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Novel rational spectral collocation is presented combinedwith the singularity-separatedmethod for second-
order singularly perturbed boundary-value problems. The solution is presented in the form u = w + v,

where w is the solution of the corresponding third boundary-value problem and v is a singular function
with explicit expression. The auxiliary third boundary-value problem is solved by the rational spectral
collocation method combined with asymptotic theory (RSCAT). According to asymptotic analysis, the
parameters of the sinh-transformation can be determined by the location and width of the boundary layers.
The parameters in the singular correction can be determined by the boundary conditions of the original
problem. Numerical experiments are carried out to demonstrate the computational efficiency and accuracy
of our method.

Наведено нову рацiональну спектральну колокацiю, об’єднану з методом вiдокремлення особли-
востi для сингулярно збуреної крайової задачi другого роду. Розв’язок подано у виглядi u = w + v,

де w — розв’язок вiдповiдної третьої крайової задачi, а v — сингулярна функцiя у явному вигля-
дi. Допомiжну третю крайову задачу розв’язано за допомогою рацiонального методу спектраль-
ної колокацiї з урахуванням асимптотичної теорiї. Згiдно з асимптотичним аналiзом параметри
sh-перетворення визначаються розташуванням i шириною примежових шарiв. Параметри сингу-
лярної поправки знаходяться з граничних умов вихiдної задачi. Результати виконаних числових
експериментiв демонструють обчислювальну ефективнiсть i точнiсть запропонованого методу.

1. Introduction. Singular perturbation problems, such as fluid mechanics boundary layers,
quantum mechanics transition points and flow under large Reynolds number, arise in the
mathematical modeling of physical and engineering problems. Over the past few decades, singular
perturbation has received extensive attention. Singular perturbation boundary value problems have
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either boundary layers or internal layers where the solution drastically changes. Detailed theories
and analysis of the singular perturbation problem can be found in the literature [1 – 3]. These
problems have steep gradients in the narrow layers within the considered region, wherein the
dependent variable undergoes rapid changes; therefore, the traditional numerical method is not
suitable for solving singular perturbation problems, as the grid is not fine enough to describe
the internal rules in these layers. To distinguish these regions, a finer mesh is needed to increase
the number of computations. Therefore, special methods are required to obtain good numerical
approximations to such problems.

Some conventional asymptotic methods can be used to approximate solutions for singular
perturbation problems. Asymptotic methods decompose the area into the boundary layer (where
the solution exhibits rapid change) and the outer region (which is far from the inner region)
[4]. At the boundary layer, a scaling transformation is introduced to amplify the boundary layer
region. Then, an internal solution (in the form of a series) is obtained. The solution of the
reduced problem is approximated in exponential form at the outer region. Finally, these two
approximations are matched to obtain a uniformly valid approximation using the limit process.
Some asymptotic methods are the Method of Matched Asymptotic Expansions (MMAE) [5], the
Method of Multiple-scale Analysis, the Periodic Averaging Method and the Method of Wentzel –
Kramers –Brillouin (WKB) Approximation [6, 7]. He matching procedure may be onerous or
impossible.

Additionally, several numerical methods have been developed to solve singular perturbation
problems. To address severely oscillating defects on the boundary layer, Shishkin’s mesh grid was
proposed to construct uniform grids on the outer and inner regions [8]. The results of Shishkin’s
method in terms of convergence, stability and error estimation can be found in Madden [9], Lin
β [10]. The cubic spline method and uniform convergence difference scheme on a uniform grid
were constructed to solve second-order singular perturbation problems [11].

The spectral collocation method based on rational interpolation in barycentric form (RCM)
was proposed by Berrut and his collaborators [12, 13]. With RCM, the first- and second-order
differentiation matrices are given by the barycentric weights and interpolation points. In addition,
a sinh-transform maps the Chebyshev points clustered near the boundaries of [−1, 1] into a new
set of collocation points (i.e., more points are present in the boundary layers). The parameters
of the sinh-transform are determined by the width and position of the boundary layer. Chen and
Wang [14, 15] applied a rational spectral collocation in barycentric form with sinh-transform
to solve a coupled system of singularly perturbed problems and third-order singularly perturbed
problems.

