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The solution of wave problems is usually associated with significant difficulties. One of the effective
methods for solving such problems is the method of integral transformations. However, even using this
method, sometimes, it is impossible to obtain a solution in the final form or at least in a form suitable
for further numerical calculations. In this paper, using the example of calculation of the propagation of
a wave arising in a plate from a spherical source, we propose a method for overcoming these difficulties.
Simplification of the problem is achieved by splitting the total wave into elementary components with
respect to wave numbers and complex frequencies. The solution is brought to the possibility of numerical
calculations on a computer. The practical application of calculations can be useful, in particular, in the
analysis of data obtained by the acoustic emission method.

Розв’язування хвильових задач зазвичай пов’язане зi значними труднощами. Одним iз ефективних
методiв розв’язування таких задач є метод iнтегральних перетворень. Але навiть при його вико-
ристаннi не завжди вдається отримати розв’язок у кiнцевому виглядi або хоча б у придатному
для подальших чисельних розрахункiв. У цiй роботi на прикладi розрахунку поширення хвилi, що
виникає у пластинi вiд джерела сферичної форми, показано один зi способiв подолання таких труд-
нощiв. Спрощення задачi досягнуто шляхом розбиття сумарної хвилi на елементарнi складовi за
хвильовими числами та комплексними частотами. Розв’язання доведено до можливостi чисельних
розрахункiв на комп’ютерi. Практичне застосування розрахункiв може бути корисним, зокрема,
при аналiзi даних, якi отримують методом акустичної емiсiї.

As shown back in the 70s of the 20th century by such experts in the field of studying the destruction
of materials as F. McClintock [1], R. McMeeking [2], J. Rise, D. Tracey [3], S. Murakami [4],
V. Tvergard [5], A. Gurson [6], D. Broek [7], and some other, one of the essential factors of
destruction is the dynamic appearance of voids in materials. As a rule, these voids have a shape
very close to spherical, even under conditions of rigid stress concentration [3, 8, 9]. The sharp
formation of such voids leads to the appearance of waves in thematerials, called acoustic emission
(AE) waves. The AE method is widely used to determine the coordinates of developing defects
and assess the current state of structural materials. Therefore, the solution of problems on the
dynamic occurrence of voids is both theoretical and applied. Knowing the calculated waveforms
and comparing them with those obtained by the AE equipment it is possible to estimate the
dimensions and features of the location in the material of the defect that caused the wave with
the corresponding characteristics.
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Quantum fracturemechanics deals with the problems of propagation ofAEwaves in amaterial
from detected defects [10]. Mathematically, this is modeled using delta functions, but it should
be noted that in the equations of wave problems often there is some constant V ∗, which describes
the volume of the newly formed void.

Studies conducted with the participation of the author, in particular [11, 12], show a relati-
onship between the dynamic processes occurring during the formation and merging of voids and
the characteristics of AE signals. Thus, the abstract spherical AE source used in calculations
acquires a specific physical meaning.

The calculation will further show which waves types make the most significant contribution
to the recorded AE parameters which frequency bands are most suitable for their registration, and
how the size of the void formed is related to the amplitude characteristic of the received AE signal.
There are two main types of waves that are of practical importance in AE diagnostics-surface
waves (Rayleigh) and internal waves (Lamb). The calculation allows their comparative analysis.

We will solve the problem for a plate of infinite dimensions with a thickness δ, bounded
above and below by flat surfaces. This will make it possible to calculate the movement of waves
over a distance sufficiently large for practice.

Let us assume that a tensile load Q acts on the plate material. The deformation under
loading increases monotonically from some initial state. In this case, the medium is considered
continuous, and the appearance of a spherical defect occurs at time t0 in the weakest point of the
material, described by a point with coordinates (0, z0) in a cylindrical coordinate system. In this
case, there is a sharp increase in the volume of the newly formed void, which is characterized by
a rapid reset of the deformation to zero or to some minimum value for a given period.

