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The purpose of this article is to investigate the existence of solutions for a nonlinear fractional differential
inclusion in the sense of hybrid Caputo-proportional fractional derivatives (HCPFDs) in Banach space.
The main result is discussed using the set-valued concern from the Monch fixed point theorem along with
the Kuratowski measure of non-compactness. An example is used to demonstrate theoretical findings.

MerTor0 i€l podOTH € TOCTIIKEHHS iICHYBaHHS PO3B’ I3KiB HEJIIHIMHIX Ip0o00BUX MUdepeHITiaTbHIX BKITO-
YeHb y CeHcl IpobOBMX MOXIITHUX, ITpomnopiiiHux 3a KamyTto y ipoctopi banaxa. 3 BUKOpHCTaHHSIM TeO-
peMu MBOHXa PO HEPYXOMY TOUKY i Mipyd HEKOMIAKTHOCTI KypaTOBCHKOro mpoaHajii3oBaHO TOJIOBHUIA
pesyabraT. HaBeneHo npukiam, SKUX LTFOCTPYE OTpUMaHi TEOPEeTUYHI pe3yabTaTH.

1. Introduction. In the past two decades, fractional calculus has become widespread due to its
great relevance to reality and their dignified influence in describing several real-world problems
in physics, mechanics and engineering. For intance, we refer the reader to the works [1—11].

For fractional derivatives and fractional integrals, there are a variety of methods to define
them, including the Riemann — Liouville method, Caputo method, Marchand method, tempered
method, Hilfer method, and Atangana — Baleanu method [9, 12 — 14]. According to their structure
and qualities, these various definitions can be grouped together into general classes [15].
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The so-called Caputo fractional derivative is of special interest when dealing with fractional
differential equations (FDEs). When applied with FDEs, the Caputo fractional derivative requires
more natural initial conditions than the Riemann — Liouville fractional derivative [ 10]. When other
fractional derivatives are made from the fractional integral operators, they are called “Riemann —
Liouville type” or “Caputo type.” These two are so important that many other fractional derivatives
are made from them. While the standard ( NV -order) derivative of the fractional integral is used
to derive the Riemann —Liouville fractional derivative (RLFD), that used to derive the Caputo
fractional derivative (CFD) is derived by applying the fractional integral to a standard function
derivative.

In 2014, [16] introduced the concept of conformable derivatives as a local, limit-based
definition. In the beginning, it was thought of as a conformable fractional derivative. However,
it doesn’t have all of the properties that make fractional derivatives useful. Other studies have
extensively researched this operator, its features, and applications, with [17] being one of the
most notable.

Recently, a new type of fractional derivative, called proportional Caputo fractional derivative
is introduced in [18]. In the case of constant kernals this type of derivative is applied for model
and study investigate the HIV epidemic [19], in [20] for fractional building heating and cooling
model, in [21] for study the unsteady and incompressible viscous fluid flow, in [22] to discussed
the fractional model of Brinkman type fluid holding hybrid nanoparticles, in [23] to study the
unsteady and an incompressible magnetohydrodynamic viscous fluid with heat transfer. In the
case of general kernels this type of derivative is applied in [24, 25] to obtain existence results and
the Ulam stability.

Due to the importance of fractional differential inclusions (FDIs) in mathematical modeling of
problems in game theory, stability, optimal control, and so on. For this reason, many contributions
have been investigated by some researchers [26 —32].

On the other hand, the theory of measure of noncompactness is an essential tool in investigating
the existence of solutions for nonlinear integral and differential equations, see, for example, the
recent papers [33 —37] and the references existing therein.

In [38], Benchohra et al. studied the existence of solutions for the FDIs with boundary
conditions

CDry(t) € G(t,y(t)), ae.on [0,T], 1<r<2,
y(0) =yo, y(T)=yr,

where €D’ is the CFD, G: [0,T] x E — B(E) is a multi-valued map, yo,yr € E and (E, |- |)
is a Banach space.

