all
t ∈ [a, b].

Definition 1. We say that z ∈ C( ]−∞, σ + T ];E) is a mild solution to the problem (3.1) if
zσ = ϕ and,

z(t) = S(t− σ)ϕ(0) +

t∫
σ

S(t− s)f(s, zs) ds for σ ≤ t ≤ σ + T.

We can now state our preliminary result.
Theorem 2. Assume that the phase space B satisfies the axioms (B1) – (B3). Under

Hypotheses (A) and (f1) – (f3) the problem (3.1) has a unique mild solution in C( ]−∞, σ+T ];E).

Remark 3. Theorem 2 is a deterministic version of [21] (Theorem 3.2), its proof may be
deduced from the latter’s proof, except some modifications. As this is not the same context (the
conditions on the phase space B are not exactly the same) and for easier reading, we prefer to give
the proof. Instead of observing the solution as a limit of a sequence of approximating solutions
constructed via Tonelli’s scheme (the approach that was used in [21]), here, for the proof of
Theorem 2, the mild solutions are observed as a fixed points of an integral operator which is
condensing with respect to a measure of non-compactness with good properties. Then, to end the
proof, a fixed point theorem for such class of operators (Theorem 1) is invoked.

Another reason for which we prefer to give the proof of Theorem 2 is due to the fact that in
the literature, we did not find existence results for the problem (3.1) with a general non Lipschitz
condition given by (f2).

Before giving the proof of Theorem 2, we prove some auxiliary results. We will use the same
notation as in [22].

Let t ∈ [σ, σ + T ]. In the space C([σ, t], E), let us define the set

D(ϕ, t) =
{
x ∈ C([σ, t];E), x(σ) = ϕ(0)

}
. (3.3)

It is clear that D(ϕ, t) is a closed convex subset in C([σ, t];E).
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For every x ∈ D(ϕ, σ + T ), let us define the function x[ϕ] ∈ C( ]−∞, σ + T ];E) by

x[ϕ](t) =

ϕ(t− σ), −∞ < t < σ,

x(t), σ ≤ t ≤ σ + T.
(3.4)

Then

x[ϕ]t(θ) =

ϕ(t− σ + θ), if −∞ < θ < σ − t,

x(t+ θ), if σ − t ≤ θ ≤ 0.
(3.5)

The function x[ϕ] | [σ,σ+T ] = x(·) is continuous and x[ϕ]σ = ϕ, hence by Axiom (B1), x[ϕ]t ∈ B
for all t ∈ [σ, σ + T ].

Let us denote by Φ the mapping which, with every element x ∈ D(ϕ, σ + T ) associates the
element Φ(x) ∈ D(ϕ, σ + T ), given by

S(t− σ)ϕ(0) +

t∫
σ

S(t− s)f(s, x[ϕ]s) ds, σ ≤ t ≤ σ + T.

Remark 4. It is clear that each mild solution to (3.1) has the form x[ϕ](.), for some a fixed
point x ∈ D(ϕ, σ + T ) of Φ. Thus, for the proof of Theorem 2, it is enough to prove that the
mapping Φ has a unique fixed point in D(ϕ, σ + T ).

Remark 5. Since (S(t))t≥0 is a C0 -semigroup, there exists, for each t ∈ [0, T ], a constant
Mt > 0 such that

sup
0≤s≤t

‖S(s)‖ ≤Mt. (3.6)

See, e.g., [23] (Theorem 2.2).
Lemma 1. Let L : [σ, σ+ T ]× [0,+∞[→ [0,+∞[ be a mapping satisfying Hypotheses (i) –

(ii) of (f2). Let (vn)n be a sequence of positive number such that vn → 0 as n → ∞. Then for
any µ ≥ 0, we have

T∫
σ

L(s, µ vn) ds→ 0, as n→∞.

The result follows immediately from the Lebesgue dominated convergence theorem.
Lemma 2. The map Φ : D(ϕ, σ + T )→ D(ϕ, σ + T ) is continuous.
Proof. Let

λK = sup
0≤s≤T

K(s), (3.7)

where the function K is introduced in Axiom (B2). It is clear that λk > 0.