A new approach in compiling the deformation equation is to provide an unambiguous relati-
onship between the wave frequency p and its wavenumber α through the wave propagation
velocity C :

δ+(p± iαC). (1)

Expression (1) allows one to linearize the problem being solved.
For the calculation, the critical time t0 is important, when the deformation abruptly changes

its value. The process of material deformation up to the moment t0 is monotonic. Dynamics
arises at the t0 moment and can be described by the impulse function δ+(t− t0). If moving the
origin of coordinates in time to the t0 point, then the distribution of the volume V ∗0 suddenly
changed at a depth V ∗0 from the surface of the plate along the coordinate and time axes can be
represented as the product of δ+ functions:

ε∗ =
V ∗0
2πr

δ+(r)δ+(t)δ+(z − z0)δ+(p± iαC), (2)

where ε∗ — relative initial strain (m3), V0
∗ — newly emerged volume of empty space inside

the plate, δ+(r), δ+(z − z0) — infinitesimal positive increments of the specified space in the
direction of coordinates r and z, δ+(t− t0) — an infinitesimal positive increment of time during
which the described deformation impulse occurs.
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The problem can be solved by the method of integral transformations which allows summing
up solutions expressed by infinitesimal elementary waves and satisfying boundary, initial, and
physical conditions. The sum of such elementary waves determines the total common wave
propagating in the plate. Note that in this way it is possible to obtain the sum of only several
individual elementary waves that satisfy the given conditions, and, if necessary, one elementary
wave. This provides wide opportunities for the analysis of wave processes of varying complexity.

Let us derive the differential equations of the wave problem under the assumption that at time
t0 there are initial deformations ε∗.

Representation of an internal defect in the form of δ+ functions product makes it possible to
obtain dynamic damage of the plate material in the form of a spherical discontinuity.

Let us assume that the source-defect appeared in the plate in the form of a microexplosion
with volume V ∗0 during a very short time interval with elastic wave motion symmetric in all
directions. Then the equations describing the propagation of waves can be written as:

∇2ϕ− 1

C2
1

∂2ϕ

∂t2
= −1 + ν

1− ν
V ∗0

δ(r)

2πr
δ(z − z0)δ(t)δ(p± iαCα),

∇2ψ − 1

C2
2

∂2ψ

∂t2
= 0.

(3)

where ϕ and ψ are functions defining displacements in the plate; t — time, ν —Poisson’s ratio,
C1, C2 — propagation velocities of longitudinal and transverse waves, respectively, Cα, p, α —
parameters of elementary waves in a packet forming a wave (velocity, frequency, wavenumber),

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2
.

Let’s solve system (3) under the assumption that the body is bounded from two sides and the
conditions σz = τrz = 0 at z = 0, δ are met on the boundary.

In this case, the initial conditions of the problem are determined by the function δ(t − t0)
what indicates that at t = t0 a radiation source has appeared, and at t = t0 + 0 the radiation
source has disappeared.

Applying theLaplace transformation by time t (with parameter p) and theHankel transformati-
on by coordinate r (with parameter α) gives:

∂2ϕ

∂z2
−
(
α2 +

p2

C2
1

)
ϕ = −1 + ν

1− ν
V ∗0
2π

δ(z − z0)δ(p± iαCα),

∂2ψ

∂z2
−
(
α2 +

p2

C2
2

)
ψ = 0.

(4)

Here and below, an integral transformation performed once on some expression will be
denoted by one horizontal line above it, a two-fold one by two lines.

The propagation velocities of longitudinal and transverse waves C1 and C2 are material
constants:

C1 =

√
E

ρ

1− ν
(1 + ν)(1− 2ν)

, C2 =

√
E

ρ

1

2(1 + ν)
,
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where E is the modulus of elasticity, ν is the transverse strain coefficient (Poisson’s ratio), ρ is
the density of the material.

