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Quaternionic calculus is significant in applied mathematics and it closely refers to mathematical physics
and engineering sciences. Our purpose of this survey paper is to present some advances in quaternion
dynamic equations on time scales and Henstock –Kurzweil ∆-integral (short for HK-∆-integral) and to
introduce the corresponding quaternionic version of HK-∆-integral (short for HKQ -∆-integral). Some
basic properties of HKQ -∆-integral are demonstrated which will be helpful in future research related to
this topic.

Кватернiонне числення дуже важливе в прикладнiй математицi i тiсно пов’язане з математичною
фiзикою i технiчними науками. У цьому оглядi наведено деякi досягнення в дослiдженнi кватер-
нiонних динамiчних рiвнянь на часовiй шкалi та ∆-iнтеграла Хенстока –Курцвейля (скорочено
HK-∆-iнтеграл) i подано вiдповiдну кватернiонну версiю HK-∆-iнтеграла (скорочено HKQ -∆-
iнтеграл). Сформульовано деякi базовi властивостi HKQ -∆-iнтеграла, якi будуть кориснi в подаль-
ших дослiдженнях у цiй галузi.

1. Introduction. Time scale theory was put forward by Hilger to unify discrete and continuous
analysis in 1988 [1] and it has a wide range of applications including various types of dynamic
equations and models in real-world applications [2 – 6]. Time scale is an arbitrary closed subset
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of the real line R, and the calculus on a time scale includes the classical Riemann integral and the
discrete sum.Moreover, it also covers different forms of calculus between the classical continuous
case and the discrete one such as q -calculus and its generalizations which demonstrate enormous
advantages. In recent years, there are many research works in this area. For example, the measure
theory on time scales [7 – 9], the fuzzy calculus and dynamic equations on hybrid domain [10, 11],
function analysis and functional dynamic equations [12 – 16]. For dynamic models, the almost
periodic solutions of Lasota –Wazewska time scale model [8, 17], the neural networks model on
time scales [18 – 21] and Nicholson’s blowflies model [22, 23] were investigated. Moreover, by
establishing the translation closeness theory of time scales [24 – 28], the pseudo almost periodic
functions [29 – 32] and almost automorphic functions [33 – 36] including their generalizations
[37 – 41] were investigated and applied to study dynamic equations on time scales [42 – 45]. Time
scale theory have become a powerful tool in pure and applied mathematics.

On the other hand, the concept of quaternions which is a noncommutative extension of
complex numbers was introduced by Irish mathematician Hamilton in 1843, since quaternion
algebra does not conform to the commutative law and it has great superiority in describing
rotations and complex physical motions, it has been widely applied in various fields such as
robotics, multi-body system mechanics, and attitude control of artificial aircraft [46]. In 1995,
Adler investigated quaternionic quantum mechanics and quantum fields [47]. In 2014, Rodman
discussed the linear algebra in the framework of quaternion analysis [48]. In [49], Georgiev
and Jday studied Brownian motion under quaternionic background. With deep development of
applications of quaternion algebra, in 2021, Li andWang et al. studied the Hyers –Ulam –Rassias
stability of fuzzy nonlinear difference equations with impulses [50]. Meanwhile, they established
the general theory of higher-order quaternion linear difference equations by using the complex
adjoint matrix and the quaternion characteristic polynomial [51].

It is natural to consider quaternion functions and dynamic equations on time scales. Through
combining these two powerful tools, some quaternionic problems can be considered and solved
on hybrid domains. In [52, 53], the authors considered Cauchy matrix and Liouville formula of
quaternion dynamic equations on time scales. In [54], the quaternion matrix dynamic equation on
time scales was discussed and some real applications were demonstrated. In addition, the Hyers –
Ulam –Rassias stability was extended to quaternion fuzzy nonlinear dynamic equations on time
scales [55]. In 2022, Wang, Li, et al. proposed a new type of quaternionic hyper-complex space in
which some basic functions and the geometric features of dynamic equations were demonstrated
on time scales [56].

Henstock –Kurzweil integral which is widely applied in differential equations is a kind of
generalization of Riemann integral, and in some cases it is broader than Lebesgue integral
[57]. Henstock –Kurzweil points were first introduced by French mathematician Denjoy in the
early twentieth century. In 1957, Czech mathematician Kurzweil gave a more elegant definition,
which is similar to the definition of Riemann integral. Kurzweil called it “Gauge Integral”.
Henstock developed and perfected this integral theory. Based on the contributions of these two
mathematicians, this kind of integral is now generally called Henstock –Kurzweil integral. In
2006, Peterson and Thompson established Henstock –Kurzweil delta and nabla integrals on time
scales, and further promoted the Henstock –Kurzweil integral, making it widely used in dynamic
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equations. Some recent related research work can be referred to the literatures [58, 59]. Motivated
by the above, it is meaningful to consider the quaternion-valued form of Henstock –Kurzweil
integral on the time scales. However, some difficult problems will appear when quaternion
dynamic equations on time scales is considered under Henstock –Kurzweil integral setting, the
first is that there is no notion of quaternion-valued Henstock –Kurzweil integral. In this survey
paper, wewill introduce the definition of this kind of integral in quaternionic analysis and establish
some of its properties, which may lay a foundation for solving problems of broader quaternion
dynamic equations on time scales.

2. Quaternions and time scales. A time scale is a closed nonempty subset of R and we
denote a time scale by T.

Definition 2.1 [4]. Let T be a time scale and t ∈ T, then define the forward jump operator
σ(t) and the backward jump operator ρ(t) at t by

σ(t) := inf{γ > t : γ ∈ T}, ρ(t) := sup{γ < t : γ ∈ T},

where inf ∅ := supT, sup∅ := inf T and ∅ denotes the empty set.
The graininess function µ : T→ [0,+∞) and ν : T→ [0,∞) are defined by

µ(t) = σ(t)− t, ν(t) = t− ρ(t).

For t ∈ T, if µ(t) > 0, we say t is a right-scattered point, otherwise right-dense point, and if
ν(t) > 0, we call t the left-scattered point, otherwise left-dense point.

For the convenience of discussion, the following notations for intervals on time scales will be
used:

(a, b)T := {t ∈ T : a < t < b}, (a, b]T := {t ∈ T : a < t ≤ b},

[a, b)T := {t ∈ T : a ≤ t < b}, [a, b]T := {t ∈ T : a ≤ t ≤ b}.

Definition 2.2 [46]. A quaternion algebra is defined by

H := {q = q0 + iq1 + jq2 + kq3 : qi ∈ R, i = 0, 1, 2, 3},

where i, j, k satisfy the multiplication rules:

i2 = j2 = k2 = −1, ij = k = −ji,

jk = i = −kj, ki = j = −ik.

