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We consider the third-order singular perturbed differential equation with the turning point. The
asymptotics of the solution of this equation, which includes the turning point, is constructed.

Розглянуто сингулярно збурене диференцiальне рiвняння третього порядку з точкою звороту. По-
будовано асимптотику розв’язку рiвняння, що включає точку звороту.

1. Introduction. In present article we consider the equation

\bfL \varepsilon U(x, \varepsilon ) \equiv \varepsilon 5U \prime \prime \prime (x, \varepsilon ) + \varepsilon 3a(x)U \prime \prime (x, \varepsilon )+

+ \varepsilon 2b(x)U \prime (x, \varepsilon ) + c(x)U(x, \varepsilon ) = h(x), (1)

where \varepsilon \rightarrow +0, x \in I = [0; l]. We study Eq. (1) when such conditions are satisfied:

a(x), b(x), c(x), h(x) \in C\infty [I]. (2)

The purpose of this work consists in construction of uniform suitable asymptotic forms of
the solution of Eq. (1) when singularly perturbed differential equation (SPDE) (1) contains the
turning point x = 0 , i.e., when

c(x) = x\~c(x) \leq 0.

For the Liouville and Orr – Sommerfeld equations, similar problems were considered in
[1 – 10]. A typical feature of these equations is that they contain derivatives of only even orders,
which entails a significant simplification of the given problem. Obtaining the characteristic
equation for Liouville and Orr – Sommerfeld equations was not difficult, and it has traditionally
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not been given special attention. Subsequently, the results of the work [4, 5, 7] were generalized
to the systems of differential equations

\varepsilon 2W \prime \prime (x, \varepsilon ) - AW (x, \varepsilon ) = h(x). (3)

It is developpedmethod of construction even asymptotic forms of system (3) under sufficiently
broad conditions on spectrum of limit operator A (see [4, 7]).

The presence of even and odd orders in the SPDE with a turning point greatly complicates the
construction of uniform suitable asymptotics. Therefore, there are much fewer scientific studies
in this direction, compared to the studies of the Liouville and Orr – Sommerfeld equations.

One of the main works in this field is the work of Rudolf Langer [1], in which the equation

\omega \prime \prime \prime (z, \lambda ) + \lambda h1(z, \lambda )\omega 
\prime \prime (z, \lambda ) + \lambda 2h2(z, \lambda )\omega 

\prime (z, \lambda ) + \lambda 3h3(z, \lambda ) = 0, (4)

were studied under | \lambda | \rightarrow +\infty . To construct the asymptotic form of the solution of this equation,
Rudolf Langer reduced the order of the investigated equation by using one stable root of the
characteristic equation.

The idea of reducing the order of the differential equation by means of the stable root of
the characteristic equation is also used by the authors (see [2, 3, 5, 7 – 10]) in the study of the
differential equation of the type (4).

However, this method is not promising for generalizing the results to systems of differential
equations of a general type.

Significant results on SPDE systems of general type with turning points were obtained by
Wolfgang Wasow [5]. The main idea of these studies is to split the SPDE system and study a
second-order system for which the spectrum of the limit operator contains only two unstable
elements

k1,2 = \pm i
\sqrt{} 
x\~k(x).

The purpose of this work consist in following: to generalise results obtained in [4 – 7] to
general type SPDE with turning points, and then also to SPDE systems

\varepsilon W \prime (x, \varepsilon ) - A(x, \varepsilon )W (x, \varepsilon ) = h(x).

Let us show that it is possible to use themethod constructed for Liuville andOrr – Sommerfeld
equation and systems (3) (see [4, 5, 7]) also for the Eq. (1) and then for equations of general type.

First, we note the following: in the Eq. (1), the degrees of the small parameter are chosen in
such a way that the asymptotics of this equation which contains the turning point is built on the
integer degrees of the small parameter \varepsilon > 0. Therefore, to write the characteristic equation of
the scalar equation type (1) is not obvious.

To write the characteristic equation, it is necessary to convert SPDE into SPDE system:

| A(x, \varepsilon ) - \lambda E| = 0,

where A(x, \varepsilon ) — matrix corresponding to SPDE systems. After necessary transformations, we
obtain characteristic equation

\lambda 3 + \varepsilon a(x)\lambda 2 + \varepsilon 3b(x)\lambda + \varepsilon 4c(x) = 0. (5)
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In characteristic Eq. (5) we cannot get rid of low-order terms and go to additional characteristic
equation, as this is done for Noayon-type SPDE with stable spectrum. Therefore we come to
conclusion with complete characteristic Eq. (5). We write it in a form

\lambda 3(x, \varepsilon )

\varepsilon 3
+ a(x)