In the present work, we are interested in studying the existence of solutions for the following
nonlinear FDIs with the HCPFDs:

PCDex(t) € F(t,z(t)), ae.on J:=[0,0, 0<a<l,
(1.1)
z(0) = xg,

where F§'Dg denotes the HPCFD of order «, (E,|-|) is a Banach space, 3(E) is the family
of all nonempty subsets of E, zp € E and F': J x E — B(E) is a given multi-valued map. By

using the set-valued issue of Monch fixed point theorem along with the Kuratowski measure of
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noncompactness, we investigate the inclusion problem (1.1) in the case when the right hand side
is convex-valued.

It is worth noting that the relevant results of FDIs with the HPCFDs are scarce. So the main
goal of the present work is to contribute to the development of this area.

2. Preliminaries. We explore the new definitions of the generalized HPCFD.

Definition 2.1 [18]. The HPCFD of order o € (0,1) of a differentiable function ¢(t) is
given by

¢
POCD,?‘ (1) 1—a / k:1 (a, 7)g(t) + ko(a, 7)g’ (t))(t—T)_o‘dT,

0

where the domain of the function is determined by requiring that g be differentiable and that both
g and g’ be locally L' functions on the positive reals, ko, k1 : [0,1] x R — [0, 00) are continuous
Sfunctions of the variable t and the parameter o € [0, 1] which satisfy the following conditions

forall t € R:

lim ko(a,t) =0, lim ko(a,t) =1, ko(a,t) #0, «€(0,1],
a—07t a—1—
lim kq(a,t) =1, lim ki(a,t) =0, ki(a,t)#0, «a€]l0,1).
a—0t a—1-
Definition 2.2 [18]. The inverse operator of the HPCFD of order is given by
t ¢
ki (a, s) REDl=ag(u)
PCra 1%, 0 ~u
Iig(t) = — d d 2.1
o Zi'g(t) /GXP /ko(a,s) s Folaw) (2.1
0 u

REpl-ag(uy = L / (u— 5)*Lg(s) ds. 22)
0

We suggest the reader to Kilbas et al. [5] for further information.
Proposition 2.1 [18]. The following inversion relations:
lim I g(t),

PCrya PCra _ _

t
@ fe% kl(a7s)
T DR = glt) — e | - [ THEds ) 0)
0

are satisfied.

Proposition 2.2 [18]. The HPCFD operator Y§D§ is nonlocal and singular.

Remark 2.1 [18]. We obtain the following exceptional instances from the limiting cases
a—0and a — 1:

a—0

t
i "Dpg(t) = [ g(r) dr
0

lim  EDRg(t) = ¢'(1).

a—1
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Denote by C(J, E) the Banach space of all continuous functions from J to E with the norm
|z|| = sup,ey |z(t)|. By L*(J, E), we indicate the space of Bochner integrable functions from J
b

o E with the norm [z, = / 2 (8)] dt.

2.1. Multi-valued maps argalysis. For the Banach space (E, |- ), let Ba(E) = {Z € P(E):
Z is closed}, Pra(E) = {Z € P(E): Z is bounded}, Pep(E) = {Z € P(E): Z is compact},
and Peyx(E) = {Z € P(E) : Z is convex }.

— A multi-valued map : E — PB(E) is convex (closed) valued, if $(x) is convex (closed)
for all z € E.

— 4l is bounded on bounded sets if U(B) = Uyepi(z) is bounded in E for any B € Ppa(E),
i.e. sup,cp{sup{|ly||: y € U(z)}} < 0.

— il is called upper semi-continuous on E if for each z* € E, the set 4(x*) is nonempty,
closed subset of E, and if for each open set N of E containing $((z*), there exists an open
neighborhood N* of x* such that Y(N*) C N.

— il is completely continuous if £((B) is relatively compact for each B € Ppq(E).

— If 4 is a multi-valued map that is completely continuous with nonempty compact values,
then 4 is u.s.c. if and only if & has a closed graph (that is, if =, — =g, yn — yo, and y,, € U(x,),
then gy € ﬂ(mo)

For more details about multi-valued maps, we refer to the book of Deimling [39].

Definition 2.3. A multi-valued map F : J x E — PB(E) is said to be Carathéodory if

(i) t— F(t,x) is measurable for each u € E;

(i) x — F(t,z) is upper semi-continuous for almost all t € J.

We define the set of the selections of a multi-valued map F' by

Spe={f € L'(J,E): f(t) € F(t,x(t)) forae. t € J}.