The conjugation of q over H is given by

q̄ = q0 − iq1 − jq2 − kq3

and the norm is defined by ‖q‖ =
√
q̄q =

√
qq̄ =

√
q2

0 + q2
1 + q2

2 + q2
3.

Remark 2.1. Let m and n be two quaternions, then we have ‖m‖ − ‖n‖ ≤ ‖m + n‖ ≤
≤ ‖m‖+ ‖n‖. Indeed,

‖m+ n‖2 = (m+ n)(m̄+ n̄) = mm̄+mn̄+ nm̄+ nn̄ =
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= ‖m‖2 + ‖n‖2 + 2(m0n0 +m1n1 +m2n2 +m3n3) ≤

≤ ‖m‖2 + ‖n‖2 + 2
√(

m2
0 +m2

1 +m2
2 +m2

3

)(
n2

0 + n2
1 + n2

2 + n2
3

)
=

= ‖m‖2 + ‖n‖2 + 2‖m‖ ‖n‖ = (‖m‖+ ‖n‖)2,

i.e., ‖m− n+ n‖ ≤ ‖m− n‖+ ‖n‖. Then the inequality is obtained.
Let f : T→ H be a quaternion-valued function, then we can decompose f into

f(t) = f0(t) + if1(t) + jf2(t) + kf3(t), (2.1)

with fi : T→ R, i = 0, 1, 2, 3, is real-valued function.
Now we present the following Definition 2.3 and Corollary 2.1 which will be used in the our

discussion.
Definition 2.3 [58]. We say a function θ = (θL, θR) is a ∆-gauge for [a, b]T provided

θL(t) > 0 on (a, b]T, θR(t) > 0 on [a, b)T, θL(a) ≥ 0, θR(b) ≥ 0. Moreover, θR(t) ≥ µ(t) for all
t ∈ [a, b)T.

A partition P of [a, b]T is a a division of [a, b]T denoted by

P := {a = t0 ≤ η1 ≤ st1 ≤ tn−1 ≤ ηn ≤ tn = b},

with ti−1 < ti for i = 1, 2, . . . , n and ti, ηi ∈ T. Then we call ti the end points and ηi the tag
points.

Let θ be a ∆-gauge for [a, b]T. Then we say a partition P := {a = t0 ≤ η1 ≤ t1 ≤ . . .
. . . ≤ tn−1 ≤ η ≤ tn = b} is θ -fine partition of [a, b]T if

ηi − θL(ηi) ≤ ti−1 < ti ≤ ηi + θR(ηi),

holds for 1 ≤ i ≤ n.
Corollary 2.1 [58]. Let ϑ and ϕ be ∆-gauge for [a, b]T such that 0 < ϑL(t) ≤ ϕL(t) for

t ∈ (a, b]T and 0 < θR(t) ≤ ϕR(t) for t ∈ [a, b)T (write ϑ ≤ ϕ and we say ϑ is finer than ϕ). If
P is a ϑ-fine partition of [a, b]T, then P is a ϕ-fine partition of [a, b]T.

3. Henstock –Kurzweil delta-integrals in quaternion analysis. In this section, a notion
of Henstock –Kurzweil delta-integrals in quaternion analysis will be given. First, we begin with
some basic concepts.

Definition 3.1. Let F = F 0 + iF 1 + jF 2 + kF 3, f = f0 + if1 + jf2 + kf3; we say F∆ = f,
if (F l)∆ = f l, l ∈ {0, 1, 2, 3}.

Definition 3.2. A function ϑ =
(
ϑ0, ϑ1, ϑ2, ϑ3

)
is called ∆-gauge, if ϑl is ∆-gauge, l ∈

∈ {0, 1, 2, 3}. Let
[
al, bl

]
⊂ T, l ∈ {0, 1, 2, 3}; we call a partition P = P0 × P1 × P2 × P3 is

ϑ-fine partition of
ΠT =

[
a0, b0

]
T ×

[
a1, b1

]
T ×

[
a2, b2

]
T ×

[
a3, b3

]
T,

if P l is ϑl -fine partition of
[
al, bl

]
T, l ∈ {0, 1, 2, 3}.

Remark 3.1. For θ =
(
θ0, θ1, θ2, θ3

)
and ϕ =

(
ϕ0, ϕ1, ϕ2, ϕ3

)
, assume that θl and ϕl are

∆-gauge for
[
al, bl

]
T, and θ

l is finer than ϕl, from Corollary 2.1. Then P = (P0,P1,P2,P3) is a
ϕ-fine partition if P is a θ -fine partition. Moreover, let f : [a, b]T → H be a quaternionic function
with the form (2.1), and let ϑ =

(
ϑ0, ϑ1, ϑ2, ϑ3

)
be ∆-gauge for ΠT with

[
al, bl

]
T = [a, b]T, P l be

ϑl -fine partition; we can define ψ = (ψL, ψR) with ψL(t) = min{ϑlL(t)}, ψR(t) = min{ϑlR(t)},
then any ψ -fine partition is ϑl -fine l = 0, 1, 2, 3.
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Next, we introduce a lemma which will be useful in the process of proving following theorems
and properties.

Lemma 3.1 [58]. Let θ be a ∆-gauge for [a, b]T. Then there is a θ -fine partition P of
[a, b]T.

We give the concept of Henstock –Kurzweil delta-integral in the framework of quaternion
analysis.

Definition 3.3. Let [a, b] ⊂ T. Then we call f : [a, b]T → H is quaternion-valued Henstock –

Kurzweil delta-integrable or HKQ -∆-integrable on [a, b]T with value J = HKQ
∫ b

a
f(t)∆t if,

for any ε > 0, there exists a ∆-gauge ϑ for [a, b]T such that∥∥∥∥∥J −
n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε,

for all ϑ-fine partition P of [a, b]T, where

f(ηi)� (ti − ti−1) =
[
f0(ηi) + if1(ηi) + jf2(ηi) + kf3(ηi)

]
(ti − ti−1), i = 1, 2, . . . , n.

Lemma 3.2 [60]. For every δ > 0 there exists at least one partition P = {a = t0 < t1 <
< t2 < . . . < tn = b} of [a, b)T such that for each i ∈ {1, 2, . . . , n} either ti − ti−1 < δ or
ti − ti−1 > δ and ρ(ti) = ti−1, where ρ denotes the backward jump operator in T.

We denote the set which possesses the properties of Lemma 3.2 by Pδ.
Definition 3.4 [60]. Let f be a bound function on [a, b)T and let P = {a = t0 < t1 < t2 < . . .

. . . < tn = b} be a partition of [a, b)T. In each interval [ti−1, ti), where i = 1, 2, . . . , n, we choose
an arbitrary point ξi and form the sum

S =
n∑
i=1

f(ξi)(ti − ti−1).