\lambda 2(x, \varepsilon )

\varepsilon 2
+ \varepsilon b(x)

\lambda (x, \varepsilon )

\varepsilon 
+ \varepsilon c(x) = 0

and change k(x, \varepsilon ) = \lambda (x, \varepsilon )

\varepsilon 
. We get equation

P (k(x, \varepsilon ), \varepsilon ) \equiv k3 + a(x)k2 + \varepsilon b(x)k + \varepsilon c(x) = 0 (6)

which is more convenient to work with than with the characteristic Eq. (5).
Let the roots of characteristic Eq. (6) satisfy conditions

k1(x) < 0, k2,3(x, \varepsilon ) = \pm i
\sqrt{} 
\varepsilon x\~k(x), \~k(x) > 0 for all x \in I. (7)

In this case point x = 0 is a turning point for Eq. (1) and simplified equation corresponding
to the SPDE (1), i.e., equation

c(x)\omega (x) = h(x), (8)

in the general case, has an essential discontinuity at the point x = 0.
Under the conditions (7), the characteristic Eq. (6) can be written as

P (k(x, \varepsilon ), \varepsilon ) \equiv 
\Bigl[ 
k2(x, \varepsilon ) + \varepsilon x\~k(x)

\Bigr] 
[k(x, \varepsilon ) - k1(x)] = 0.

2. Extension of the perturbation problem. By analogy with [2 – 4, 7], to separate and save
all essentially singular functions (ESF) in the SPDE solution (1), we introduce an additional
vector variable t = \{ t1, t2\} according to the rule

t1 = \varepsilon  - p1\varphi 1(x) \equiv \Phi 1(x, \varepsilon ), t2 = \varepsilon  - p2\varphi 2(x) \equiv \Phi 2(x, \varepsilon ), (9)

where factors pi and regular functions \varphi i(x), i = 1, 2, are to be determined.
By introducing additional vector variable t, according to the method of regularization [6],

instead of the function U(x, \varepsilon ) , we will study the extended function \~U(x, t, \varepsilon ). The extension
leads to the fulfillment of equality

\~U(x, t, \varepsilon )| t=\Phi (x,\varepsilon )\equiv U(x, \varepsilon ),

where \Phi (x, \varepsilon ) = \{ \Phi i(x, \varepsilon ), i = 1, 2\} . We define total derivative

ds \~U(x, t, \varepsilon )

dxs
\equiv dsU(x, \varepsilon )

dxs
, s = 1, 3,

and replace their values in the problem (1). Then, to determine the extended function \~U(x, t, \varepsilon ) ,
we obtain the extended equation

\~L\varepsilon 
\~U(x, t, \varepsilon ) = h(x). (10)
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Here, for i = 1, 2,

\~L\varepsilon \equiv 
3\sum 

i=1

\~L\varepsilon i + Y \bot 
\varepsilon ,

\~L\varepsilon i \equiv \varepsilon 5 - 3pi\varphi \prime 3
i (x)

\partial 3

\partial t3i
+ \varepsilon 5 - 2piL0i

\partial 2

\partial t2i
+ \varepsilon 5 - piL1i

\partial 

\partial t
+

+ a(x)

\biggl[ 
\varepsilon 3 - 2pi\varphi \prime 2

i (x)
\partial 2

\partial t2i
+ \varepsilon 3 - pid

\partial 

\partial ti

\biggr] 
+ b(x)\varepsilon 2 - pi\varphi \prime 

i(x)
\partial 

\partial ti
, (11)

\~L\varepsilon 3 \equiv \varepsilon 5
\partial 3

\partial x3
+ \varepsilon 3a(x)

\partial 2

\partial x2
+ \varepsilon 2b(x)

\partial 

\partial x
+ c(x),

di = 2\varphi \prime 
i(x)

\partial 

\partial x
+ \varphi \prime \prime 

i (x),

(12)

L0i \equiv 3\varphi \prime 2
i (x)

\partial 

\partial x
+ 3\varphi \prime 

i(x)\varphi 
\prime \prime 
i (x),

L1i \equiv 3\varphi \prime 
i(x)

\partial 2

\partial x2
+ 3\varphi \prime \prime 

i (x)
\partial 

\partial x
+ \varphi \prime \prime \prime 

i (x).