Lemma 2.1 [40]. Let J be a compact real interval and E be a Banach space. Let F be
a multi-valued map satisfying the Caratheodory conditions with the set of L' -selections Sg.,,
nonempty, and let © : L'(J,E) — C(J, E) be a linear continuous mapping. Then the operator

Oo SFJ . C(J, E) — mbd,cl,cvx(C(Jv E)), €T — (@ o SF7$)(QJ) = @(SFJ)

is a closed graph operator in C(J,E) x C(J,E).

2.2. Measure of noncompactness. We specify this part of the paper to explore some important
details of the Kuratowski measure of noncompactness.

Definition 2.4 [41]. Let Ag be the family of bounded subsets of a Banach space E. We
define the Kuratowski measure of noncompactness r: Ag — [0,00] of B € Ag as

k(B) = inf{e >0:BC U B; and diam(B;) < e}.

=1

Lemma 2.2 [41]. Let C,D C E be bounded, the Kuratowski measure of noncompactness
possesses the next characteristics:

i) k(C) =0« C is relatively compact;

i) CC D= k(C) <kr(D);

iii) x(C) = k(C), where C is the closure of C;
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iv) k(C) = k(conv(C)), where conv(C) is the convex hull of C;

V) kK(C+ D) <k(C)+ k(D), where C+D ={u+v:ue C,veD};

vi) k(vC) = |v|k(C), for any v € R.

Theorem 2.1 (Mdnch’s fixed point theorem [42]). Let Q2 be a closed and convex subset of a
Banach space E; U a relatively open subset of Q, and N : U — B(Q). Assume that graph N is
closed, N maps compact sets into relatively compact sets and, for some xy € U, the following
two conditions are satisfied:

(i) G CU, G C conv(zg UN(Q)), G = C implies G is compact, where C' is a countable
subset of G;

() z ¢ (1 — pzo + pN(z) Yu e U\U, 1€ (0,1).

Then there exists x € U with x € N (z).

Theorem 2.2 [43]. Let E be a Banach space and C C L'(J, E) countable with |u(t)| < h(t)
fora.e.t € J, andevery u € C; where h € L*(J,R..). Then the function z(t) = x(C(t)) belongs
to L*(J,Ry) and satisfies

ﬁ({/bu(f) dr:u e c}) < 2/b,<(0(¢))d7.

0 0

3. Main results. This section begins with a definition of an inclusion problem solution (1.1).

Definition 3.1. A function x € C(J,E) is said to be a solution of the inclusion problem (1.1)
if there exist afunction f € L'(J,E) with f(t) € F(t,z(t)) fora.e. t € J, suchthat T§ D¢z (t) =
= f(t) on J, and the condition x(0) = x is satisfied.

Lemma 3.1. For 0 < a < 1 and h € C(J,R) the solution x of the linear hybrid Caputo-
proportional FDE

{P&‘D?x(t) =h(t), ted, o

x(0) = xo,

is given by the following integral equation:

x(t) = exp ( (o, 5) ds) xo +

a /{30(0&,8)
0

o 1) /t /“ eXp( / 3 d5> (Z()_(;’)Z)_Qh(ﬂ drdu, ted.
0 0

u

Proof. Applying the operator £)°I¢(-) on both sides of (3.1), we get
PO 12 PCDRa(t) = EOIR().
By using (2.1) and (2.2) together with Proposition 2.1, we get

[ (o) g [ Ki(ans)  \BEDLoh(u)
x(t) — exp ( J Fo(a, S)ds) z(0) = O/exp ( Fo(a, S)ds) 0 Fo(o ) du =

u
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t
— L e _ kl(@,S) 1 i o a 1 2
= (a)o/e p( /ko(a,s)d) ) du O/U 7)Y h(7) dT du. (3.2)

By using the following Leibniz’s rule:

az(u) az(u)

% / w(u, 7)dr = / % w(u, 7) dr 4+ w(u, as(u))ay(u) — w(u, ai(u))a (u),
(u) a1 (u)

ay

where w(u,7) = (u — 7)* 1h(7), ai(u) = 0, and as(u) = u, we obtain that

(% (u— T)a_lh(’i') dr = (a—1) /(u — T)O‘_Qh(T) dr. (3.3)