To weaken the singularity and improve the accuracy of numerical simulation, the singularity-
separated technique (SST) for singular perturbation problems with constant coefficients was
proposed by Chen and Yang [16], and finite element methods with SST were used to solve
singular perturbation problems with a single boundary layer.

In this paper, we consider the following one-dimensional singular perturbation problemAu := −εu′′ + b(x)u′ + c(x)u = f, x ∈ Ω = (0, 1),

u(0) = α, u(1) = β,
(1.1)

where ε is the perturbation parameter, constants c ≥ 0. The solution has the singularity in the
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boundary layer near x = 1 when b > 0. When b = 0, the solution to the problem of this type
has two boundary layers with width O(

√
ε) at x = 0 and x = 1, respectively. The smaller ε is,

the thinner the boundary layer is.
Here,we present a novel numericalmethod based on rational spectral collocation in barycentric

formwith the singularly separatedmethod (RSC-SSM) to solve second-order singularly perturbed
boundary-value problems in various fields.

This paper is organized as follows. An overview of asymptotic analysis and the sinh-transform
are outlined in Section 2. The algorithmic details of RSC-SSM for second-order singularly
perturbed boundary-value problems are provided in Section 3. Section 4 presents numerical
results for two test problems, which demonstrate that the new schemes lead to large performance
gains over RSCAT in the literature. Finally, we present some Conclusions in Section 5.

1.1. Asymptotic expansion approximation.
Lemma 1. If b > 0, the solution of (1.1) could be expressed as follows:

u(x) = w(x) + v(ξ) +O(ε), ξ =
1− x
ε

. (1.2)

where ω(x) and v(ξ) is the solution of following equations, respectively:bw
′ + cw = f(x), 0 < x < 1,

w(0) = α,
(1.3)

and v
′′ + bv′ = 0, ξ > 0,

v(1) = β − w(1), v′(1) = −b(β − w(1)).
(1.4)

Proof. Let w(x) be the solution of the reduced problem (1.3), v(ξ) is the solution of the
boundary layer correction problem,

v′′ + bv′ = 0, ξ > 0,

v(1) = β − w(1), lim
ξ→∞

v(ξ) = 0.
(1.5)

We rewrite Eq. (1.5): v
′′ + bv′ = 0, ξ > 0,

v(1) = β − w(1), v′(1) = γ.
(1.6)

where γ is determined by limξ→∞ v(ξ) = 0.

Integrating Eq. (1.6) once gives

v′(ξ) = γebe−bξ.

Integrating again yields
v(ξ) = −γ

b
eb(1−ξ) + β − w(1) +

γ

b
.

By v(∞) = 0, we get
γ = −b(β − w(1)).
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Theorem 1 [17]. If b > 0, the solution of (1.1) has the following asymptotic expansion:

u(x) = w(x) + v̄0(ξ) +O(ε),

where

v̄0(ξ) =

v0(ξ), 0 ≤ ξ ≤ T,

0, ξ > T,
T =

1

b(1)
ln

ε

|β − w(1)|
, (1.7)

satisfying the inequality
‖u(x)− (w(x) + v̄0(ξ))‖ ≤ Cε,

where C is a generic constant.
The above theorem suggests that the boundary layer of the convection-diffusion problem

(b > 0) is located at the right endpoint of the underlying interval [0, 1] and its width is δ = Tε.