We call S a Riemann ∆-sum of f corresponding to the partition P.
We say that f is Riemann ∆-integrable from a to b if there exists a number I such that,

for each ε > 0, there exists δ > 0 such that ‖S − I‖ < ε, for every Riemann ∆-sum S of f
corresponding to a partition P ∈ Pδ, independent of the way in which we choose ξi ∈ [ti−1, ti),

i = 1, 2, . . . , n. Then we denote the Riemann ∆-integral of f by
∫ b

a
f(t) ∆t.

Remark 3.2. If f l is Riemann ∆-integrable on [a, b]T, according to the Riemann ∆-sum for
the bounded function f l on [a, b]T in Definition 3.4, l ∈ {0, 1, 2, 3}, then f = f0 +if1 +jf2 +kf3

is HKQ -∆-integrable on [a, b]T with

HKQ

b∫
a

f(t)∆t =

b∫
a

f0(t)∆t+ i

b∫
a

f1(t)∆t+ j

b∫
a

f2(t)∆t+ k

b∫
a

f3(t)∆t.

In fact, we just need to let P ∈ Pδ and ϑL(t) = ε > 0 a constant for points in [a, b]T, and
ϑR(t) = ε > 0 for all right-dense points in [a, b]T, ϑR(t) = µ(t) for the right-scattered points in
[a, b]T, then ϑ is ∆-gauge for [a, b]T, according to Definition 3.3, the result follows.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 1



60 G. QIN, C. WANG, R. P. AGARWAL

Lemma 3.3 [3]. Let a, b ∈ T, a < b, [a, b]T consists of only isolated points, and if f is
continuous at right-dense points in T and its left limits exist (and are finite) at left-dense points
in T, then

b∫
a

f(t)∆t =
∑

t∈[a,b]T

µ(t)f(t).

Example 3.1. Let T =

{
t =

1

n
: n ∈ N

}
∪ {0} and f : T→H be defined by f(t) = f0(t) +

+ if1(t) + jf2(t) + kf3(t), where

f0(t) =

{
1, t 6= 0,

0, t = 0,
f1(t) =


1

√
t+

√
σ(t)

, t 6= 0,

0, t = 0,

f2(t) = 0, f3(t) = 0.

Then we can obtain HKQ

∫ 1

0
f(t)∆t = 1 + i.

Indeed, if we let 0 < ε < 1 be given, and suppose that ϑ is a ∆-gauge for [0, 1]T satisfying
θL(t) =

1

3
ν(t) on t ∈ (0, 1]T and θR(t) = µ(t) on t ∈ (0, 1)T with θR(0) = ε2. We obtain that

the first tag point is η1 = 0, and also for 1 ≤ i ≤ n− 1 we have θR(ti) = µ(ti), and

ηi+1 = ti, ηi = ti, ti+1 = σ(ti), 1 ≤ i ≤ n− 1.

Then, by Lemma 3.3, we have∥∥∥∥∥(1 + i)−
n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ =

=

∥∥∥∥∥1 + i−
n∑
i=1

f0(ηi)(ti − ti−1)− i
n∑
i=1

f1(ηi)(ti − ti−1)

∥∥∥∥∥ =

=

∥∥∥∥∥∥1−
1∫

0

f0(t)∆t+ i− i
1∫

0

f1(t)∆t

∥∥∥∥∥∥ < ε

since the fact that F 0(t) = t is the delta antiderivative of f0(t) and F 1(t) =
√
t is the delta

antiderivative of f1(t) on (0, 1)T, respectively.
Theorem 3.1. Let f = f0 + if1 + jf2 + kf3. If f l, l = 0, 1, 2, 3, is continuous on [a, b]T,

then f is HKQ -∆-integrable on [a, b]T.

Proof. First, let εn be monotone decreasing to 0 and θn be a ∆-gauge for [a, b]T with
θnL(t) = εn, and θnR(t) = εn for all right-dense points of [a, b]T, θ

n
R(t) = µ(t) for all right-scattered

points of [a, b]T. Thus, it follows that every right-scattered point is a tag point. Therefore, for each
[ti−1, ti], either ‖ti − ti−1‖ < 2εn or ‖ti − ti−1‖ = µ(ti−1) and ti−1 is a right-scattered point.
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Hence, let E1 be the union of all [ti−1, ti] with ti−1 is a right-scattered point, and let
E2 = [a, b]T\E1, and A denote Riemann sum

∑
ti−1∈E1

f(η) � (ti − ti−1). Then whenever
t ∈ [η − θnL(η), η + θnR(η)] ⊂ E2 we have∥∥∥f l(t)− f l(η)

∥∥∥ < εn l = 0, 1, 2, 3.

We may assume that εn+1 < εn for all n. Let sln denote a Riemann sum over a θn -fine partition,
where sln, n = 1, 2, . . . , are fixed. Take a θm -fine partition

Pm = {a = t0 ≤ η1 ≤ t1 ≤ . . . ≤ ηn ≤ tn = b}

and a θn -fine partition

Pn =
{
a = t′0 ≤ η′1 ≤ t′1 ≤ . . . ≤ η′n ≤ t′n = b

}
.

If [ti−1, ti] ∩ [t′i−1, t
′
i] is nonempty and contains t, then we have∥∥f(η)− f(η′)

∥∥ ≤ ‖f(η)− f(t)‖+
∥∥f(t)− f(η′)

∥∥ < εm + εn.

It follows that ∥∥∥slm − sln∥∥∥ < (εm + εn)(b− a),

and hence J l = limn→∞ s
l
n exists. Therefore, for any ε > 0, there is ∆-gauge θn with ε < εn

and
∥∥sln − J l∥∥ < ε such that over any θn -fine division Pn we have∥∥∥∥∥

n∑
i=1

f(ηi)� (ti − ti−1)−
(
A+ J0 + iJ1 + jJ2 + kJ3

)∥∥∥∥∥ ≤
≤

∥∥∥∥∥∥
∑
t∈E2

f(ηi)� (ti − ti−1)−
(
s0
n + is1

n + js2
n + ks3

n

)∥∥∥∥∥∥+

+
∥∥s0

n + is1
n + js2

n + ks3
n −

(
J0 + iJ1 + jJ2 + kJ3

)∥∥ <
< 2ε(b− a) + 2ε.

That is, f is HKQ -∆-integrable on [a, b]T.
Theorem 3.1 is proved.
4. Some properties of quaternion-valued HKQ-∆ -integral. In this section, we shall

present some main results and prove them. We first establish some basic properties and give their
proofs.