Let (xn)n be a sequence of D(ϕ, σ + T ), such that xn → x as n → ∞. Using Axiom (B2)
and the fact that the function L(s, ·) is monotone nondecreasing a.e s ∈ [σ, σ + T ], we get

‖Φ(x)(t)− Φ(xn)(t)‖ ≤Mt

t∫
σ

‖f(s, x[ϕ]s)− f(s, xn[ϕ]s)‖ ds ≤
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≤Mt

t∫
σ

L

(
s,K(s− σ) sup

σ≤τ≤s
‖x(τ)− xn(τ)‖

)
ds ≤

≤MT

T∫
σ

L
(
s, λK‖x− xn‖C([σ,σ+T ],E)

)
ds,

where MT is from (3.6). It remains to apply Lemma 1.
Let Λ be a subset of C([σ, σ+T ];E). For any t ∈ [σ, σ+T ], by Λ|t we denote the restrictions

to [σ, t] of elements of Λ. It is clear that Λ|t is a subset of C([σ, t];E).

Let T [σ, σ + T ] denote the partially ordered linear space of all real monotone nondecreasing
functions defined on [σ, σ + T ]. Let us consider a measure of non-compactness ΨC([σ,σ+T ];E)

defined on bounded subsets of C([σ, σ + T ];E) and with values in T [σ, σ + T ], given by

ΨC([σ,σ+T ];E)(Λ)(t) = inf
{
ε > 0; Λ|t has a finite ε-net in C([σ, t];E)

}
.

Now on bounded subsets of D(ϕ, σ + T ), let us define a new measure of non-compactness ΨD

with values in T [σ, σ + T ], given by:

ΨD(Λ)(t) = inf
{
ε > 0; Λ|t has a finite ε- net in D(ϕ, t)

}
.

Remark 6. Note that for each t ∈ [σ, σ+T ], the set D(ϕ, t) endowed with the metric dD(ϕ, t),

given by,
dD(ϕ, t)(x, y) = ‖x− y‖C([σ,t];E),

is a (complete) metric space.
Remark 7. It is obvious that a subset Λ of C([σ, σ + T ];E) is relatively compact if and

only if
ΨC([σ,σ+T ];E)(Λ)(T ) = 0.

Remark 8. One can easily show that the restriction of ΨC([σ,σ+T ];E) on bounded subsets of
D(ϕ, σ + T ) satisfies for each t ∈ [σ, σ + T ] and for any bounded set Λ ⊂ D(ϕ, σ + T ), the
relation

ΨC([σ,σ+T ];E) (Λ)(t) ≤ ΨD(Λ)(t) ≤ 2ΨC([σ,σ+T ];E) (Λ)(t). (3.8)

Lemma 3. Let Λ be a bounded subset of D(ϕ, σ+T ). Assume that Hypotheses (A), (f1) – (f3)
and (B1) – (B3) are satisfied. Then for every t ∈ [σ, σ + T ], we have

ΨD(Φ ◦ Λ)(t) ≤MT

t∫
σ

L(s,K(s) ΨD(Λ)(s))ds,

where MT is from (3.6) and K(·) from Axiom (B2).
Proof. Lemma 3 is a deterministic version of [21] (Lemma 3.4) (see Remark 3).
Let Λ be a bounded subset of D(ϕ, σ + T ).
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Let ε > 0. As the function t 7→ ΨD(Λ)(t) is nondecreasing and bounded, it admits at most a
finite number of points σ ≤ t1 ≤ . . . ≤ tn ≤ σ + T for which∣∣ΨD(Λ)(ti + 0)−ΨD(Λ)(ti − 0)

∣∣ ≥ ε, i = 1, . . . , n.

Remove these points with their disjoint δ1 -neighborhoods from the segment [σ, σ+T ]. If t1 6= σ,

remove also the segment [σ, σ+ δ1[ from the segment [σ, σ+ T ]. Using points βj , j = 1, . . . ,m,

divide the remaining part into intervals on which the increment of the function ΨD(Λ)(·) is
smaller than ε, i.e.,

sup
s,t∈[βj−1,βj ]

∣∣ΨD(Λ)(s)−ΨD(Λ)(t)
∣∣ < ε, j = 2, . . . ,m. (3.9)

Now, in order to be able to construct a net of continuous functions, surround the points βj ,
j = 1, . . . ,m, by δ2 -neighborhoods and consider the family R in D(ϕ, σ+T ) obtained by taking
all continuous functions which coincide on each [βj−1 + δ2, βj − δ2], 2 ≤ j ≤ m, with some
element of a finite (ΨD(Λ)(βj) + ε)-net of Λ in D(ϕ, βj) and which have affine trajectories on
the complementary segments. By construction, the elements of R are affine on [σ, σ + δ1], to
stay in D(ϕ, σ + T ), we choose them equal to ϕ(0) at t = σ.