The operator Y \bot 
\varepsilon contains a removable derivative of t1 and t2 and will subsequently play the

role of an annihilator. Therefore, it makes no sense to write it down explicitly.
3. Spaces of nonresonance solutions. We consider sets (subspaces) of functions

Yr1 = \{ \alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1\} , Yr2k = \{ Vrk(x)Uk(t2) +Qrk(x)U
\prime 
k(t2)\} ,

Yr3 = \{ fr(x)\psi (t2) + gr(x)\psi 
\prime (t2)\} , Yr4 = \{ \omega r(x)\} ,

where \alpha r(x), Vrk(x), Qrk(x), fr(x), gr(x), \omega r(x) \in C\infty [I].
The Airy –Dorodnitsyn functions Uk(t2) are linearly independent solutions of the differential

equation
U \prime \prime (t2) - t2U(t2) = 0,

which characteristics is described in [6, 7].
The Scorer function \psi (t2) solves the equation

\psi \prime \prime (t2) - t2\psi (t2) = 1,

and its characteristics is described in [5, 7].
A new space is formed from these subspaces:

Yr = Yr1

2\bigoplus 
k=1

Yr2k
\bigoplus 

Yr3
\bigoplus 

Yr4. (13)

Element Wr(x, t) \in Yr is of the form of

Wr(x, t) = \alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 +

2\sum 
k=1

\bigl[ 
Vrk(x)Uk(t2) +Qrk(x)U

\prime 
k(t2)

\bigr] 
+

+ fr(x)\psi (t2) + gr(x)\psi (t2) + \omega r(x).
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By analogy with [2 – 4, 7], we study the action of the extended operator \~L\varepsilon on stable element
\alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t2 \in Yr1. Taking into account (7), (9), (11), (12), we have

\~L\varepsilon \alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 \equiv 
\Bigl( 
\~L\varepsilon 1 + \~L\varepsilon 3

\Bigr) 
\alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 \equiv 

\equiv 

\Biggl[ 
\~P
\bigl( 
\varphi \prime 
1(x), \varepsilon 

\bigr) 
+ \varepsilon 5 - 2p1L01 + \varepsilon 5 - p1L11 + \varepsilon 3 - p1a(x)d1+

+ \varepsilon 2b(x)
\partial 

\partial x
+ \varepsilon 3a(x)

\partial 2

\partial x2
+ \varepsilon 5

\partial 3

\partial x3

\Biggr] 
\alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1, (14)

where

\~P
\bigl( 
\varphi \prime 
1(x), \varepsilon 

\bigr) 
\equiv \varepsilon 5 - 3p1\varphi \prime 

1
3
(x) + \varepsilon 3 - 2p1a(x)\varphi \prime 

1
2
(x) + \varepsilon 2 - p1b(x)\varphi \prime 

1(x) + c(x).

It is necessary to choose a regular function \varphi 1(x) and expand p1 so that \~P (\varphi \prime 
1(x), \varepsilon ) \equiv 0.

For this, it is necessary to put \varphi 1(x) =

\int x

0
k1(x)dx and p1 = 2. We get

\~P
\bigl( 
\varphi \prime 
1(x), \varepsilon 

\bigr) 
\equiv P (k1(x), \varepsilon )

\varepsilon 
\equiv 0.

Thus, the regular function \varphi 1(x) and the factor p1 = 2 are determined. The equality (14)
have the form

\~L\varepsilon \alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 \equiv 

\Biggl\{ 
P (k1(x), \varepsilon )

\varepsilon 
+ \varepsilon [L01 + a(x)d1] + \varepsilon 2b(x)

\partial 

\partial x
+

+ \varepsilon 3
\biggl[ 
L11 + a(x)

\partial 2

\partial x2

\biggr] 
+ \varepsilon 5

\partial 3

\partial x3

\Biggr\} 
\alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 \equiv 

\equiv R1\varepsilon \alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1. (15)

The correctness of choosing the regular functions \varphi 1(x) and the factor p1 will be fully
motivated below, when from the equality (15) we can determine the function \alpha r(x). Hence, we
proceed to the study of the equation L01\alpha r(x) = F\alpha 

r (x), where F\alpha 
r (x) is a known sufficiently

smooth function. Considering (11) we have

[L01 + a(x)d]\alpha r(x) \equiv k21(x)\alpha 
\prime 
r(x) + 2k1(x)k

\prime 
1(x)\alpha r(x) = F\alpha 

r (x). (16)

Solution of this differential equation is the function

\alpha r(x) =
1

k21(x)

\left[  C1r +
1

3

x\int 
0

F\alpha 
r (x)dx

\right]  , (17)

where C1r is a free constant.
Therefore, the regular function \varphi 1(x) and the factor p1 are chosen correctly.
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Next, we proceed to the main study, i.e., to study the action of the extended operator \~L\varepsilon on
elements from the subspaces Yr2k, k = 1, 2. With a fixed k = 1, 2 , we have