A similar conclusion can be drawn for the reaction diffusion equation (b = 0).
Theorem 2. If b = 0, the solution of (1.1) has the asymptotic expansion

u(x) = w(x) + v̄(x) +O(
√
ε),

where

v̄(x) =

v(x), x ∈ [0, τ0] ∪ [1− τ0, 1],

0, x ∈ [τ0, 1− τ0],
0 < τ0 = −

√
ε

α
ln
√
ε� 1, (1.8)

satisfying the inequality
‖u(x)− (w(x) + v̄0(x))‖ ≤ C

√
ε,

where C is a generic constant.
The Theorem 2 suggests that the boundary layers of the reaction-diffusion problem are located

at the two endpoints of the underlying interval [0, 1] and their width is δ = τ0.

1.2. Rational spectral collocation method in barycentric form. Rational function pN (x)

in barycentric form, which interpolates function u(x) at N + 1 distinct points {xk}Nk=0 can be
expressed as [18]

u(x) ≈ pN (x) =

∑N

k=0

ωk
x− xk

u(xk)∑N

k=0

ωk
x− xk

(1.9)

where {ωk}Nk=0 are barycentric weights. Most important in practice are the so-called Chebyshev –
Gauss – Lobatto (CGL) points

xk = − cos(kπ/N),

which leading to so-called simplified weights are chosen as [18],

ω0 =
1

2
, ωk = (−1)k, k = 1, 2, . . . , N − 1, ωN =

(−1)N

2
.

The rational interpolation based on the barycentric form with transformed Chebyshev points has
the following convergence analysis.
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Theorem 3 [19]. Let D1, D2 be two domains of C containing J = [−1, 1] and real interval
I, respectively. Let g : D1 → D2 be a conformal map, such that g(J) = I, and u : D2 → C such
that the composition u ◦ g : D1 → C is analytic inside and on an ellipse Cρ(⊂ D1), with foci
at ±1 and with the sum of its major and minor axes equal to ρ > 1. Let pN (x) be the rational
interpolation of u between the transformed Chebyshev points x̂k := g(−cos(kπ/N)). Then,

∀x ∈ [−1, 1] ‖pN (x)− u(x)‖ = O
(
ρ−N

)
.

The n th order derivatives of pN can be determined the n th order differentiation matrix{
D

(n)
jk )
}N
j,k=0

associated with pN represented by (1.9) at the point xj :

p
(n)
N (xj) =

N∑
k=0

dn

dxn


ωk

x− xk
u(xk)∑N

l=0

ωl
x− xl


x=xj

=
N∑
k=0

D
(n)
jk u(xk), j = 0, 1, . . . , N,

where the entries of 1st and n th differentiation matrices are given as follow [18]:

D
(1)
jk =


ωk
ωj

(xj − xk), j 6= k,

−
∑

i 6=k
D

(1)
ji , j = k,

D
(n)
jk =


2D

(n−1)
jk

(
D

(n−1)
jj − 1

xj − xk

)
, j 6= k,

−
∑

i 6=k
D

(n)
ji , j = k.

(1.10)

As suggested in Theorem 3, the analytic region of u determines the convergence rate of its
rational interpolation function. Therefore, conformal map g could be chosen to enlarge the ellipse
of analyticity of u◦g. Thus, a better approximation of u could be obtained. This is more accurate
than using the Chebyshev spectral method with the same number of grid points.

Note that differentiation matrices (1.10) only rely on weights ωk and new points x̂k, which
is why the underlying equation does not need to be converted to new coordinates after mapping.

1.3. The sinh-transform. For solutions with a single boundary layer, Tee and Trefethen
have constructed the conformal map [20]

gλ,µ(x) = λ+ µ sinh

[(
sinh−1

(
1− λ
µ

)
+ sinh−1

(
1 + λ

µ

))
x− 1

2
+ sinh−1

(
1− λ
µ

)]
,

(1.11)

where λ, δ are the position and width of the boundary layers, respectively.
If b > 0, parameters in (1.11) should be chosen as

λ = 1, δ = 2Tε.