The set R in D(ϕ, σ + T ) is finite. Denote by zk, k = 1, . . . , p its elements. For each
j = 1, . . . ,m, let

(
zjl
)
1≤l≤qj

be a (ΨD(Λ)(βj) + ε)-net of Λ |βj in D(ϕ, βj). Consider a fixed
x ∈ Λ. Then, one can find an element zjl such that,

dD(ϕ,βj)

(
x, zjl

)
:=
∥∥∥x− zjl ∥∥∥

C([σ,βj ];E)
≤ ΨD(Λ)(βj) + ε. (3.10)

By construction, for each j ∈ {1, . . . ,m} and fixed l ∈ {1, . . . , qj}, one can find an element zk
of R, such that zjl | [βj−1+δ2,βj−δ2] = zk | [βj−1+δ2,βj−δ2] . From (3.10) and (3.9), it results that for
every t ∈ [βj−1 + δ2, βj − δ2]

‖x(t)− zk(t)‖ =
∥∥∥x(t)− zjl (t)

∥∥∥ ≤ dD(ϕ,βj)

(
x, zjl

)
≤

≤ ΨD(Λ)(βj) + ε ≤ ΨD(Λ)(t) + 2ε. (3.11)

Because the function ΨD(Λ)(·) is nondecreasing, for every t ∈ [βj−1 + δ2, βj − δ2] , we get

sup
βj−1+δ2≤s≤t

∥∥x(s)− zk(s)
∥∥ ≤ ΨD(Λ)(t) + 2ε. (3.12)

By (B2), we have for every t ∈ [σ, σ + T ],

sup
σ≤s≤t

∥∥Φ(x)(s)− Φ(zk)(s)
∥∥ ≤

≤ sup
σ≤s≤t

∥∥∥∥∥∥
s∫
σ

(s− τ) (f(τ, x[ϕ]τ )− f(τ, zk[ϕ]τ ))dτ

∥∥∥∥∥∥ ≤

≤Mt

t∫
σ

∥∥f(τ, x[ϕ]τ )− f(τ, zk[ϕ]τ )
∥∥dτ ≤
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≤Mt

t∫
σ

L

(
τ,K(τ − σ) sup

σ≤θ≤τ

∥∥x(θ)− zk(θ)
∥∥)dτ

where Mt is from (3.6). Let us denote by

J(t) = [σ, t] ∩
(

[σ, σ + δ1[∪(∪1≤i≤n]ti − δ1, ti + δ1[) ∪ (∪1≤j≤m]βj − δ2, βj + δ2[)
)
,

I(t) = [σ, t] \ J(t).

Because the sets Λ and R are bounded in D(ϕ, σ + T ), using the last estimation and taking δ1
and δ2 small enough, one can ensure that

dD(ϕ, t) (Φ(x),Φ(z)) ≤MT

 ∫
I(t)

L(s,K(s) sup
σ≤τ≤s

‖x(τ)− z(τ)‖) ds+ ε

.
Now, using (3.12), we deduce

dD(ϕ, t) (Φ(x),Φ(z)) ≤MT

 t∫
σ

L (s,K(s) (Ψ(Λ)(s) + 2ε)) ds+ ε

. (3.13)

The result follows from the arbitrariness in the choice of ε and x.
Corollary 1. The map Φ is ΨC([σ,σ+T ];E) -condensing on bounded subsets of D(ϕ, σ + T ).

Indeed, Let Λ be a bounded subset of D(ϕ, σ + T ) such that

ΨC([σ,σ+T ];E)(Φ ◦ Λ) ≥ ΨC([σ,σ+T ];E)(Λ). (3.14)

By Lemma 3, (3.8), (3.14), and the fact that L(t, ·) monotone nondecreasing, we have for every
t ∈ [σ, σ + T ],

1

2
ΨD(Λ)(t) ≤ ΨC([σ,σ+T ];E)(Λ)(t) ≤

≤ ΨC([σ,σ+T ];E)(Φ ◦ Λ)(t) ≤ ΨD(Φ ◦ Λ)(t) ≤

≤MT

t∫
σ

L
(
s,K(s) ΨD(Λ)(s)

)
ds.