Theorem 4.1. Let f, g : T → H, if f and g are HKQ -∆-integrable on [a, b]T, then so are
f + g and βf, where β is a real number. Furthermore,

HKQ
b∫
a

(f(t) + g(t))∆t = HKQ
b∫
a

f(t)∆t+ HKQ
b∫
a

g(t)∆t,

HKQ
b∫
a

βf(t)∆t = β

HKQ
b∫
a

f(t)∆t

. (4.1)
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Proof. Let A and B denote the HKQ -∆-integrals of f and g on [a, b]T, respectively. Then,
for any ε > 0, there is a ∆-gauge ϕ such that, for any ϕ-fine partition P1, we have∥∥∥∥∥A−

n∑
i=1

f(ξi)� (ti − ti−1)

∥∥∥∥∥ < ε

2

and there is a ∆-gauge γ such that, for any γ -fine partition P2, we get∥∥∥∥∥B −
m∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2
.

Now, we let ϑL = min{ϕL, γL}, ϑR = min{ϕR, γR}; then let P be a ϑ-fine partition for [a, b]T,
since ϑ is finer than ϕ and γ, P also a ϕ-fine and γ -fine partition for [a, b]T by Corollary 2.1.
Thus we get∥∥∥∥∥(A+B)−

p∑
i=1

[f(ηi + g(ηi)]� (ti − ti−1)

∥∥∥∥∥ ≤
≤

∥∥∥∥∥A−
p∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥+

∥∥∥∥∥B −
p∑
i=1

g(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε.

Assume that βf has the HKQ -∆-integral C on [a, b]T. For any given ε > 0, we have∥∥∥∥∥C −
n∑
i=1

βf(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

β
,

which implies that ∥∥∥∥∥Cβ −
n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε.

Hence (4.1) holds.
Theorem 4.1 is proved.
Theorem 4.2. Let a < c < b, if f is HKQ -∆-integrable on [a, c]T and [c, b]T, then so is it

on [a, b]T with

HKQ
b∫
a

f(t)∆t = HKQ
c∫
a

f(t)∆t+ HKQ
b∫
c

f(t)∆t.

Proof. Let

A := HKQ

c∫
a

f(t)∆t, B := HKQ

b∫
c

f(t)∆t.

Let ε > 0 be given, then there is a ∆-gauge γ = (γL, γR) for [a, c]T and a ∆-gauge ϑ = (ϑL, ϑR)
for [c, b]T such that for all γ -fine partition P of [a, c]T and all ϑ-fine partition P ′ of [c, b]T, it
follows that ∥∥∥∥∥A−

n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2
,
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and ∥∥∥∥∥B −
m∑
i=1

f(η′i)� (t′i − t′i−1)

∥∥∥∥∥ < ε

2
.

Now, define θL(t) = γL(t) on [a, c)T, θL(t) = min

{
ϑL(t),

t− c
2

}
on (c, b]T, and

θL(c) =


γL(c), ρ(c) = c,

min

{
γL,

ν(c)

2

}
, ρ(c) < c.

Similarly, define θR(t) = min

{
γR(t),

c− t
2

}
on [a, c)T, θR(t) = ϑR(t) on (c, b]T and

θR(c) =

ϑR(c), µ(c) = 0,

min{ϑR(c), µ(c)}, µ(c) > 0.

Next, let P ′′ be a θ -fine partition of [a, b]T. Note that c is always an end point for P ′′. Thus we
have ∥∥∥∥∥(A+B)−

p∑
i=1

f
(
η′′i
)
�
(
t′′i − t′′i−1

)∥∥∥∥∥ ≤
≤

∥∥∥∥∥A−
k−1∑
i=1

f
(
η′′i
)
�
(
t′′i − t′′i−1

)
− f

(
η′′k
)
�
(
c− t′′k−1

)∥∥∥∥∥+

+

∥∥∥∥∥B −
p∑

i=k+1

f
(
η′′i
)
�
(
t′′i − t′′i−1

)
− f

(
η′′k+1

)
�
(
t′′k+1 − c

)∥∥∥∥∥ < ε.

Since θ is finer than γ on [a, c]T, and finer than ϑ on [c, b]T, then from Corollary 2.1, P ′′ is
γ -fine partition for [a, c]T and is ϑ-fine partition for [c, b]T, then we get the desired result.

Theorem 4.2 is proved.
Lemma 4.1. A quaternionic function f : T→ H is HKQ -∆-integrable on [a, b]T if and only

if for every ε > 0 there is a ∆-gauge ϑ for [a, b]T such that for any ϑ-fine partitions P and P ′
we have ∥∥∥∥∥

n∑
i=1

F ∗(ti−1, ti)−
n∑
i=1

F ∗(t′i−1, t
′
i)

∥∥∥∥∥ < ε,

where
∑n

i=1
F ∗(ti−1, ti) and

∑m

i=1
F ∗(t′i−1, t

′
i) denote the sums

n∑
i=1

f(ηi)� (ti − ti−1),

m∑
i=1

f(η′i)� (t′i − t′i−1),

respectively.
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Proof. If f is HKQ -∆-integrable on [a, b]T, for given ε > 0, there is a number J and
∆-gauge θ such that ∥∥∥∥∥J −

n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2

for any θ -fine partition P. Hence we have∥∥∥∥∥
m∑
i=1

F ∗(ti−1, ti)−
n∑
i=1

F ∗(t′i−1, t
′
i)

∥∥∥∥∥ ≤
≤

∥∥∥∥∥
m∑
i=1

F ∗(ti−1, ti)− J

∥∥∥∥∥+

∥∥∥∥∥J −
n∑
i=1

F ∗
(
t′i−1, t

′
i

)∥∥∥∥∥ < ε.

For any θ -fine partitions P and P ′, if∥∥∥∥∥
m∑
i=1

F ∗(ti−1, ti)−
n∑
i=1

F ∗(t′i−1, t
′
i)

∥∥∥∥∥ < ε

holds, let εn be monotone decreasing to 0, and assume that Pn+1 is finer than Pn, Jn denotes∑mn

i=1
F ∗n(ti−1, ti). For sufficiently large n, take a θ -fine partition Pk and a θ -fine partition Ps,

s > k > n. Then
‖Js − Jk‖ < εn,

it implies that J = limn→∞ Jn exists. Therefore, given ε > 0, there is a ∆-gauge ϑ with εn < ε
and ‖Jn − J‖ < ε such that for any ϑ-fine partition we have∥∥∥∥∥J −

n∑
i=1

F ∗(ti−1, ti)

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

F ∗(ti−1, ti)− Jk

∥∥∥∥∥+ ‖Jk − J‖ < εn + ε.

That is, f is HKQ -∆-integrable on [a, b]T.

Lemma 4.1 is proved.
Theorem 4.3. If f is HKQ -∆-integrable on [a, b]T, then so is it on a subset [c, d]T ⊂ [a, b]T.