If there are two boundary layers, motivated by the work of Tee [20], we define the combined
sinh-transform as:

g̃δ(x) =


1

2
[g−1,δ(2x+ 1)− 1] , x ∈ [−1, 0),

1

2
[g1,δ(2x− 1) + 1] , x ∈ [0, 1].

(1.12)

If b = 0, the parameter in (1.12) should be chosen as δ = 2τ0.
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2. Rational spectral collocation with the singularly separated method. By using the
reaction-diffusion equation as an example, the implementation and error estimation of RSC-SSM
are elaborated in this section.

2.1. The singularity-separated technique. Consider the problem (1.1) with b = 0. Homo-
genous equation Lu = 0 has two eigenvalues

λ1 =

√
c

ε
, λ2 = −

√
c

ε
.

Let u0 be a special solution of Lu = f, its general solution is

u(x) = u0(x) + C1φ1(x) + C2φ2(x), φ1(x) = eλ1(x−1), φ2(x) = eλ2x.

Note that if ε = 10−k and k ≥ 4, φ1(1) = φ2(0) = eλ2 ≈ e−1/
√
ε ≈ 10−44 = 0 can be neglect.

Thus, the solution u(x) of the (1.1) can be decomposed into two parts, u(x) = ω(x) + v(x),

in which ω(x) = u0(x) is the regular term and v(x) = C1φ1(x) + C2φ2(x) is the singular term.
The regular term ω(x) is the solution of an auxiliary boundary-value problemLω = −εω′′ + cω = f(x),

ω(0) = f(0)/c, ω(1) = f(1)/c.
(2.1)

Consequently, singular component v(x) is given by

v(x) = C1e
λ1(x−1) + C2e

λ2x.

Based on the boundary conditions, we obtain

C2 = α− ω(0), C1 = β − ω(1).

which satisfies Lv = 0. Then v(0) = C1e
−λ1 ≈ 0 and v(1) = C2e

λ2 ≈ 0.

2.2. RSC-SSMmethod. It is known from the boundary conditions of Eq. (2.1), that εω′′(0) =

= εω′′(1) = 0. The singularities of solution are weakened. The success of the new method is
determined by the solution of the auxiliary equation (2.1). So, the rational spectral collocation
with sinh-transform would be chosen to solve Eq. (2.1).

First, by introducing the transform x = 0.5(y + 1), x ∈ [0, 1], y ∈ [−1, 1] and defining
û(y) = u(x) = u(0, 5(y + 1)), then u′(x) = 2û′(y), u′′(x) = 4û′′(y), we can rewrite (2.1) asLω̂ = −4εω̂′′(y) + cω̂(y) = f̂(y), y ∈ (−1, 1),

ω̂(−1) = f̂(−1)/c, ω̂(1) = f̂(1)/c.
(2.2)

The boundary layers are located at the two endpoints of [−1, 1] and their width are δ = 2τ0.

The transformed CGL collocation points are given

{x̂k}Nk=0 =
{
gδ
(
− cos(kπ/N)

)}N
k=0

,

where the functiong is shown in (1.12).
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Calculating the equations in (1.12) at points {x̂k}Nk=0 yields

4εD(2)Ŵ + cŴ = F̂ . (2.3)

The boundary conditions in (1.12) suggest that

Ŵ (1) = f̂(1)/c, 2bŴ (N + 1) = f̂(N + 1)/c. (2.4)

In operator form the governing equation (2.3) becomes

AŴ = F̂ , (2.5)

where A = 4εD(2) + cEN+1.

The first end last rows of the matrix A are replaced with e1 = (1, 0, . . . , 0), eN+1 =

= (0, . . . , 0, 1), respectively. Solving the linear algebra system including (2.4) and (2.5), we
get the numerical solution of (2.1).

According to the boundary condition of the original problem (1.1) and the value of the regular
component, the parameters of singular terms are obtained.

By using this method, the following numerical solution of Eq. (1.1) can be received

uss(x) = ω(x) + v(x).