The boundary conditions after transformations will take the form at z = 0, δ :

1

G
τ rz = 2

∂ϕ

∂z
+
∂2ψ

∂z2
+ α2ψ = 0,

1

G
σz =

(
p2

2C2
2

+ α2

)
ϕ+ α2 ∂ψ

∂z
= 0.

(5)

The solution of equations (5) is a rather complicated problem. Earlier calculations for
somewhat simpler equations of this type have shown that in the process of solution, frequently

repeating multipliers arise, like γ2 =

√
1− C2

α

C2
2

. The presence of such multipliers dictates the

search for a solution to equations (5) in two ways, since for a speed C2 greater than Cα, the
expression becomes a complex number and requires a different way of solving the equations.

We will look for a solution for each part separately. Let us first consider the case when the
wave velocity in the plates is less than the velocity C2. The solution of the boundary value
problem (4), (5) will be sought in the form:

ϕ = Cezβ1 +
P1

β1
e−|z−z0|β1 ,

ψ = Ae−zβ2 +Bezβ2 .

(6)

where

β1 =
√
α2 + p2/C2

1 , β2 =
√
α2 + p2/C2

2 , P1 =
1 + ν

1− ν
V ∗0
4π

δ(p± iαCα),

and ν — Poisson’s ratio, A, B and C — constants to be determined. The remaining quantities
included in the equations are described above.

Substituting the values of the functions ϕ, ψ from (6) into equations (5), we arrive at a system
of algebraic equations for determining the constants A, B, C, and the relationship between p,
α, and C :

A
(
α2 + β22

)
+B

(
α2 + β22

)
+ C 2β1 = −2P1e

−z0β1 ,

A
(
α2 + β22

)
e−δβ2 +B

(
α2 + β22

)
eδβ2 + C2β1e

δβ1 = 2P1e
−(δ−z0)β1 ,

A
(
−α2β2

)
+Bα2β2 + C

(
p2

2C2
2

+ α2

)
= −P1

β1

(
p2

2C2
2

+ α2

)
e−z0β1 ,

A
(
−α2β2

)
e−δβ2 +Bα2β2e

δβ2 + C

(
p2

2C2
2

+ α2

)
eδβ1 = −P1

β1

(
p2

2C2
2

+ α2

)
e−(δ−z0)β1 .

(7)

The fourth equation of system (7) defines the relation between wave numbers α, elementary
wave velocities C and their frequency characteristics p. This is the so-called spectral equation
of the plate. It determines the existence of certain waves.
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We solve the system of the first three equations for A, B, C and substitute the found coeffi-
cients into the fourth equation. Having then done the inverse Laplace transformation (integrating
over p in the range from −i∞ to i∞), we obtain, considering that

γ1 =

√
1− C2

α

C2
1

, γ2 =

√
1− C2

α

C2
2

, P0 =
1 + ν

1− ν
V ∗0
4π2

.

relationship equation between α and Cα/C2 :
2γ2
∆1

cosh[αγ1(δ − z0)]
{[(

1 + γ22
)2 − 4γ1γ2

]
e−αγ2δ +

[(
1 + γ22

)2
+ 4γ1γ2

]
eαγ2δ

}
−

− 1

2∆1

{
1

γ1

(
1 + γ22

)4
eαγ1(δ−z0) sinh(αγ2δ)+

+ 4γ2
(
1 + γ22

)2
eαγ1(δ−z0) cosh(αγ2δ) + 4γ2

(
1 + γ22

)2
eαγ1z0

}
−

− 1

2γ1

(
1 + γ22

)
e−αγ1(δ−z0) = 0, (8)

where

∆1 = −
(
1 + γ22

)3
sinh(αγ2δ)− 4γ1γ2

(
1 + γ22

) [
cosh(αγ2δ)− eαγ1δ

]
.