Proof. If f is HKQ -∆-integrable on [a, b]T, assume that θ is a ∆-gauge for [a, b]T, and let
P1 and P2 be two θ -fine partitions for [c, d]T, then wemay let s1 and s2 be the HKQ -∆-integrals
of f. Similarly, let P3 be a θ -fine partition on [a, c]T∪ [d, b]T and denote by s3 the corresponding
HKQ -∆-integral. Then the union P1 ∪P3 forms a θ -fine partition for [a, b]T. And it follows that
the HKQ -∆-integral on [a, b]T forms s1 + s3. Also, for P2 ∪ P3, it becomes s2 + s3, then from
Lemma 4.1 we obtain

‖s1 − s2‖ ≤ ‖(s1 + s3)− (s2 + s3)‖ < ε.

Lemma 4.1 is proved.
Theorem 4.4. Let [a, b] ⊂ T, assume f : [a, b]T→H. If f is HKQ -∆-integrable on [a, b]T,

then the value of
∑n

i=1
f(ξi) � (ti − ti−1) does not depend on f(b). Let c ∈ [a, b]T be a

right-scattered point, then the value of
∑n

i=1
f(ηi)� (ti − ti−1) does depend on f(c)µ(c).
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Proof. Assume that f = f0 + if1 + jf2 + kf3 is HKQ -∆-integrable on [a, b]T. Then we
consider the two cases: ρ(b) < b and ρ(b) = b. If ρ(b) < b, we let θL(b) < ν(b), then b 6∈ {ξi}n1 for
any θ -fine partition, thus

∑n

i=1
f(ξi)(ti − ti−1) does not depend on the value f(b). If ρ(b) = b,

for any given ε > 0 we let

θL(b) < p = min

{
ε

‖f0(b)‖+ 1
,

ε

‖f1(b)‖+ 1
,

ε

‖f2(b)‖+ 1
,

ε

‖f3(b)‖+ 1

}
,

then if b = ξn, we have

‖f(ξn)(tn − tn−1)‖ = ‖f(b)� (b− tn−1)‖ ≤ ‖f(b)θL(b)‖ < ‖f(b)p‖ < ε.

Now assume that c ∈ [a, b)T and c is right-scattered, then form Theorem 4.2 and Remark 3.2, we
obtain

HKQ

b∫
a

f(t)∆t = HKQ

c∫
a

f(t)∆t+ HKQ

σ(c)∫
c

f(t)∆t+ HKQ

b∫
σ(c)

f(t)∆t =

= HKQ

c∫
a

f(t)∆t+ HKQ

b∫
σ(c)

f(t)∆t+

+ f0(c)µ(c) + if1(c)µ(c) + jf2(c)µ(c) + kfk(c)µ(c).

Lemma 4.1 is proved.
Remark 4.1. According to the proof of Theorem 4.4, without loss of generality, we can

assume that ξn 6= b in the definition of HKQ -∆-integral.
Theorem 4.5. Let F : [a, b]T→H be continuous, f : [a, b]T→H, and there is a set D with

Mµ ⊂ D ⊂ [a, b]κT such that F∆(t) = f(t) for t ∈ D and [a, b]T\D is countable, l ∈ {0, 1, 2, 3}.
Then f = f0 + if1 + jf2 + kf3 is HKQ -∆-integrable on [a, b]T with

HKQ
b∫
a

f(t) ∆t = J,

where

J = F 0(b)− F 0(a) + i
(
F 1(b)− F 1(a)

)
+ j
(
F 2(b)− F 2(a)

)
+ k
(
F 3(b)− F 3(a)

)
,

and Mµ denotes all right-scattered points of [a, b]T, i.e.,

Mµ = {zj ∈ [a, b)T : µ(zj) > 0}.

According to the hypothesis, let D be a set with Mµ ⊂ D ⊂ [a, b]κT such that (F l)∆(t) = f l(t)
for t ∈ D and [a, b]T\D is countable. Then we let

P := [a, b]T\D = {p1, p2, . . .},

and let ε > 0 be given, then we define a ∆-gauge ϑ for [a, b]T.
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First, let t ∈ Mµ, thus, we define θR(t) = µ(t), since F l is delta differentiable at t ∈ D, it
follows that there is a γL(t) > 0 such that∥∥∥F l(σ(tj))− F l(s)− (F l)∆(tj)(σ(tj)− s)

∥∥∥ ≤ ε

4(b− a)
‖σ(tj)− s‖ (4.2)

for all s ∈ [tj − γL(tj), tj ]T. Meanwhile, since F l is continuous at t ∈ D, it implies that there is
a γ′L(tj) > 0 such that ∥∥∥F l(tj)− F l(s)− (F l)∆(tj)(tj − s)

∥∥∥ ≤ ε

2j+2
(4.3)

for all s ∈ [tj − γ′L(tj), tj ]T. Thus, we define θL(tj) = min{γL(tj), γ
′
L(tj)} such that (4.2) and

(4.3) both hold for s ∈ [tj − θL(tj), tj ]T.
Secondly, we consider the case t ∈ D\Mµ. Since F l is delta differentiable at t, we obtain

that there is a β1(t) > 0 such that∥∥∥F l(t)− F (s)− (F l)∆(t)(t− s)
∥∥∥ ≤ ε

4(b− a)
‖t− s‖ (4.4)

for s ∈ [t− β1(t), t+ β1(t)]T, then we define θL(t) = θR(t) = β1(t).
Next, suppose that t ∈ P, then t = pj for some j. In this situation, since F l is continuous at

pj , there is a λ(pj) > 0 such that∥∥∥F l(r)− F l(s)− f l(pj)(r − s)∥∥∥ ≤ ε

2j+2
(4.5)

for all r, s ∈ [pj − λ(pj), pj + λ(pj)]T. Hence, we define θR(pj) = θL(pj) = λ(pj), then we get
θL(t) and θR(t) for t ∈ [a, b]T. Therefore, we get a ∆-gauge θ = (θL, θR) for [a, b]T.

Now suppose that P is a θ -fine partition of [a, b]T, and now consider ηi ∈Mµ, ηi ∈ D\Mµ,
ηi ∈ P, combining (4.2) to (4.5), we obtain∥∥∥∥∥F l(b)− F l(a)−

n∑
i=1

f l(ηi)(ti − ti−1)

∥∥∥∥∥ =

=

∣∣∣∣∣
n∑
i=1

(
F l(ti)− F l(ti−1) + f l(ηi)(ti − ti−1)

)∥∥∥∥∥ ≤
≤

n∑
i=1

∥∥∥F l(ti)− F l(ti−1) + f l(ηi)(ti − ti−1)
∥∥∥ < ε. (4.6)

Then we have ∥∥∥∥∥J −
n∑
i=1

f(ηi)(ti − ti−1)

∥∥∥∥∥ =

∥∥∥∥∥J −
n∑
i=1

F∆(ηi)(ti − ti−1)

∥∥∥∥∥ < ε.