2.3. Error analysis. The following stability results about u(x) and u′(x) were given in [16].
Theorem 4. The solution for the problem u(x) has the estimates

|u(x)| ≤M = max(|u0|, |u1|) + C max |f(x)|,

|u′(x)| ≤ CM/ε.

Theorem 5. The numerical solution uss convergences to the exact solution u of the
problem (1.1) and satisfies the following error estimates:

‖u(x)− uss(x)‖ ≤Me−
√
c/ε,

∥∥u′(x)− u′ss(x)
∥∥ ≤M |v(0)|

ε
. (2.6)

Proof. Let z = u− uss. Then z satisfies

Lz = L(u(x)− uss(x)) = Lu(x)− Lω(x)− Lv(x) = 0, x ∈ (0, 1),

and

‖(u− uss)(0)‖ = ‖u(0)− ω(0)− C1e
−
√

c
ε − C2‖ = ‖C1‖e−

√
c
ε ,

‖(u− uss)(1)‖ = ‖u(1)− ω(1)− C1 − C2e
−
√

c
ε ‖ = ‖C2‖e−

√
c
ε .

According to Theorem 4, the conclusion is established.
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3. Numerical experiments. In order to verify the accuracy and efficiency of our method, the
RSCAT method and RSC-SSM are used to solve the problems with exact solutions and compare
the results. The theoretical results obtained in the previous section are verified through numerical
experiments. The maximum relative errors of the solution are given by

e =
‖uN − u‖∞
‖uE‖∞

,

where uN , u are the numerical solution and the exact solution, respectively.
In our computations, all experiments are performed by using MATLAB (version R2014a) on

a personal computer with a 2.5-Hz central processing unit (Intel Core i5-2450M), 4.00 GB of
memory and Windows 7 operating system.

Example 1. Consider the nonhomogeneous convection-diffusion singular perturbation pro-
blem c = 0 [21] (example 2)

εy′′ + y′ = 1 + 2x, 0 < x < 1, y(0) = 0, y(1) = 1. (3.1)

This problem has rapid chances near the point x = 0, and the width of boundary layer is
δ = ε ln

1

ε
. The exact solution of (3.1) is given as

y(x) = x2 + (1− 2ε)x+
2ε− 1

1− e−1/ε
(

1− e−
x
ε

)
. (3.2)

By using singularly separated technology, the auxiliary boundary-value problem is as follows:εy
′′ + y′ = 1 + 2x, 0 < x < 1,

y′(0) = 1, y(1) = 1.

The singular term can be expressed as

v(x) = C1e
λ1x,

where λ1 = −1

ε
is one of the eigenvalue with ε.

Figure 1 plots the maximum relative errors of both RSC-SSM and RSCAT method in semi-
log scale for various values of ε. Compared with RSCAT method, the rates of convergence are
considerably improved in our RSC-SSM. Furthermore, the numerical results of the RSC-SSM
and RSCAT method are compared in Table 1. We observe that our method offers better results
with fewer unknowns. RSC-SSM takes less time for the same number of unknowns.

The plots of numerical and exact solutions with various values of ε are displayed in Fig. 2.
The pointwise errors of this problem is shown in Fig. 3. We see that the errors are almost
constant for each point with the various values of ε. Because there is a reasonably high number
of collocation points in the boundary layer region, the behavior of the boundary layer region is
well characterized.
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Fig. 1. Relative errors in Example 1: RSCAT method (dashed lines)
vs. RSC-SSM method (solid lines).