Hence,

λKΨD(Λ)(t) ≤ 2λKMT

t∫
σ

L(s, λKΨD(Λ)(s)) ds,

where λK is from (3.7). Because λK > 0, from Remark 2, it results that for every t ∈ [σ, σ+ T ],

ΨD (Λ)(t) = 0. As a consequence, for every t ∈ [σ, σ + T ], ΨC([σ,σ+T ];E)(Λ)(t) = 0. Thus, Λ is
relatively compact.
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Proof of Theorem 2. Let us begin with the existence problem. According to Remark 4, is
it enough to prove that Φ has a fixed point. In the space C([σ, σ + T ];E), let us consider an
equivalent norm ‖ · ‖∗ given by the formula

‖y‖∗ = max
t∈[σ,σ+T ]

e−L(t−σ)‖y(t)‖,

where L > 0 is chosen so that

max
t∈[σ,σ+T ]

MTλK

t∫
σ

e−L(t−s)α(s)ds ≤ q < 1, (3.15)

where α(·) is from (f3). With this norm, let us consider the closed ball B̄D(ϕ̄, r) ⊂ D(ϕ, σ + T )

of the radius r > 0 centered at the function ϕ̄ ∈ D(ϕ, σ + T ), where ϕ̄(t) = ϕ(0) for all
t ∈ [σ, σ + T ], i.e.,

B̄D(ϕ̄, r) =

{
x ∈ D(ϕ, σ + T ) : max

t∈[σ,σ+T ]
e−L(t−σ)‖x(t)− ϕ(0)‖ ≤ r

}
,

Choose r > 0 such that

r ≥
[
(MT + 2)‖ϕ(0)‖E +MT ‖α‖L1(1 + λN‖α‖B)

]
(1− q)−1

where q is from (3.15) and,

λN = sup
0≤s≤T

N(s). (3.16)

The last inequality implies

(MT + 2)‖ϕ(0)‖E +MT ‖α‖L1(1 + λN‖α‖B) + qr ≤ r, (3.17)

Let us chow that Φ maps B̄D(ϕ̄, r) into itself. Let x ∈ B̄D(ϕ̄, r). For all t ∈ [σ, σ + T ], we
have

e−L(t−σ)‖Φ(x)(t)− ϕ̄(t)‖ = e−L(t−σ)‖Φ(x)(t)− ϕ(0)‖ ≤

≤ ‖S(t− σ)ϕ(0)− ϕ(0)‖+ e−L(t−σ)MT

t∫
σ

α(s) (1 + ‖x[ϕ]s‖)ds ≤

≤ (MT + 1)‖ϕ(0)‖E+

+ e−L(t−σ)MT

t∫
σ

α(s)

(
1 + λK sup

θ∈[σ,s]
‖x(θ)‖+ λN ‖ϕ‖B

)
ds ≤

≤ (MT + 1)‖ϕ(0)‖E +MT ‖α‖L1(1 + λN ‖ϕ‖B)+
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+MTλK

t∫
σ

e−L(t−σ)eL(s−σ)α(s)e−L(s−σ) sup
θ∈[σ,s]

‖x(θ)‖ ds ≤

≤ (MT + 1)‖ϕ(0)‖+MT ‖α‖L1(1 + λN‖ϕ‖B)+

+MTλK

t∫
σ

e−L(t−s)α(s) sup
θ∈[σ,s]

e−L(θ−σ) [‖x(θ)− ϕ(0)‖+ ‖ϕ(0)‖E ]ds ≤

≤ (MT + 1)‖ϕ(0)‖E +MT ‖α‖L1(1 + λN‖ϕ‖B) + qr + q‖ϕ(0)‖E ≤

≤ (MT + 2)‖ϕ(0)‖E +MT ‖α‖L1(1 + λN‖ϕ‖B) + qr ≤ r.