Lemma 4.1 is proved.
Definition 4.1 [58]. If F : [a, b]T → R is a delta antiderivative of f on [a, b]T, then we say

f is CN-delta integrable on [a, b]T and we define

CN

b∫
a

f(t)∆t := F (b)− F (a).
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Remark 4.2. It follows from Theorem 4.5 that if f l, l = 0, 1, 2, 3, is CN-delta integrable
function f on [a, b]T, then f = f0 + if1 + if2 + kf3 is HKQ -∆-integrable on [a, b]T and

HKQ

b∫
a

f(t)∆t = CN

b∫
a

f0(t)∆t+ i

CN b∫
a

f1(t)∆t

+

+ j

CN b∫
a

f2(t)∆t

+ k

CN b∫
a

f3(t)∆t

.
Hence, the class of HKQ -∆-integrable functions on [a, b]T contains the class of Riemann delta
integrable functions on [a, b]T.

Definition 4.2 [3]. A continuous function f : T→ R is called pre-differentiable with region
D if:

(1) D ⊂ Tκ;
(2) Tκ\D is countable and contain no right-scattered elements of T;
(3) f is delta differentiable at each t ∈ D.
A function f : T → R is called regulated if its right-side limits exist (and are finite) at all

right-dense points in T and its left-side limits exist (and are finite) at all left-dense points in T.
F is called ∆ pre-antiderivative of f, provided it satisfies above properties.

Lemma 4.2 [3]. Let f : T → R be regulated. Then there exists a function F which is
pre-differentiable with region of differentiation D such that

F∆(t) = f(t) holds for all t ∈ D.

Lemma 4.3 [4]. Let f be a ∆-integrable function on [a, b]T. If f has a ∆ pre-antiderivative
F : [a, b]T → T with region of differentiation D, then

b∫
a

f(t)∆t = F (b)− F (a).

Corollary 4.1. If f l : T→R, l = 0, 1, 2, 3, is regulated and a, b ∈ T, then f = f0 + if1 +
+ jf2 + kf3 is HKQ -∆-integrable on [a, b]T and

HKQ
b∫
a

f(t)∆t =

b∫
a

f0(t)∆t+ i

 b∫
a

f1(t)∆t

+ j

 b∫
a

f2(t)∆t

+ k

 b∫
a

f3(t)∆t

.
Proof. By Lemma 4.2, since f l is regulated, then there is a function F l : [a, b]T→R which

is continuous on [a, b]T, l ∈ {0, 1, 2, 3}, and there is a set D with Mµ ⊂ D ⊂ [a, b]κT such that
(F l)∆(t) = f l(t) for t ∈ D and [a, b]T\D is countable.

According to Theorem 4.5, it follows that f is HKQ -∆-delta integrable on [a, b]T with

HKQ

b∫
a

f(t)∆t =
(
F 0(b)− F 0(a)

)
+ i
(
F 1(b)− F 1(a)

)
+

+ j
(
F 2(b)− F 2(a)

)
+ k
(
F 3(b)− F 3(a)

)
. (4.7)
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Since f l is regulated, by Lemma 4.2 and Lemma 4.3 we obtain

b∫
a

f l(t)∆t = F l(b)− F l(a). (4.8)

Thus, from (4.7) and (4.8) we get the desired result.
Lemma 4.1 is proved.
Definition 4.3 [58]. Let S be a subset of a time scale T, then we say it has ∆-measure

zero provided S contains no right-scattered points and S has Lebesgue measure zero. We say a
property A holds ∆-almost everywhere (∆-a.e.) on T provided there is a subset S of T such
that the property A holds for all t 6∈ S and S has ∆-measure zero.

Theorem 4.6. If f(t) = 0, ∆-almost everywhere in [a, b]T, i.e., for every t ∈ [a, b]T except
a set D of ∆-measure zero, then f = f0 + if1 + jf2 +kf3 is HKQ -∆-integrable to 0 on [a, b]T.

Proof. In fact, D is the union of Di, i = 1, 2, . . . , where Di is a subset of D with
i− 1 < ‖f(d)‖ ≤ i, for d ∈ Di. Then, we have that each Di is also of ∆-measure zero. Hence,
given ε > 0, for each i there is a Gi which is the union of a countable number of open intervals
with the total length less than ε2−ii−1 and such that Di ⊂ Gi. Then define θ = (θL, θR) such
that

(η − θL(η), η + θR(η)) ⊂ Gi,

for η ∈ Di, i = 1, 2, . . . . Hence for any θ -fine partition P we have∥∥∥∥∥
n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε.

Lemma 4.1 is proved.
Theorem 4.7. If f, g : T → H are HKQ -∆-integrable on [a, b]T with

∥∥f l(t)∥∥ ≤ ∥∥gl(t)∥∥,
l = 0, 1, 2, 3, ∆-a.e. on [a, b]T, then∥∥∥∥∥∥HKQ

b∫
a

f(t)∆t

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥HKQ

b∫
a

g(t)∆t

∥∥∥∥∥∥,
where f(t) = f0(t) + if1(t) + jf2(t) + kf3(t), g(t) = g0(t) + ig1(t) + jg2(t) + kg3(t).

Proof. From the proof of Theorem 4.6, we may suppose that
∥∥f l(t)∥∥ ≤ ∥∥gl(t)∥∥ for all

t ∈ [a, b]T. For given ε > 0, there is a ∆-gauge, γ = (γL, γR), such that for any γ -fine partition
P1, we have ∥∥∥∥∥A−

n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2
,

and there is a ∆-gauge, β = (βL, βR), such that for any β -fine partition P2, we have∥∥∥∥∥B −
m∑
i=1

g(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2
.
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Now, we let θL = min{βL, γL}, θR = min{βR, γR}, then let P be a θ -fine partition of [a, b]T,
since θ is finer than β and γ, then P also a β -fine and γ -fine partition of [a, b]T by Corollary 2.1,
thus we get∥∥∥∥∥A−

p∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2
,

∥∥∥∥∥B −
p∑
i=1

g(ηi)� (ti − ti−1)

∥∥∥∥∥ < ε

2

holds for all θ -fine partitions. Then∥∥∥∥∥∥HKQ

b∫
a

f(t)∆t

∥∥∥∥∥∥ =

∥∥∥∥∥
p∑
i=1

[
f0(ηi) + if1(ηi) + jf2(ηi) + kf3(ηi)

]
(ti − ti−1)

∥∥∥∥∥+
ε

2
≤

≤

∥∥∥∥∥
p∑
i=1

[
g0(ηi) + ig1(ηi) + jg2(ηi) + kg3(ηi)

]
(ti − ti−1)

∥∥∥∥∥+
ε

2
=

=

∥∥∥∥∥∥HKQ

b∫
a

g(t)∆t

∥∥∥∥∥∥+ ε.