\~L\varepsilon [Vrk(x)Uk(t2) +Qrk(x)U
\prime 
k(t2)] \equiv 

\equiv 
\Bigl( 
\~L\varepsilon 2 + \~L\varepsilon 3

\Bigr) 
[Vrk(x)Uk(t2) +Qrk(x)U

\prime 
k(t2)] \equiv 

\equiv Ak(x, \varepsilon )Uk(t2) +Brk(x, \varepsilon )U
\prime 
k(t2). (18)

Here
Ark(x, \varepsilon ) \equiv \varepsilon 5 - 3p2\varphi \prime 

2
3
(x)

\bigl[ 
 - Vrk(x) + \varepsilon  - 2p2\varphi 2

2(x)Qrk(x)
\bigr] 
 - 

 - \varepsilon 5 - 3p2\varphi 2(x)L02Vrk(x) - \varepsilon 5 - 2p2 [L02 + \varphi 2(x)L12]Qrk(x) - 

 - a(x)
\Bigl[ 
\varepsilon 3 - 3p2\varphi \prime 

2
2
(x)\varphi 2(x)Vrk(x)+

+ \varepsilon 3 - 2p2\varphi \prime 
2
2
(x)Qrk(x) + \varepsilon 3 - 2p2\varphi 2(x)dQrk(x)

\Bigr] 
 - 

 - b(x)\varepsilon 2 - 2p2\varphi \prime 
2(x)\varphi 2(x)Qrk(x) + \~L\varepsilon 3Vrk(x), (19)

Brk(x, \varepsilon ) \equiv \varepsilon 5 - 3p2\varphi \prime 
2
3
(x)

\bigl[ 
 - \varepsilon  - p2\varphi 2(x)Vrk(x) - 2Qrk(x)

\bigr] 
 - 

 - \varepsilon 5 - 3p2\varphi 2(x)L02Qrk(x) + \varepsilon 5 - p2L12Vrk(x)+

+ a(x)
\Bigl[ 
 - \varepsilon 3 - 3p2\varphi \prime 

2
2
(x)\varphi 2(x)Qrk(x) + \varepsilon 3 - p2dVrk(x)

\Bigr] 
+

+ \varepsilon 2 - p2b(x)\varphi \prime 
2(x)Vrk(x) + \~L\varepsilon 3Qrk(x). (20)

In the Eq. (18), we need to obtain an analogue of what was obtained in the Eq. (14). The
first step of such an analogy is the separation of the main part in (19) and (20), in addition,
the elements from the subspaces Yr2k, k = 1, 2, must belong to the kernel of the main part of
equality (18).

Further studies show that the main part in the equality (19) is\Bigl[ 
\varepsilon 5 - 5p2\varphi \prime 

2
3
(x)\varphi 2

2(x) - \varepsilon 2 - 2p2b(x)\varphi \prime 
2(x)\varphi 2(x)

\Bigr] 
Qrk(x) - 

 - 
\Bigl[ 
\varepsilon 3 - 3p2a(x)\varphi \prime 

2
2
(x)\varphi 2(x) - c(x)

\Bigr] 
Vrk(x) \equiv 

\equiv 
\Bigl[ 
\varphi \prime 
2
2
(x)\varphi 2(x) - \varepsilon 3p2 - 3x\~k(x)

\Bigr] 
\times 

\times 
\bigl[ 
\varepsilon 5 - 5p2\varphi \prime 

2(x)\varphi 2(x)Qrk(x) - \varepsilon 3 - 3p2a(x)Vrk(x)
\bigr] 
.

To define the factor p2 and the regular function \varphi 2(x) we set equal to zero the expression in
the first square brackets. Then we define the factor p2 = 1 and obtain a relatively regular function
necessary for the solution:

\varphi \prime 
2
2
(x)\varphi 2(x) = x\~k(x), \varphi 2(0) = 0. (21)

Solution of the problem (21) is the function

\varphi 2(x) =

\left(  3

2

x\int 
0

\sqrt{} 
x\~k(x)dx

\right)  2
3

. (22)
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We define the factor p2 = 1 and the regular function \varphi 2(x) from (22) and write the equali-
ty (19) in the form

Ark(x, \varepsilon ) \equiv  - \varepsilon a(x)
\Bigl[ 
\varphi \prime 
2
2
(x)Qrk(x) + \varphi 2(x)d2Qrk(x)

\Bigr] 
 - 

 - \varepsilon 2
\Bigl[ 
\varphi \prime 
2
3
(x)Vrk(x) + \varphi 2(x)L02Vrk(x) - b(x)V \prime 

rk(x)
\Bigr] 
 - 

 - \varepsilon 3[L02 + \varphi 2L12]Qrk(x) + \varepsilon 3a(x)V \prime \prime 
rk + \varepsilon 5V \prime \prime \prime 

rk (x).