0 0

Therefore, the substitution from (3.3) in (3.2), we get

t
kl (Oé, S)
t) = - d
x(t) exp( /kg(a,s) s)xo—i-
0
L [ Kales) |\ (u=r)?
1(a, s u—T)%"
- — d h(7) dt du.
TTa-1 //eXp( /ko(a,s) S) Fola,u) () drdu
0 0 u
This completes the proof.
Remark 3.1. The result of Lemma 3.1 is true not only for real valued functions = € C(J,R)
but also for a Banach space functions =z € C(J, E).
Lemma 3.2. Assume that F': J x E — B(E) satisfies Carathéodory conditions, i.e., t —
— F(t,z) is measurable for every r € E and x — F(t,z) is continuous for every t € J. A

function z € C(J,E) is a solution of the inclusion problem (1.1) if and only if it satisfies the
integral equation

T a,s) (u—71)22
a—l 0/0/ ( / s)d8> Fo(. 1) f(r)dr du,

where f € L*(J,E) with f(t) € F(t,z(t)) fora.e. t € J.
The major outcome of the current study is now ready to be presented.

Theorem 3.1. Let o > 0, K = {z € E: ||z|| <o}, U = {x € CJ,E): |z| < o}, and
suppose that:

(H1) The multi-valued map F: J x E = Bep cvx(E) is Carathéodory,
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(H2) For each o > 0, there exists a function o € L'(J,R.) such that

1B @)l = {1f]: f(8) € F(t,2)} < o(b),

fora.e. t € J and x € E with |x| < o, and

b
/ o(t)dt
lim inf 29—

0—00 Q

=/ < o0.
(H3) There is a Carathéodory function ¥ : J x [0,20] — Ry such that
K(F(t,G)) < 9(t K(G)),

a.e. t € J and each G C K, and the unique solution 6 € C(J,[0,2¢]) of the inequality

153

L Res) @)
9(t)<2{r<a1)//exp< /ko(a,s) ds) e ﬁ(T,n(G(T)))deu}, e,

0 0 u

is 0 =0.
Then the inclusion problem (1.1) possesses at least one solution, provided that

F(O‘)jwko

14
< y

where My, = infiey |ko(a, t)| # 0.
Proof. Define the multi-valued map NV : C(J,E) — B(C(J,E)) by

feCJ,E):

Wyt = {0 = exp(‘ /0 ZQEZZ ; dS) zo +

(3.4)

+ F(al_l) /Ot /0“ exp(— /ut :;EZ: Z; ds) (1;0_(;7)2)_211)(7) drdu, w € Sp .

In accordance with Lemma 3.2, the fixed points of A are solutions to the inclusion problem (1.1).
We shall show in five steps that the multi-valued operator N satisfies all assumptions of Monch’s

fixed point theorem (Theorem 2.1) with U = C(J, K).
Step 1. N (x) is convex, for any = € C(J,K).
For f1, fo € N(x), there exist w;, wy € S, such that for each ¢ € J, we have

fi(t) = exp (/ :;EZ’ z; ds) xo +
0

1 rr B t/ﬁ(a,s) (u —7)>2 ' o
+F(041)0/0/exp( ko(a, s) ds) ko(or, ) wi(r) dr du, i=1,2.

u
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Let 0 < p < 1. Then, for t € J,

(ufi+ (L= )0 = p( [ e ds) o +
0

rr / a, s u—7)% 2
=1 / exp (/ Z;Ea: 33 ds) ( ko(a)u) (pwy + (1 — p)we)(7) d7 du.
0 u

Since S, is convex (because F' has convex values), then pf; + (1 — p) fo € N(x).

Step 2. For each compact G € U, N(G) is relatively compact.