It results that the operator Φ maps B̄D(ϕ̄, r) into itself, moreover, according to Corollary 1, Φ :
B̄D(ϕ̄, r) → B̄D(ϕ̄, r) is ΨC([σ,σ+T ];E) -condensing. From Theorem 1, it follows that Φ admits a
fixed point.

It remain to show the uniqueness. Again, according to Remark 4 it is enough to prove that Φ

has a unique fixed point. Suppose that Φ has two fixed points in D(ϕ, σ + T ), say x and y, then
following the same line of calculations as above, we get for any t ∈ [σ, σ + T ],

sup
σ≤s≤t

‖x(s)− y(s)‖ = sup
σ≤s≤t

‖Φ(x)(s)− Φ(y)(s)‖ ≤

≤MT

t∫
σ

‖f(τ, x[ϕ]τ )− f(τ, y[ϕ]τ )‖ dτ ≤

≤MT

t∫
σ

L

(
τ,K(τ − σ) sup

σ≤θ≤τ
‖x(θ)− y(θ)‖

)
dτ.

Consequently

λK sup
σ≤s≤t

‖x(s)− y(s)‖ ≤ λKMT

t∫
σ

L

(
τ, λK

(
sup
σ≤θ≤τ

‖x(θ)− y(θ)‖

))
dτ.

where MT is from (3.6) and, λK is from (3.7). Since λK > 0, by (f2), it results that

sup
σ≤s≤t

‖x(s)− y(s)‖ = 0, for any t ∈ [σ, σ + T ].

Thus, the problem (3.1) has a unique mild solution.
4. Averaging result. Throughout this section, the phase space B is considered as a normed

space satisfying Axioms (B1) – (B3).
As an example of such phase space B, one can take the Banach space C∞ [24], constituted of

continuous functions ψ : ]−∞, 0]→ E, such that lim
θ→−∞

ψ(θ) exists, endowed with the sup-norm,

‖ψ‖C∞ = sup
{
‖ψ(θ)‖ : θ ∈]−∞, 0]

}
.
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Let us consider a semilinear functional differential equation in E with a small positive
parameter ε, of the form z

′(t) = Az(t) + f

(
t

ε
, zt

)
, t ∈ [0, T ],

z0 = ϕ,

(Pε)

Now parallel to the problem (Pε ), ε > 0, we consider the averaged problemz
′(t) = Az(t) + f0(zt),

z0 = ϕ.
(P0)

Remark 9. It is clear that any ψ ∈ C∞, satisfies (1.7). Then, for the choice B = C∞, the
problems in the normal formw

′(τ) = ε [Aw(τ) + f(τ, wτ )] , τ ∈
[
0,
T

ε

]
,

w0 = ψ

(4.1)

and w
′(t) = ε

[
Aw(t) + f0(wt)

]
,

w0 = ψ
(4.2)

can be written equivalently as (Pε ) and (P0) respectively (see Section 1).
Hypotheses. Suppose that the unbounded linear operator A satisfies the condition (A) and

the function f is acting from R+ × B to E.
Let us consider the following hypotheses:
(f1) for all u ∈ B, the mapping t→ f(t, u) is measurable;
(f2) for all (u, v) ∈ B × B,

‖f(t, u)− f(t, v)‖ ≤ L(‖u− v‖B) a.e. t ∈ R+,

where L : [0,+∞[→ [0,+∞[ is a given mapping such that:
(i) L(·) is continuous, monotone nondecreasing and, L(0) = 0 ;
(ii) for every nonnegative continuous mapping h : [0, T ] → [0,+∞[ and for every constant

ζ, the following implication holds true:(∀t ∈ [0, T ]) h(t) ≤ ζ
t∫

0

L(h(s)) ds

⇒ h ≡ 0; (4.3)

(f3) there exists a constant C > 0, such that for all u ∈ B

‖f(t, u)‖ ≤ C(1 + ‖u‖B) a.e. t ∈ R+.
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(Af) There exist ∆0 > 0 and a function f0 : B → E satisfying conditions similar to (f2)

and (f3) , and for all u ∈ B and t1, t2 ∈ [0, T ] with 0 ≤ t1 ≤ t2 ≤ t1 + ∆0 ≤ T,

lim
ε→0+

t2∫
t1

S(t2 − θ)
[
f

(
θ

ε
, u

)
− f0(u)

]
dθ = 0. (4.4)

Theorem 3. Assume that the hypotheses (A), (f1) – (f3) and (Af) are satisfied. Then, the
sequence

(
zε
)
ε>0

, where zε is the mild solution to the problem (Pε ), converges to the mild
solution z∞ of the problem (P0) as ε→ 0+.