To find functions Qrk(x) , we obtain differential equations

DQrk(x) \equiv 2\varphi 2(x)\varphi 
\prime 
2(x)Q

\prime 
rk(x) +

\Bigl[ 
\varphi 2(x)\varphi 

\prime \prime 
2(x) + \varphi \prime 

2
2
(x)

\Bigr] 
Qrk(x) =

1

k1(x)
FQ
rk(x). (23)

The point x = 0 is a regular point corresponding to differential Eqs. (23). Therefore, there
are quite smooth solutions of the Eqs. (23), which satisfies the conditions | Qrk(0)| <\infty .

Under the condition of defined p2 = 1 and a regular function \varphi 2(x), there exist equalities

c(x) - a(x)\varphi \prime 
2
2
(x)\varphi 2(x) \equiv b(x) - \varphi \prime 

2
2
(x)\varphi 2(x) \equiv 0.

Then the form of equality (20) is simplified, i.e.,

Brk(x) \equiv \varepsilon 2
\bigl[ 
a(x)d2Vrk(x) - 2Qrk(x) - \varphi 2(x)L02Qrk(x) + b(x)Q\prime 

rk(x)
\bigr] 
+

+ \varepsilon 3a(x)Q\prime \prime 
rk(x) + \varepsilon 4L12Vrk(x) + \varepsilon 5Q\prime \prime \prime 

rk(x). (24)

It can be seen from the obtained equalities (24) that the functions Vrk(x) will be defined as
solutions of differential equations

d2Vrk(x) =
1

k1(x)
F V
rk(x). (25)

Since the coefficients obtained in Eqs. (25) are not equal to zero at any point of the segment
I = [0; l], we obtain sufficiently smooth solutions of inhomogeneous differential Eqs. (25) in the
form

Vrk(x) =
1\sqrt{} 
\varphi \prime 
2(x)

\left[  Cr(k+1) +

x\int 
0

\sqrt{} 
\varphi \prime 
2(x)

k1(x)
F V
rk(x)dx

\right]  , k = 1, 2, (26)

where Cr(k+1) is an arbitrary constant.
Lemma 1.
1. As a result of the action of the extended operator \~L\varepsilon on the elements of the subspace Yr1 ,

we uniquely determine the factor p1 = 2, the regular function \varphi 1(x) and the obtained differential
Eqs. (16), which are used to construct the first linear independent solution of the SPDE (1).

2. To define the extended operator \~L\varepsilon on elements of the spaces of nonresonance solutions
(SNS) Yr2k, k = 1, 2:

(a) regardless of the index k , we determine the factor p2 = 1 and the regular function \varphi 2(x)
(see (22)), i.e., we uniquely determine the variable t2 ;
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(b) in the process of construction, the asymptotic forms of the solution of the extended
Eq. (11) — the functions Qrk(x) — are uniquely determined as solutions of the differential
Eqs. (23) under the conditions | Qrk(0)| <\infty ;

(c) the functions Vrk(x) contain a free constant (see (26)). This fact allows us to construct
two more linear independent solutions of the SPDE (1) corresponding to two unstable elements
k2,3(x) = \pm i

\sqrt{} 
x\~k(x).

4. Formalism of construction of solution of extented problem. The main stages of
constructing linear independent SPDE solutions (9) were motivated above. Construction of
the partial solution of the inhomogeneous differential Eq. (9) does not affect the definition
of regular functions \varphi i(x) and factors pi. Thus, in this section, the formalism of constructing
the fundamental system of solutions (FSS) of the uniform partial solution of the inhomogeneous
extended Eq. (11) will be directly considered. By analogy with the previous one, we investigate
the effect of the extended operator \~L\varepsilon on the element of the subspace Yr3. By combining all the
obtained results, the action of the extended operator \~L\varepsilon on the SNF element (13) can be written
in the form of the following equality:

\~L\varepsilon Wr(x, t) \equiv \~L\varepsilon [\alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 + yr(x, t2)] \equiv R1\varepsilon \alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p}T1 +R\varepsilon yr(x, t). (27)

Here, the operator R1\varepsilon corresponds to the equality (15), but the operator R\varepsilon in its action on
the element yr(x, t2) \in Yr21

\bigoplus 
Yr22

\bigoplus 
Yr3

\bigoplus 
Yr4 = \~Yr can be presented in the form of equalities

R\varepsilon yr(x, t2) \equiv 
\bigl[ 
R0 + \varepsilon R1 + \varepsilon 2R2 + \varepsilon 3R3 + \varepsilon 4R4 + \varepsilon 5R5

\bigr] 
yr(x, t2), (28)