Let {f,} be any sequence of N(G), and let G € U be a compact set. By using the Arzela—
Ascoli criterion of noncompactness in C'(J, KC), we prove that { f,,} has a convergent subsequence.
Since f,, € N(G), there exist x,, € G and w,, € Sp,,, such that

fn(t) = exp (O/t Z;EZ:Z; ds) To +
i ( [t ds) o ey

u

for n > 1. As aresult of the Kuratowski noncompactness measure and Theorem 2.2, we have

T k1 (o, s)
ﬁ({fn(t)})<2{ " 0// ({p< ko(a7s)ds)<
o) ) n>1}>d7’du} (3.5)
= kola,uw) VT T ’ :

The set {w,(7): n > 1}, on the other hand, is compact since G is compact. Hence,

k{wp(r):n>1}) =0

fora.e. 7 € J. Therefore, x({f,(¢t)}) = 0 which implies that { f,,(¢) : n > 1} is relatively compact
in K for each ¢ € J. Furthermore, for each ¢1,t, € J, ¢; < to, one obtain that:

|fn(ta) — ful(t1)] < |exp (/ 2322’3 ds) Ty — exp (/ :(1)2372 ds) Zo| +
to u ( ) B
a—l //{ep( / o(a, )ds)
e[ y; k1 (a, s) ds (U_T)Q_Zw (1) dr du| +
' 0 ko(a, s) kol u) "
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7 /u exp( / 3 ds) (I;O_(;)Z)_Q wn(7) dr du.

By applying the mean value theorem to the function

a—l

on (t1,t2), we obtain that
F kuays) " k(o 5)
1, s ki (a,s
exp| — ds | —exp| — ds || =
p( O/kom,s) ) ([ R ™)

¢
beo, ([ fres g |- ks
= o0 p( / ko<a,s>d><t2 W)=

kO (O[, 5)
Therefore, we get

’(tg —tl) V§ c (tl,tg).

mwg—nmN§mﬁfﬂmmr¢o+

to u
1 ki (o —2
(ts —t1) —7)* lwn(7)|dr d
| ‘ ) 1//(u 22 (7)) dr du +
0
. to u
I _\ya—2 <
+F(a—1)Mk0 /(“ ) wn ()l dr du <
t1 0
kl 1 kl(a7£)
t —t
< ot ‘\ oltte = 1)+ T =3 | Rt 8) | <
to wu
(s — 1) // (r) dr du +
0 0
to u

drd
a—leO// )Tu

The right hand side of the preceding inequality reduces to zero as t; — to. Thus, {w,(7):
n > 1} is equicontinuous. Hence, {w,(7): n > 1} is relatively compact in C(J, K).

Step 3. The graph of A is closed.

Let x, — =4, fn € N(x,), and f, — f.. It must be to show that f, € N(z.). Now,
fn € N(z,,) means that there exists w,, € Sp, such that, for each t € J,

falt) = exp ( e ds) o +
0
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t u t
_ exp| — Fa(, 5) s (U_T)aﬂw T)dr du
+ INa—1) 0/0/ p( /ko(a,s)d> ko(a, u) n(7) dr du,

u

Consider the continuous linear operator © : L(J,E) — C(J, E),

O(w)(t) = falt) = exp ( / Z;EZ 3 ds) 2o +
0

1 [ B tkl(a,s) (u—7)2
—i-r(al)o/o/exp( /ko(a,s) ds) ol 1) wp(7) d7 du.

u

It is obvious that ||f, — f«]| = 0 as n — oo. As a result of Lemma 2.1, we can conclude that
© o Sp is a closed graph operator. Additionally, f,(t) € ©(SFy, ). Since, x, — z,, Lemma 2.1
gives

t u t
1 ki(a,s) (u—71)22
+ Mo — 1) //exp( /ko(a,s) ds) o) w(7) dr du,
0 0
for some w € Sp ;.

Step 4. G is relatively compact in C'(J, K).

Assume that G C U, G C conv({0} UN(G)), and G = C, for some countable set C' C
C G. By using a similar approach as in Step 2, one can obtain that A/(G) is equicontinuous. In
accordance to G C conv({0} UN(G)), it follows that G is equicontinuous. In addition, since
C C G C conv({0} UN(G)) and C is countable, then we can find a countable set P = {f,, :
n > 1} C N(G) with C C conv({0} U P). Thus, there exist x,, € G and w,, € Sp,,, such that

=exp| — | F(a, ) s |z
1 [ B / ki(a, s) (u—7)*2
+ Ta=1) O/O/exp< u/k‘o(a,s) ds) o (o, 1) wy(7) dT du.
In the light of Theorem 2.2 and the fact that G € C' C conv({0} U P), we get
R(G(D) < K(T(1) < K(P1) = w({falt) : n > 1)).