Remark 10. In Hypothesis (Af) the expression f0 satisfies a condition similar to (f2) and
(f3), means

(1) for all (u, v) ∈ B × B,

‖f0(u)− f0(v)‖ ≤ L(‖u− v‖B);

(2) there exists a constant C ′ > 0, such that for all u ∈ B

‖f(u)‖ ≤ C ′(1 + ‖u‖B).

It is clear that f0 is a continuous function.
Remark 11. Hypothesis (Af) is inspired from [15].
Proof of Theorem 3. According to Theorem 2, for each ε > 0 there exists a unique mild

solution zε to the problem (Pε ), and there exists a unique mild solution z∞ to the problem (P0).
Moreover, for each ε > 0, zε = xε[ϕ], where xε is the unique fixed point of the operator, Φε :
D(ϕ, T )→ D(ϕ, T ), defined by

Φε(x)(t) = S(t)ϕ(0) +

t∫
0

S(t− s)f
(s
ε
, x[ϕ]s

)
ds, 0 ≤ t ≤ T,

and z∞ = x∞[ϕ], where x∞ is the unique fixed point of the operator, Φ∞ : D(ϕ, T )→ D(ϕ, T ),

defined by

Φ∞(x)(t) = S(t)ϕ(0) +

t∫
0

S(t− s)f0(x[ϕ]s) ds, 0 ≤ t ≤ T. (4.5)

Note that, if xε → x∞ in C([0, T ];E), then xε[ϕ]→ x∞[ϕ] in C(]−∞, T ];E). Therefore, for the
proof of Theorem 3, we have only to prove that

lim
ε→0+

sup
t∈[0,T ]

‖xε(t)− x∞(t)‖ = 0.

First, let us prove that the sequence
(
xε
)
ε>0

is bounded. Let ε > 0. By using (f3) andAxiom (B2),
for any t ∈ [0, T ], we have

‖xε(t)‖ = ‖Φε(x
ε)(t)‖ ≤MT ‖ϕ(0)‖+MT

t∫
0

∥∥∥f(τ
ε
, xε[ϕ]τ

)∥∥∥ dτ ≤
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≤MT ‖ϕ(0)‖+MT

t∫
0

C

(
1 + λK sup

0≤θ≤τ
‖xε(θ)‖+ λN ‖ϕ‖B

)
dτ ≤

≤MT

[
‖ϕ(0)‖+ T C

(
1 + λN ‖ϕ‖B

)]
+MT C λK

t∫
0

sup
0≤θ≤τ

‖xε(θ)‖ dτ.

where MT is from (3.6), λK is from (3.7), λN is from (3.16), and C from Hypothesis (f3) .
Since the last expression does not decrease, setting

ω = MT

[
‖ϕ(0)‖+ T C (1 + λN ‖ϕ‖B)

]
+MT C λK ,

we get

sup
0≤τ≤t

‖xε(τ)‖ ≤ ω + ω

t∫
0

sup
0≤θ≤τ

‖xε(θ)‖ dτ.

Hence, by Gronwall Lemma, we obtain, for any t ∈ [0, T ],

sup
0≤τ≤t

‖xε(τ)‖ ≤ ωeωt,

which proves the boundedness of the sequence
(
xε
)
ε>0

.

By Axiom (B3), the function, x∞[ϕ](.) : t→ x∞[ϕ]t is continuous on [0, T ]. Let δ > 0. There
exists a partition 0 = t0 < t1 < . . . < tq = T of [0, T ], such that

max
1≤i≤q

(ti − ti−1) ≤ min{δ,∆0}, (4.6)

‖x∞[ϕ]t − x∞[ϕ]ti‖ ≤ δ ∀t ∈ [ti−1, ti], i = 1, . . . , q, (4.7)

where ∆0 is from (Af). Define the function x∞[ϕ](.) by

for t ∈ [ti−1, ti[, x∞[ϕ]t = x∞[ϕ]ti−1 , i = 1, . . . , q. (4.8)