R0yr(x, t2) \equiv 
\Bigl[ 
\varphi \prime 
2
2
(x)\varphi 2(x) - x\~k(x)

\Bigr] 
\times 

\times 

\Biggl\{ \bigl[ 
\varphi \prime 
2(x)\varphi 2(x) + k1(x)

\bigr] \Biggl[ 2\sum 
k=1

Qrk(x)U
\prime 
k(t2) + gr(x)\psi 

\prime (t2)

\Biggr] 
 - 

 - 
\bigl[ 
\varepsilon \varphi \prime 

2(x) + k1(x)
\bigr] 
[Vrk(x)Uk(t2) + fr(x)\psi (t2)]

\Biggr\} 
+ c(x)\omega r(x), (29)

R1yr(x, t2) \equiv a(x)D

\Biggl[ 
2\sum 

k=1

Qrk(x)Uk(t2) + gr(x)\psi (t2)

\Biggr] 
+ a(x)\varphi \prime 

2(x)fr(x), (30)

R2yr(x, t) \equiv 
2\sum 

k=1

\biggl[ 
a(x)dVrk(x) - 

\biggl[ 
2 + \varphi 2(x)L02  - b(x)

\partial 

\partial x

\biggr] 
Qrk(x)U

\prime 
k(t2)

\biggr] 
+

+

\biggl[ 
a(x)dfr(x) - 

\biggl[ 
2\varphi 2(x)L02  - b(x)

\partial 

\partial x

\biggr] 
gr

\biggr] 
\psi \prime (t2) - 

 - 
\biggl[ 
\varphi \prime 
2
3
(x) + \varphi 2(x)L02 + b(x)

\partial 

\partial x

\biggr] \Biggl[ 2\sum 
k=1

Vrk(x)Uk(t2) + fr(x)\psi (t2)

\Biggr] 
 - 

 - 
\Bigl[ 
\varphi \prime 
2
3
(x) - a(x)d

\Bigr] 
gr(x) + b(x)\omega \prime 

r(x), (31)
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R3yr(x, t2) \equiv  - 

\Biggl\{ 
[L02 + \varphi 2(x)L12]

\Biggl[ 
2\sum 

k=1

Qrk(x)Uk(t2) + gr(x)\psi (t2)

\Biggr] 
+

+ a(x)

\Biggl[ 
2\sum 

k=1

V \prime \prime 
rk(x)Uk(t2) +

2\sum 
k=1

Q\prime \prime 
rk(x)U

\prime 
k(t2)+

+ fr(x)\psi (t2) + g\prime \prime r (x)\psi 
\prime (t2)

\Biggr] \Biggr\} 
+ a(x)\omega \prime \prime 

r (x), (32)

R4yr(x, t2) \equiv L12

\Biggl[ 
2\sum 

k=1

Vrk(x)U
\prime 
k(t2) + fr(x)\psi (t2)

\Biggr] 
L12gr(x), (33)

R5yr(x, t2) \equiv 
2\sum 

k=1

\bigl[ 
V \prime \prime \prime 
rk (x)Uk(t2) +Q\prime \prime \prime 

rk(x)U
\prime 
k(t2)

\bigr] 
+ f \prime \prime \prime r (x)\psi (t2) + g\prime \prime \prime r (x)\psi 

\prime (t2) + \omega \prime \prime \prime 
r (x). (34)

Lemma 2. The following conclusions can be drawn from the obtained identities (27) – (34):
1. Spaces Yr1, Yr2k, Yr3, Yr4 are invariant for extended operator \~L\varepsilon .
2. Operator \~P (k1(x), \varepsilon ) and R0 are main forming extended operators \~L\varepsilon in subspaces Yr1

and \~Y\varepsilon = Yr21
\bigoplus 
Yr22

\bigoplus 
Yr3

\bigoplus 
Yr4 respectively.

3. Extented problem (11) is regularly perturbed in subspaces Yr1 and \~Y\varepsilon , hence also in
space Yr.

On the basis of the obtained conclusions, the asymptotic forms of the extended problem (11)
are constructed in the form of a series

\~U(x, t, \varepsilon ) =
+\infty \sum 
r= - 1

\varepsilon rWr(x, t), Wr(x, t) \in Yr. (35)

We substitute the formal series (35) into the extended Eq. (10) and equate the terms by the
same powers of the small parameter \varepsilon > 0. Then, to determine the coefficients of the series (35),
we obtain two independent sequences of the systems of equations.

The first of them, corresponding to the stable root k1(x) , has the form

L01\alpha r(x) =  - a(x)d\alpha r - 1(x) - 
\biggl[ 
L11 + b(x)

\partial 

\partial x

\biggr] 
\alpha r - 3(x) - a(x)\alpha \prime \prime 

r - 4(x) - \alpha \prime \prime \prime 
r - 6(x), r \geq 0.