By virtue of (3.5) and the fact that w, (7) € G(7), we get
r(G(1)) <

L B [ilays) | (w=r)e? :
Aol o))
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t u t
71 — kl(a78) S (u_T>a72/€ T T au
ol oo - et Sy aiarn <

0 0
o o xp | — tkl(a,s) s (u—7) 7,k(G(7))) dT du
<2{rm1%/!ep( /kdm@d> o (v, ) W’(G(””Zd}-

Additionally, the function ¢ represented by 6(t) = x(G(t)) belongs to C(J,[0,2¢]). Hence, by
(H3), 6 =0, thatis x(G(t)) =0 for all ¢ € J.

The Arzela— Ascoli theorem states that G is relatively compact in C(J, ).

Step 5. Let f € N(x) with = € U. Since z(7) < p and (H2), we have N (i) C U, because
if it is not true, there exists a function x € U but ||N'(z)| > ¢ and

f(t) =exp (/ :;EZ’;; ds) xo +
0
rr / k1 (o, s) (u—7)2
= 1 0/ exp (u/ Fo (. s) ds) Fo(a, 1) w(T) dr du,

for some w € Sp,. Alternatively, we have

¢
kl(aas)
< |INM(2)|| < |e — ds | zo| +
0 <IN (@) < xp( | )0
0
t u
/ e ds (u—7)** |w(T)| dr du <
X
a—l P ko(a, )| AT AN =
0
t u
< foo| + Mk // )2 Ju(7)| dr du =
°0 0
|1:0|+ Mk // V42w (r)| dudr =
0
= fzol + p jw / )2 ()| dr <

t b
t b
< Y dr < —_— dr.

Dividing both sides by ¢ and taking the lower limit as ¢ — oo, we infer that I‘(ojMé >1
ko
which contradicts (3.4). Hence N (U) c U
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As a result of Steps 1-5 and Theorem 2.1, we may deduce that A/ has a fixed point
x € C(J,K) that is a solution to the inclusion problem (1.1).

4. Example. Consider the fractional differential inclusion

1
FCDEx(t) € F(t,z(t)), ae.on [0,1],

4.1)
x(0) =0,
1 . . .

where o = 2 b=1, zp=0,and F: [0,1] x R — B(R) is a multi-valued map given by

_ —|z| . ’CL’| 3

x— F(t,z) = e ™ +5sint, 3 + +5t° ).
1+ 22
For f € F, one has
|f] = max( e 17l +sint,3 + 2 +53) <9, zeR.
14 22
Thus
[Pl = {1f]: 1 € Ft0)} = max(e 4 sine 3+ 17 450 ) <ot
x

for t € [0,1], x € R. Clearly, the value of F' is compact and convex valued, and it is upper
semi-continuous.
Furthermore, for (¢,z) € [0,1]x € R with |z| < g, one has

1
/ o(t)dt
lim inf2%— =0 =/

0—00 0
Therefore, for a suitable M}, the condition (3.4) implies that

[(1/2) My,

; = My, /7 > 0.

Finally, we assume that there exists a Caratheéodory function 9 : [0, 1] x [0, 2p] — R such that
w(F(t,G)) < O(L, w(G)),

a.e. t € [0,1] and each G C K = {z € R: |z| < p}, and the unique solution # € C([0, 1], [0, 2¢])
of the inequality

1 [i(as) |\ (u— 7)o
0(t) <2{F(a1)//eXp(/k‘o(a,s) ds) Fo(. 1) ﬁ(T,n(G(T)))deu}, teld,

0 0 u

is 6 = 0.
Hence all the assumptions of Theorem 3.1 hold true and we infer that the inclusion
problem (4.1) possesses at least one solution on [0, 1].
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S. Conclusions. We expand our analysis of fractional differential inclusions in Banach space
to the case of hybrid Caputo-proportional fractional derivatives. The existence theorem of the
solutions for the suggested inclusion problem is based on the set-valued version of the Monch
fixed point theorem combined with the Kuratowski measure of noncompactness. An example
is provided to assist in comprehending the theoretical finding. In the future, we intend to use
the HCPFDs to investigate the existence, controllability, and stability of nonlinear fractional
differential equations and apply them to novel models.
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