Setting τ(t) = max{i, ti ≤ t} and, ϑ(t) = tτ(t), for every t ∈ [0, T ] we have

xε[ϕ](t)− x∞[ϕ](t) = Φε (xε)(t)− Φ∞ (x∞)(t) =

=

t∫
ϑ(t)

S(t− θ)
[
f

(
θ

ε
, xε[ϕ]θ

)
− f0 (x∞[ϕ]θ)

]
dθ+

+

ϑ(t)∫
0

S(t− θ)
[
f

(
θ

ε
, xε[ϕ]θ

)
− f

(
θ

ε
, x∞[ϕ]θ

)]
dθ+

+

ϑ(t)∫
0

S(t− θ)
[
f

(
θ

ε
, x∞[ϕ]θ

)
− f

(
θ

ε
, x∞[ϕ]θ

)]
dθ+
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+

ϑ(t)∫
0

S(t− θ)
[
f

(
θ

ε
, x∞[ϕ]θ

)
− f0 (x∞[ϕ]θ)

]
dθ+

+

ϑ(t)∫
0

S(t− θ)
[
f0 (x∞[ϕ]θ)− f0 (x∞[ϕ]θ)

]
dθ =

= I1 + . . .+ I5.

Since the sequence
(
xε
)
ε>0

is bounded, by Axiom (B2), the sequence
(
xε[ϕ](.)

)
ε>0

is bounded
too in C([0, T ];B). Then, setting

$ = MT

[
C

(
1 + sup

ε>0

∥∥xε[ϕ](.)
∥∥
C([0,T ];B)

)
+ C ′

(
1 + max

t∈[0,T ]
‖x∞[ϕ]t‖

)]
,

where C is from (f3) and C ′ is from Remark 10, by (4.6) we get

‖I1‖ ≤ (t− ϑ(t))$ ≤ min{δ, ∆0}$ ≤ $ δ.

By using (3.6), Axiom (B2), and Hypothesis (f2) , we get

‖I2‖ ≤
t∫

0

S(t− θ)
[
f

(
θ

ε
, xε[ϕ]θ

)
− f

(
θ

ε
, x∞[ϕ]θ

)]
dθ ≤

≤MT

t∫
0

L

(
K(θ) sup

0≤s≤θ
‖xε[ϕ](s)− x∞[ϕ](s)‖

)
dθ.

Now, by using (3.6), (f2) , (4.7), and (4.8), we have

‖I3‖ ≤MT

q∑
i=1

ti∫
ti−1

∥∥∥∥f(θε , x∞[ϕ]θ

)
− f

(
θ

ε
, x∞[ϕ]θ

)∥∥∥∥ dθ ≤

≤MT

q∑
i=1

ti∫
ti−1

∥∥∥∥f(θε , x∞[ϕ]θ

)
− f

(
θ

ε
, x∞[ϕ]ti−1

)∥∥∥∥ dθ ≤
≤MT T L(δ).

Since the function f0 satisfies a condition similar to (f2) , the term I5 can be estimated as I3,

‖I5‖ ≤MT T L(δ).

It remains to estimate the term I4. We have

‖I4‖ =

∥∥∥∥∥∥∥
ϑ(t)∫
0

S(t− θ)
[
f

(
θ

ε
, x∞[ϕ]θ

)
− f0 (x∞[ϕ]θ)

]
dθ

∥∥∥∥∥∥∥ ≤
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≤MT

τ(t)∑
i=1

∥∥∥∥∥∥∥
ti∫

ti−1

S(ti − θ)
[
f

(
θ

ε
, x∞[ϕ]ti−1

)
− f0

(
x∞[ϕ]ti−1

)]
dθ

∥∥∥∥∥∥∥ .
Bearing in mind (4.6), from Hypothesis (Af1) we have

max
1≤i≤q

lim
ε→0+

ti∫
ti−1

S(ti − θ)
[
f

(
θ

ε
, x∞[ϕ]ti−1

)
− f0

(
x∞[ϕ]ti−1

)]
dθ = 0.