(36)

The second one is represented by equations

R0y - 1(x, t2) = 0, R0y0(x, t2) = h(x) - R1y - 1(x, t2), (37)

R0yr(x, t2) =  - 
5\sum 

i=1

Riyr - i(x, t2), r \geq 1. (38)

The obtained independent sequences of Eqs. (36), (37), (38) show the following. We split the
solution of the extended Eq. (10), but therefore also the SPDE (1)), thereby a linearly independent
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solution of the Eq. (1) corresponding to the stable root characteristic k1(x) of the Eq. (6) can be
constructed independently of the constructions of the other two linearly independent solutions of
the equation (1).

Let us note one more detail that is characteristic of SPDEs with an untidy spectrum. Only
the k2,3(x) roots of the characteristic equation (6) participate in the construction of the partial
solution of the inhomogeneous SPDE (1) with a turning point.

5. Construction of asymptotic solution of extended problem. We need to show that from
the sequence of Eqs. (36) – (38) it is possible to determine sufficiently smooth factors of the
functions Wr(x, t). By gradually solving the sequence of differential Eqs. (36), we determine all
functions \alpha r(x), r \geq 0, by (17). Therefore, we define one linearly independent solution of the
extended Eq. (11), but correspondingly also the SPDE (1).

By using equality (29), for i = 1, 2, we define

\mathrm{K}\mathrm{e}\mathrm{r}R0 =
\bigl\{ 
Vri(x)Ui(t2) +Qri(x)U

\prime 
i(t2), fr(x)\psi (t2) + gr(x)\psi 

\prime (t2)
\bigr\} 
,

where fr(x), gr(x) are arbitrary sufficiently smooth functions at x \in I.

Then general solution of Eq. (37) in SNS Y - 1 is the function

y - 1(x, t2) =
2\sum 

i=1

\bigl[ 
V( - 1)i(x)Ui(t2) +Q( - 1)i(x)U

\prime 
i(t2)

\bigr] 
+ f - 1(x)\psi (t2) + g - 1(x)\psi 

\prime (t2) \equiv Z - 1(x, t2).

We calculate the shift in the right-hand side of the Eq. (37). Using the arbitrariness of the
functions Q( - 1)i(x) and f - 1(x) requires that the right-hand side of this equation does not contain
elements of the kernel of the operator R0. To fulfill these conditions, the functions Q( - 1)i(x) and
f - 1(x) must satisfy the equations

DQ( - 1)i(x) = 0, Dg - 1(x) = 0. (39)

The bounded solutions of the equations x \in I, (39) will be identical zeros. Furthermore, we
have an initial condition

f - 1(0) =  - h(0)

k1(0)\varphi \prime 
2(0)

= f0 - 1.

When these conditions are fulfilled in SNS Y0 , there exists a solution of the Eq. (37)

y0(x, t2) = Z0(x, t2) +
h(x) - a(x)\varphi \prime 

2(x)f - 1(x)

c(x)
\equiv Z0(x, t2) + \omega 0(x).

When solving the iterative Eqs. (38) in SNS Y1 at r = 1 , we determine the functions
Q0i(x) \equiv g0(x) \equiv 0 and obtain initial condition f0(0) = 0 and differential equations

dV( - 1)i(x) = 0, df - 1(x) = 0.

Using the initial condition f - 1(0) = f0 - 1, we uniquely define the function f0(x), but the
functions V( - 1)i(x) are defined with accuracy up to an arbitrary constant Cr(i+1), i = 1, 2
(see (26)).

Continuing to solve the iterative Eq. (22) for r \geq 2, we uniquely determine the functions
Qri(x) and fr(x), but Vri(x) — up to an arbitrary constant Cr(i+1).
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The main term of the asymptotic form of the solution of the extended Eq. (11) has the form

U0(x, t, \varepsilon ) = \varepsilon  - 1f - 1(x)\psi (t2) +
2\sum 

i=1

V0i(x)Ui(t2) + \alpha 0(x) \mathrm{e}\mathrm{x}\mathrm{p} t1 + \omega 0(x). (40)

Let us restrict equality (40) at t = \Phi (x, \varepsilon .) We obtain the main member of an asymptotic
form of the solution for the inhomogeneous SPDE (1).