0.20–1
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1

0.4 0.6 0.8 1

 

exact
RSCAT
RSC−SSM

 

–1
–1

–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1

0.20 0.4 0.6 0.8 1

exact
RSCAT
RSC−SSM

(a) ε = 10−2, N = 20 (b) ε = 10−8, N = 80

Fig. 2. Numerical solutions vs. exact solutions. RSCAT (dashes lines)
vs. RSC-SSM method (solid lines).
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Fig. 3. Point wise errors. RSCAT(dashes lines) vs. RSC-SSM method (solid lines).
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Table 1. Calculation results of maximum relative error and CPU time for Example 4.1

ε N RSC-SSM RSCAT Save time%
e1 t e1 t

1e-2 20 6.03e-07 0.0013 1.23e-10 0.0011 15.38
1e-4 40 1.16e-07 0.0015 6.44e-15 0.0014 6.67
1e-6 60 2.81e-08 0.0034 2.81e-14 0.0021 38.24
1e-8 90 1.05e-06 0.0027 1.98e-13 0.0016 29.73
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Fig. 4. Relative errors in Example 2: RSCAT method (dashed lines) vs. RSC-SSM method (solid lines).

Example 2. When b = 0, consider the reaction-diffusion problem.

−ε2y′′ + y = ex, 0 < x < 1, y(0) = 0, y(1) = 0. (3.3)

The exact solution can be expressed as

y(x) =
e−x/ε

(
e1−1/ε − 1

)
+ e−(1−x)/ε

(
e1/ε − e

)
(1− ε2)

(
1− e−2/ε

) +
ex

1− ε2
.

This problem has two boundary layer regions, i.e., the location of boundary layer are the two
endpoints of the underlying interval [0, 1]. The two eigenvalues of this problem are λ1 = −1/ε,

λ2 = 1/ε. Therefore, the singular term can be expressed

v(x) = C1e
λ1x + C2e

λ2(x−1).

The auxiliary boundary-value problem of (3.3) is as follows:−ε
2y′′ + y = ex, 0 < x < 1,

y(0) = 1, y(1) = e.

The maximum relative errors between RSC-SSM and RSCAT method are compared in Fig. 4
and Table 2, which verify the high accuracy and efficiency of RSC-SSM. Furthermore, displays
the plots of solutions and the pointwise errors with various values of and N are given in Fig. 5
and Fig. 6, respectively.
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Table 2. Comparison of the relative maximum errors and CPU time of Example 4.2

ε N
RSC-SSM RSCAT

Save time%
e1 t e1 t

1e-2 20 4.28e-04 0.0013 7.49e-6 0.0010 23.08
1e-4 40 2.82e-04 0.0027 1.06e-8 0.0017 37.04
1e-6 80 5.57e-03 0.0031 9.02e-13 0.0024 25.58
1e-8 90 9.01e-07 0.0087 4.90e-16 0.0023 73.56
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(a) ε = 10−2, N = 20 (b) ε = 10−8, N = 90

Fig. 5. Numerical solutions vs. exact solutions. RSCAT (dashes lines) vs. RSC-SSM method (solid lines).
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Fig. 6. Point wise errors. RSCAT (dashes lines) vs. RSC-SSM method (solid lines).

Additionally, Fig. 5 displays the plots of numerical and exact solutions with ε = 10−2, 10−8

in the whole region. The point-wise errors of the function with different ε and N are given in
Fig. 6.
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4. Conclusion. A novel numerical method named RSC-SSM, has been proposed to solve a
class of second-order singularly perturbed boundary-value problems in this paper. The solution
is composed of a weaker singularity auxiliary solution and a singular correct function. Numerical
experiments confirm that, compared to RSCAT, RSC-SSM has the following advantages:

1. The new method solves an auxiliary weak singular boundary-value problem instead of the
original problem. The weaker singularity reduces the impact of perturbation parameters on the
problem and improves the accuracy of the solution.

2. The parameters in the singular term can be determined by the boundary conditions and
regular terms of the original problem (i.e., the singular term has an explicit expression).

3. The accuracy of numerical approximation depends not only on the number of the grid
nodes, but also on the parameter ε. The smaller ε is, the thinner the boundary layer is, and the
better results can be obtained.

The numerical results demonstrate the spectral accuracy of the proposed algorithm and agree
with the theoretical analysis. Moreover, the numerical method and theoretical results presented
in this paper can be extended to more complex problems.
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