Thus

max
1≤i≤q

∥∥∥∥∥∥∥
ti∫

ti−1

S(ti − θ)
[
f

(
θ

ε
, x∞[ϕ]ti−1

)
− f0

(
x∞[ϕ]ti−1

)]
dθ

∥∥∥∥∥∥∥ ≤
δ

q
as ε→ 0+.

Thus
‖I4‖ ≤MT

τ(t)

q
δ ≤MT δ as ε→ 0+.

From the estimations of the terms I1, . . . , I5, for every t ∈ [0, T ], we obtain

‖xε[ϕ](t)− x∞[ϕ](t)‖ ≤ ($ +MT ) δ + 2MT T L(δ)+

+MT

t∫
0

L

(
K(θ) sup

0≤s≤θ
‖xε[ϕ](s)− x∞[ϕ](s)‖

)
dθ,

as ε→ 0+. Since the last expression does not decrease, setting

ρ(δ) = ($ +MT )δ + 2MT T L(δ),

we get for every t ∈ [0, T ]

K(t) sup
0≤s≤t

‖xε[ϕ](s)− x∞[ϕ](s)‖ ≤

≤ λKρ(δ) + λKMT

t∫
0

L

(
K(θ) sup

0≤s≤θ
‖xε[ϕ](s)− x∞[ϕ](s)‖

)
dθ,

as ε → 0+, where λK is from (3.7) (recall that K(·) is with positive values). From (f2) , the
function δ → λK ρ(δ), is continuous on [0,+∞[ and λK ρ(0) = 0. Then, from the arbitrariness
of δ, we have necessarily that,

K(t) sup
0≤s≤t

‖xε[ϕ](s)− x∞[ϕ](s)‖ ≤

≤ λKMT

t∫
0

L

(
K(θ) sup

0≤s≤θ
‖xε[ϕ](s)− x∞[ϕ](s)‖

)
dθ as ε→ 0+.
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By using (f2) again, we have, for every t ∈ [0, T ],

K(t) sup
0≤s≤t

‖xε[ϕ](s)− x∞[ϕ](s)‖ = 0 as ε→ 0+.

Since K(·) is a positive function, we deduce that for every t ∈ [0, T ],

sup
0≤s≤t

‖xε[ϕ](s)− x∞[ϕ](s)‖ = 0 as ε→ 0+.

The proof is complete.
5. Averaging principle in the traditional form. Now we aim to establish the averaging

principle in traditional form for the problem (Pε ). Recall that the phase space B is considered as
a normed space stisfying Axioms (B1) – (B3).

Assume that the hypotheses (f1) – (f3) are satisfied. Let us replace the hypothesis (Af) by a
more natural one:

(Avf) for every u ∈ B,

f0(u) = lim
t→+∞

1

t

t∫
0

f(s, u) ds. (5.1)

We have immediately the next lemma.
Lemma 4. The function f0 satisfies hypothesis similar to (f2) and (f3) .
The proof of Lemma 4 is easy.
Now, invoking [15] (Lemma 3), we deduce the next lemma.
Lemma 5. Assume that hypotheses (f1) – (f3) are satisfied. Moreover, assume that E is

reflexive and (S(t))t is a analytic semigroup. Then, under the hypothesis (Avf), for every u ∈ B
and t1, t2 such that 0 ≤ t1 ≤ t2 ≤ T,

lim
ε→0+

t2∫
t1

S(t2 − θ)
[
f

(
θ

ε
, u

)
− f0(u)

]
dθ = 0.

Since E is reflexive, the proof of Lemma 5 is exactly the same as in [15] (Lemma 3) except
some trivial modifications (for analytic simigroups see, e.g., [25]).

From Lemma 4 and Lemma 5, we deduce
Corollary 2. Assume that the hypotheses (f1) – (f3) are satisfied. Moreover, assume that E

is reflexive, and the semigroup (S(t))t is analytic. Then, (Avf)⇒ (Af).

Applying Lemma 4, Corollary 2 and Theorem 3, we have immediately.
Theorem 4. Assume that Hypotheses (A), (f1) – (f3) and (Avf) are satisfied. Moreover,

assume that E is reflexive and, the semigroup (S(t))t is analytic. Then

lim
ε→0
‖zε − z∞‖C(]−∞,T ];E) = 0,

where zε is the unique mild solution to the problem (Pε ), ε > 0, and z∞ is the unique mild
solution to the problem (P0).
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