Letting δ tend to infinity in the spectral equation (8) and carrying out simple transformations,
we obtain a simpler equation for determining the wave propagation velocity in thick plates:

4γ1γ2 −
(
1 + γ22

)2
= 0. (9)

Substituting C2
1 from the ratio C2

2

C2
1

=
1− 2ν

2(1− ν)
to γ1, with ν = 0.3 we get

γ1 =
√

1− 0.286C2
α

/
C2
2 .

Solving equation (9) under these conditions, we obtain the velocity of the propagating wave for
a plate whose thickness tends to infinity. This speed C3 = 0.927C2, in contrast to thin plates, is
constant over the entire range of wave numbers from 0 to infinity.

Let us determine the displacements of the plate surface. We express the displacement w as:

w(z) =
∂ϕ

∂z
+ α2ψ.

Using the first relation (6), we rewrite the expression in the following form:

w(z) = β1Ce
zβ1 + P1e

−(z0−z)β1 + α2
[
Ae−zβ2 +Bezβ2

]
for z ≤ z0. (10)

Applying the inverse Laplace and Hankel transformations to expression (10), at z = 0 we obtain:

w =

∞∫
0

α
[
αγ1C + P0e

−αγ1z0 + α2(A+B)
]
J0(αr) sin(αCαt)dα, (11)
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where

P0 =
1 + ν

1− ν
V ∗0
4π2

.

The displacement of value w on the plate surface (z = 0) is determined after substituting the
values of the coefficients A, B, and C into expression (11) and integrating within the indicated
limits.

It should be noted that equation (8) in the range of wave velocities from 0 to C2 in thick
plates allows the existence of one wave propagating at a speed of C3 = 0.927C2.

Then, considering what has been said, for large values of αγ1δ, expression (11) can be
rewritten as:

w ≈ −1 + ν

1− ν
V ∗0
4π2

1− γ22
1 + γ22

∞∫
αn

α exp(−αγ1z0)J0(αr) sin(αC3t) dα. (12)

Integration is limited from the lower side by the limiting value of the wavenumber αn, at
which the wave propagation velocity reaches the calculated value of 0.927C2. If we set the plate
thickness to infinity (which in practice is approximately 2.6 cm or more), the lower limit of
integration can be taken equal to zero. Then integration within the range from 0 to infinity in
formula (12) becomes possible. After integration, we get:

w = −1 + ν

1− ν
V ∗0
4π2

1− γ22
1 + γ22


√

(γ1z0)3 + (C3t)2{
[(γ1z0)2 − (C3t)2 + r2]2 + (2γ1z0C3t)2

}3/4
×

× sin

{
arctan

(
C3t

γ1z0

)
− 3

2
arctan

[
2γ1z0C3t

(γ1z0)2 − (C3t)2 + r2

]} , (13)

where

γ1 =

√
1− C2

3

C2
1

, γ2 =

√
1− C2

3

C2
2

, C3 = 0.927C2.

It should be noted that in formula (11) each elementary wave is determined by its propagation
velocity and its limitingwavenumber α. Thus, in the general case, the calculation ofwaves is carri-
ed out according to the same formula (11) but at different values of velocities and wavenumbers.

So, for large values of αγ1δ formula (11) has been simplified. The value of the lower limit of
integration in (12) αn is the value of the wave number, at which, for a given plate thickness, zero
is provided in the spectral equation (6).

The displacement of the plates outer surfaces consists of two components: in the direction of
the z axis — the w component caused by transverse waves, and in the direction of the r axis —
the u component caused by the action of the longitudinal wave.

It can be shown that the second component for waves moving at velocities less than C2 can be
neglected due to its smallness compared to the first. So, if the longitudinal displacements in the
plate from the action of an instantaneous radiation source in the converted form can be written
as
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u =
∂

∂r

(
ϕ+

∂ψ

∂z

)
,

then the formula for determining the displacements u of the upper surface of the plate in the
direction of the r axis can be written as:

u =

∞∫
αn

α2

[
C +

P0

αγ1
e−αγ1z0 − αγ2(A−B)

]
sin(αCαt)J1(αr)dα, (14)

and for plates with large values of αγ1δ after substituting the values of the coefficients A, B,
and C we get:

u =
1 + ν

1− ν
V ∗0
4π2

1− γ22
2γ1

∞∫
αn

αJ1(αr) sin(αC3t)e
−αγ1z0 dα.