6. Solution structure of fundamental system. For extended uniform Eq. (10) we have three
solutions. The first solution, corresponding to the stable root k1(x), is

\~U1(x, t, \varepsilon ) \equiv \~U1(x, t1, \varepsilon ) =

+\infty \sum 
r=0

\varepsilon r\alpha r(x) \mathrm{e}\mathrm{x}\mathrm{p} t1, (41)

where \alpha r(x) are solutions of differential Eqs. (16), moreover, \alpha r(x) = C1rk
 - 2
1 (x), r = 0, 1

(see (17)).
Other two solutions, corresponding to unstable elements k2,3(x, \varepsilon ) = \pm i

\sqrt{} 
\varepsilon x\~k(x), are

presented in the form

\~Us+1(x, t, \varepsilon ) \equiv \~Us+1(x, t2, \varepsilon ) \equiv 
+\infty \sum 
r=0

\varepsilon r
\bigl[ 
Vrs(x)Us(t2) +Qrs(x)U

\prime 
s(t2)

\bigr] 
, (42)

where Qrs(x) \equiv 0, r =  - 1, 0, s = 1, 2.
The particular solutions (41) and (42) satisfy the conditions

\~U1(0, 0, \varepsilon ) = 1, \~U2(0, 0, \varepsilon ) = 1, \~U3(0, 0, \varepsilon ) = 0.

In this case Wronskian W
\bigl( 
\~Ui(0, 0, \varepsilon )

\bigr) 
= O

\bigl( 
\varepsilon  - 2

\bigr) 
\not = 0 under \varepsilon > 0.

We make the restriction in equalities (41), (42) at t = \Phi (x, \varepsilon ). Then we obtain three linearly
independent solutions of the SPDE (1), which can be represented in the form of equalities

\~Yi(x, t, \varepsilon ) \equiv \~Yim(x, t, \varepsilon ) + \varepsilon m\~\xi im(x, t, \varepsilon ), i = 1, 3, (43)

where \~Yim(x, t, \varepsilon ) =
\sum m

r=0
\varepsilon rWri(x, t).

By restriction in (43), we obtain

Yi(x,\Phi (x, \varepsilon ), \varepsilon ) \equiv Yim(x,\Phi (x, \varepsilon ), \varepsilon ) + \varepsilon m\xi im(x,\Phi (x, \varepsilon ), \varepsilon ), i = 1, 3.

By the method described in [2 – 7], it is possible to show that at sufficiently small values of
parameter \varepsilon > 0 there exist estimations

\| \xi im(x,\Phi (x, \varepsilon ), \varepsilon )\| \leq K, i = 1, 3, (44)

where constant K does not depend on x \in I and small parameter \varepsilon > 0.
General solution of the SPDE (1) is

Y (x,\Phi (x, \varepsilon ), \varepsilon ) =
3\sum 

i=1

\gamma iYi(x,\Phi (x, \varepsilon ), \varepsilon ) + Y\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}.(x,\Phi (x, \varepsilon ), \varepsilon ),
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where \gamma i is arbitrary constant, but particular solution of the SPDE (1) is

Y\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}.(x,\Phi (x, \varepsilon ), \varepsilon ) =
f - 1(x)

\varepsilon 
\psi 

\biggl( 
\varphi 2(x)

\varepsilon 

\biggr) 
+

+

+\infty \sum 
r=0

\varepsilon r

\left[    fr(x)\psi \biggl( \varphi 2(x)

\varepsilon 

\biggr) 
+ gr(x)

d\psi 

\biggl( 
\varphi 2(x)

\varepsilon 

\biggr) 
d

\biggl( 
\varphi 2(x)

\varepsilon 

\biggr) + \omega r(x)

\right]    .
Theorem 6.1. Let the following assumptions be satisfied:
1. Condition (2) is satisfied.
2. Roots of characteristic Eq. (6) satisfy conditions (7). Then for sufficiently small values of

parameter \varepsilon > 0:
(a) by introducing an additional vector variable t = \{ t1, t2\} in corresponding with the

form (9), by the above-described SPDE algorithm (1), it can be put in corresponding with the
extended equation (11);

(b) in SNS (13) there exist three linear independent solutions \~Yi(x, t, \varepsilon ), i = 1, 3, of uniform
extended equation (11), presented as asymptotic series (41) and (42).

(c) restrictions of these series at t = \Phi (x, \varepsilon ) are asymptotic series for linearly independent
solutions of the SPDE (1);

(d) for linearly independent solutions Yi(x,\Phi (x, \varepsilon ), \varepsilon ), there exist the estimations (44);
(e) for any compact subset of I that does not contain turning point x = 0 , there exists the

limit relation
\mathrm{l}\mathrm{i}\mathrm{m}
\varepsilon \rightarrow 0

Y\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}.(x,\Phi (x, \varepsilon ), \varepsilon ) =
h(x)

k1(x)x\~k(x)
\equiv \omega 0(x),

where \omega 0(x) is the solution of simplified equation (8).
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