According to arbitrariness of ε, the desired result follows.
Lemma 4.1 is proved.
Theorem 4.8. Assume f : T → H is HKQ -∆-integrable on [a, b]T. Then given any ε > 0

there is a ∆-gauge ϑ for [a, b]T such that

n∑
i=1

∥∥∥∥∥∥∥HKQ
ti∫

ti−1

f(t)∆t− f(ηi)� (ti − ti−1)

∥∥∥∥∥∥∥ < ε

for all ϑ-fine partitions P of [a, b]T.

Proof. Assume that f is HKQ -∆-integrable on [a, b]T. Let θ be a ∆-gauge for [a, b]T
and P = {a = t0 ≤ η1 ≤ t1 ≤ . . . ≤ tn ≤ b} be a θ -fine partition of [a, b]T, E1 = [t0, t1]

and HKQ

∫
E1

f(t)∆t is the HKQ -∆-integrable of f on E1. Assume that E2 is the closure of

[a, b]T\E1. Then, by Theorem 4.3, f is HKQ -∆-integrable on E1 and E2. Given ε > 0, there is
a ∆-gauge θ1 such that for any θ1 -fine partition P1 such that∥∥∥∥∥∥HKQ

∫
E1

f(t)∆t−
p∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥∥ < ε

2
.

Also, there is a ∆-gauge θ2 such that for any θ2 -fine partition P2 such that∥∥∥∥∥∥HKQ

∫
E2

f(t)∆t−
m∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥∥ < ε

2
,
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where HKQ

∫
E2

f(t)∆t is HKQ -∆-integral of f on E2. Let θL(t) = θ1
L(t), θR(t) = θ1

R(t),

t ∈ E1 and θL(t) = θ2
L(t), θR(t) = θ2

R(t), t ∈ E2. Then we have

HKQ

b∫
a

f(t)∆t = HKQ

∫
E1

f(t)∆t+ HKQ

∫
E2

f(t)∆t.

According to Theorem 4.2 we have∥∥∥∥∥∥HKQ

b∫
a

f(t)∆t−
n∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥∥ ≤
≤

∥∥∥∥∥∥HKQ

∫
E1

f(t)∆t− f(ηi)� (t1 − t0)

∥∥∥∥∥∥+

+

∥∥∥∥∥∥HKQ

∫
E2

f(t)∆t−
m∑
i=1

f(ηi)� (ti − ti−1)

∥∥∥∥∥∥ < ε.

Lemma 4.1 is proved.
Theorem 4.9. Let fk, f : [a, b]T → H and assume that
(i) fk is HKQ -∆-integrable on [a, b]T, k ∈ N;
(ii) ‖fk − f‖ → 0, ∆-a.e. on [a, b]T;
(iii)

∥∥f lk∥∥ ≤ ∥∥f ln+1

∥∥, l = 0, 1, 2, 3, ∆-a.e. on [a, b]T, k ∈ N;

(iv) limk→∞HKQ
∫ b

a
fk(t)∆t = J.

Then f is HKQ -∆-integrable on [a, b]T and

J = HKQ
b∫
a

f(t)∆t.

Proof. Without loss of generality, we can assume that f lk(t) ≥ 0, ∆-a.e. on [a, b]T, then
according to Theorem 4.6, we will replace the condition (ii) by

‖fk − f‖ → 0 for each t ∈ [a, b)T, (4.9)

and replace (iii) by ‖f lk(t)‖ ≤ ‖f lk+1(t)‖, l = 0, 1, 2, 3, t ∈ [a, b)T. Let ε > 0 be given, we suppose
that there is a positive integer s0 such that∥∥∥∥∥∥J −HKQ

b∫
a

fk(t)∆t

∥∥∥∥∥∥ < ε

3

for all k ≥ s0. From (4.9), there is a positive integer m(ε, t) ≥ s0 for each t ∈ [a, b]T such that∥∥∥f lm(ε,t)(t)− f
l(t)
∥∥∥ < ε

3(b− a)
, l = 0, 1, 2, 3. (4.10)
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Since each fk is HKQ -∆-integrable on [a, b]T, from Theorem 4.8, there is a ∆-gauge, θk, for
[a, b]T such that

n∑
i=1

∥∥∥∥∥∥∥HKQ

ti∫
ti−1

fk(t)∆t− fk(ηi)� (ti − ti−1)

∥∥∥∥∥∥∥ <
ε

3 · 2k
(4.11)

holds for each θk -fine partition for [a, b]T. Thus, we define a ∆-gauge, θ, on [a, b]T by

θ(t) := θm(ε,t)(t).

Then let P be a θ -fine partition, by using (4.10) and (4.11), we obtain∥∥∥∥∥
n∑
i=1

f(ηi)� (ti − ti−1)− J

∥∥∥∥∥ ≤
n∑
i=1

∥∥f(ηi)− fm(ε,ηi)(ηi)
∥∥� (ti − ti−1) +

+
n∑
i=1

∥∥∥∥∥∥∥fm(ε,ηi)(ηi)� (ti − ti−1)−HKQ

ti∫
ti−1

fm(ε,ηi)(t)∆t

∥∥∥∥∥∥∥+

+

∥∥∥∥∥∥∥
n∑
i=1

HKQ

ti∫
ti−1

fm(ε,ηi)(t)∆t− J

∥∥∥∥∥∥∥ <
<

ε

3(b− a)
(b− a) +

ε

3

∞∑
i=1

1

2i
+

<

∥∥∥∥∥∥∥
n∑
i=1

HKQ

ti∫
ti−1

fm(ε,ηi)(t)∆t− J

∥∥∥∥∥∥∥ =

=
2ε

3
+

∥∥∥∥∥∥∥
n∑
i=1

HKQ

ti∫
ti−1

fm(ε,ηi)(t)∆t− J

∥∥∥∥∥∥∥.
To get our desired result, we need to show that the last term above is less than ε/3. In fact, from
Theorem 4.2, we obtain

HKQ

b∫
a

fm(ε,ηi)(t)∆t =
n∑
i=1

HKQ

ti∫
ti−1

fm(ε,ηi)(t)∆t,

and since fk is HKQ -∆-integrable on [a, b]T, therefore∥∥∥∥∥∥HKQ

b∫
a

fm(ε,ηi)∆t− J

∥∥∥∥∥∥ < ε

3
,

then the result follows.
Theorem 4.9 is proved.
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Lemma 4.4. Let f1 = f0
1 + if1

1 + jf2
1 + kf3

1 and f2 = f0
2 + if1

2 + jf2
2 + kf3

2 be HKQ -
∆-integrable on [a, b]T, and if pl(t) ≤ f l1(t) ≤ hl(t), pl(t) ≤ f l2(t) ≤ hl(t), l = 0, 1, 2, 3,
∆-almost everywhere, where p and h are also HKQ -∆-integrable on [a, b]T, then max{f1, f2}
and min{f1, f2} are both HKQ -∆-integrable on [a, b]T, where

max{f1, f2} = max
{
f0

1 , f
0
2

}
+ imax

{
f1

1 , f
1
2

}
+ jmax

{
f2

1 , f
2
2

}
+ kmax

{
f3

1 , f
3
2

}
,

min{f1, f2} = min
{
f0

1 , f
0
2

}
+ imin

{
f1

1 , f
1
2

}
+ jmin

{
f2

1 , f
2
2

}
+ kmin

{
f3

1 , f
3
2

}
.