After integrating this expression from zero to infinity, we get:

u =
1 + ν

1− ν
V ∗0
4π2

1− γ22
2γ1


r sin

[
3

2
arctan

2γ1z0C3t

(γ1z0)2 + r2 − (C3t)2

]
{

[(γ1z0)2 + r2 − (C3t)2]
2 + (2γ1z0C3t)2

}3/4

 . (15)

Calculations of displacements u and w show that the magnitude of displacements for a thick
plate in the direction of the r axis caused by the action of a longitudinal wave is approximately
2 times less than the displacements caused by a transverse wave.

Let us now consider the case when the wave velocity in the plates exceeds the velocity C2.

We can write the solution of equations (4), (5) for this case in the form:

ϕ = Cezβ1 +
1 + ν

1− ν
V ∗0
4π

e−|z−z0|β1

β1
δ+(p± iαCα),

ψ = A sin(zβ2) +B cos(zβ2),

where ν is Poisson’s ratio, A, B and C are constants that need to be determined,

P1 =
1 + ν

1− ν
V ∗0
4π

δ(p− iαCα), β1 =

√
α2 +

p2

C2
1

, β2 =

√
p2

C2
2

+ α2.

The rest of the quantities included in the equations are described above.
Substituting the expressions for ϕ and ψ into the equations of boundary conditions (5), we

obtain:

B
(
α2 − β22

)
+ C 2β1 + 2P1e

−z0β1 = 0,

A
(
α2 − β22

)
sin(δβ2) +B

(
α2 − β22

)
cos(δβ2) + 2Cβ1e

δβ1 − 2P1e
−(δ−z0)β1 = 0,

−Aα2β2 − C
(
p2

2C2
2

+ α2

)
− P1

β1

(
p2

2C2
2

+ α2

)
e−z0β1 = 0,
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−Aα2β2 cos(δβ2) +Bα2β2 sin(δβ2)−

− C
(
p2

2C2
2

+ α2

)
eδβ1 − P1

β1

(
p2

2C2
2

+ α2

)
e−(δ−z0)β1 = 0. (16)

After performing the inverse Laplace transformation for the first three equations (16) and
solving the system, we find expressions for the coefficients A, B, C, and after substituting the
values of the coefficients A, B, C into the fourth equation (16), we obtain the spectral equation
of the plate for the case when C > C2 :

eαγ1δ

2γ1

(
1− γ22

)2
sin(αδγ2)e

−αγ1z0 + 4γ1γ2
[
e−αγ1(δ−z0) + cos(αδγ2)e

−αγ1z0
]

4γ1γ2 [cos(αδγ2)− eαδγ1 ] +
(
1− γ22

)2
sin(αδγ2)

(
1− γ22

)
−

−
4γ2

(
1− γ22

)
cos(αδγ2) cosh [αγ1(δ − z0)]

4γ1γ2 [cos(αδγ2)− eαδγ1 ] +
(
1− γ22

)2
sin(αδγ2)

+

+
16γ1γ

2
2 sin(αδγ2) cosh [αγ1(δ − z0)](

1− γ22
) [

4γ1γ2 (cos(αδγ2)− eαδγ1) +
(
1− γ22

)2
sin(αδγ2)

]−
− 1− γ22

2γ1
e−αγ1(δ−z0) = 0. (17)

Knowing the spectral equation of the plate (17), i.e., relationship between the wavenumber α
and the propagation velocity of elementary waves C, we can determine the displacements w that
occur in the plate when waves move with velocities exceeding C2. Thus, displacements on the
plate surface at z = 0 with the accepted initial conditions after performing the inverse Hankel
transformation by α and Laplace by p will have the form:

w =

∞∫
0

P0

{
−
(
1− γ22

)2
sin(αδγ2)e

−αγ1z0 + 4γ1γ2
[
e−αγ1(δ−z0) + cos(αδγ2)e

−αγ1z0
]

4γ1γ2 (cos(αδγ2)− eαδγ1) +
(
1− γ22

)2
sin(αδγ2)

+

+
16γ1γ2 cosh [αγ1(δ − z0)](

1− γ22
) [

4γ1γ2 (cos(αδγ2)− eαδγ1) +
(
1− γ22

)2
sin(αδγ2)

] + e−αγ1z0

}
×

× αJ0(αr) sin(αCαt) dα. (18)

Displacements of the plate surface during wave propagation will consist of the sum of
displacements determined by formulas (11) (Rayleigh wave) and (18) (Lamb wave).

For a plate of infinite dimensions, the number of roots of the spectral equation will be infinite.
However, the numerical method for calculating w requires limiting the upper limit of integration
to a specific value. The necessary accuracy of the calculations was achieved by limiting the
number α so that its further increase would not lead to noticeable errors in the calculations of w.

It can be noted that all orders of waves obtained from the spectral equation single out one
wave in the entire frequency range, moving at a speed of 0.4433 cm/µs. This wave represents the
main, largest displacement of the plate surface, which is typical for Lamb waves.
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To implement the calculation of displacements w, we will perform integration in expressi-
on (18) considering the discreteness of C values for continuous values of the wavenumber α.

In this case, we will assume that the values of the integrand will be determined as the sum of
its values for each Ci determined from expression (17). Then:

w =

∞∫
0

k∑
i=1

P0

{
−
(
1− γ22

)2
sin(αδγ2)e

−αγ1z0 + 4γ1γ2
[
e−αγ1(δ−z0) + cos(αδγ2)e

−αγ1z0
]

4γ1γ2 [cos(αδγ2)− eαδγ1 ] +
(
1− γ22

)2
sin(αδγ2)

+

+
16γ1γ2 cosh [αγ1(δ − z0)](

1− γ22
) [

4γ1γ2 [cos(αδγ2)− eαδγ1 ] +
(
1− γ22

)2
sin(αδγ2)

] + e−αγ1z0

}
×

× αJ0(αr) sin(αCαt) dα, (19)

where

γ1 =

√
1−

C2
i

C2
1

, γ2 =

√
C2
i

C2
2

− 1, P0 =
1 + ν

1− ν
V ∗0
4π2

.

Here the values γ1 and γ2 also have the i-th index. In the above formula, these indices are
not affixed to avoid unnecessary difficulty in reading the expression. Integration (19) is possible
only by a numerical method and is performed as follows:

1. From the spectral equation (19) find the values of velocities Ci for each given value of the
wavenumber αi.

2. For the selected rj , the total value of the integrand over k is plotted along the αi axis for
all k orders of the roots Ci.

3. Integrate expression (19) for the obtained values of the integrand and proceed to the next
value rj+1.

4. Repeat steps 1 – 3 for all values of rj .
Thus, the necessary procedures for calculating wave processes on a computer were prepared

and programs were created that calculate wave fields in plates by summing elementary waves
determined by given boundary and initial conditions.

Useful ways to apply the results of calculations are the optimization of the measured
parameters of equipment based on the AE principle and the analysis of AE data.

Conclusions. An original method for calculating wave fields is proposed, based on the
relationship betweenwave speed, frequency, andwave number, using the summation of elementary
waves in the spectrum.

The spectral equation makes it possible to determine the elementary waves that exist under
given conditions.

The advantage of themethod is the possibility of obtaining variouswave parameters depending
on the established boundary and initial conditions determined by the spectral equation.

The equations obtained as a result make it possible to calculate the wave fields for the Rayleigh
and Lamb waves with sufficient accuracy for practice.
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