Proof. Without loss of generality, suppose g(t) = 0 for t ∈ [a, b]T. Let Fi(u, v) be the
HKQ -∆-integral of fi, i = 1, 2, on [u, v]T ⊂ [a, b]T, and let

F ∗(u, v) = max{F1(u, v), F2(u, v)}.

Note that F ∗ is not additive, i.e., if x < y < z we have

F ∗(x, z) ≤ F ∗(x, y) + F ∗(y, z).

Choose any partition P1 = {a = t0 < t1 < . . . < tn = b} of [a, b]T and we have∥∥∥∥∥
n∑
k=1

F ∗(tk−1, tk)

∥∥∥∥∥ ≤
∥∥∥∥∥∥HKQ

b∫
a

h(t)∆t

∥∥∥∥∥∥.
Let A =

∑n

k=1
F ∗(tk−1, tk) be the largest integral over such all

∑n

k=1
F ∗(tk−1, tk). We shall

show that A is the HKQ -∆-integral of max{f1, f2} on [a, b]T.
According to Theorem 4.8, for given ε > 0, there is a ∆-gauge θ for [a, b]T such that for any

θ -fine partition P of [a, b]T, we have
n∑
k=1

‖fi(ηk)� (tk − tk−1)− Fi(tk−1, tk)‖ < ε, i = 1, 2.

Now let
xi(a, b) = sup

n∑
k=1

∥∥fi(ηk)� (tk − tk−1)− Fi(tk−1, tk)
∥∥, i = 1, 2,

where the supremum is over all θ -fine partitions P of [a, b]T. Note that

xi(a, c) + xi(c, b) ≤ xi(a, b) for a < c < b and xi(a, b) ≤ ε,

for any θ -fine partition P of [a, b]T we have∥∥fi(ηk)� (tk − tk−1)
∥∥ ≤ ∥∥F ∗(tk−1, tk)

∥∥+ x1(tk−1, tk) + x2(tk−1, tk), i = 1, 2.

Thus, writing f = max{f1, f2} we have∥∥fi(ηk)� (tk − tk−1)
∥∥ ≤ ∥∥F ∗(tk−1, tk)

∥∥+ x1(tk−1, tk) + x2(tk−1, tk). (4.12)

Similarly, we also have∥∥F ∗(tk−1, tk)
∥∥− x1(tk−1, tk)− x2(tk−1, tk) ≤

∥∥fi(ηk)� (tk − tk−1)
∥∥. (4.13)
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Combining (4.12) and (4.13) we obtain∥∥∥∥∥
n∑
k=1

(f(ηk)� (tk − tk−1)− F ∗(tk−1, tk))

∥∥∥∥∥ < 2ε.

Finally, fix a partition P ′ such that its corresponding sum∥∥∥∥∥
n∑
k=1

F ∗
(
t′i−1, t

′
i

)
−A

∥∥∥∥∥ < ε.

Adjust θ in such a way that if P is θ -fine then it is finer than P ′, i.e., any subinterval of P is
included in some subinterval of P ′. For any adjusted θ -fine partition P we have∥∥∥∥∥A−

n∑
k=1

F ∗(tk−1, tk)

∥∥∥∥∥ ≤
∥∥∥∥∥A−

n∑
k=1

F ∗
(
t′k−1, t

′
k

)∥∥∥∥∥ < ε.

Applying the above inequalities we obtain∥∥∥∥∥
n∑
k=1

f(ηk)� (tk − tk−1)−A

∥∥∥∥∥ < 3ε.

Hence we have proved the first part for f1 being a zero function. For min{f1, f2}, we can use the
fact that min{f1, f2} = −max{−f1,−f2}. Then, the result follows from Theorem 4.1 directly.

Lemma 4.4 is proved.
Theorem 4.10. Let f : [a, b]T → H, assume that:
(i) ‖fn − f‖ → 0 ∆-a.e. on [a, b]T;
(ii)

∥∥gl∥∥ ≤ ∥∥f ln∥∥ ≤ ∥∥hl∥∥, l = 0, 1, 2, 3, ∆-a.e. on [a, b]T;

(iii) fn, g, h are HKQ -∆-integrable on [a, b]T.
Then f is HKQ -∆-integrable on [a, b]T and

lim
n→∞

HKQ
b∫
a

fn(t)∆t = HKQ
b∫
a

f(t)∆t.

Proof. By Lemma 4.4, the function min{fn : i ≤ n ≤ j} is HKQ -∆-integrable on [a, b]T;
denote it by f∗j for j = i, i+ 1, i+ 2, . . . . Then the sequence −‖f∗i ‖, −

∥∥f∗i+1

∥∥, . . . are monotone
increasing and they are bounded above. By Theorem 4.9, the limit function inf{fn : n ≥ i} is
HKQ -∆-integrable on [a, b]T.

Similarly, we can show that sup{fn : n ≥ i} is also HKQ -∆-integrable on [a, b]T. Then we
have ∥∥∥∥∥∥HKQ

b∫
a

(
inf
n≥i

fn(t)

)
∆t

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥inf
n≥i

HKQ

b∫
a

fn(t)∆t

∥∥∥∥∥∥ ≤
≤

∥∥∥∥∥∥sup
n≥i

HKQ

b∫
a

fn(t)∆t

∣∣∣∣∣∣ ≤
∥∥∥∥∥∥HKQ

b∫
a

(
sup
n≥i

fn(t)

)
∆t

∥∥∥∥∥∥.
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It is well-known that fn(x)→ f(x) as n→∞ if and only if

lim
i→∞

(
inf
n≥i

fn(t)

)
= f(t) = lim

i→∞

(
sup
n≥i

fn(t)

)
.

Apply Theorem 4.9 again to sequence inf{f : n > i} for i = 1, 2, . . . and we obtain that f is
HKQ -∆-integrable on [a, b]T. Consequently,∥∥∥∥∥∥HKQ

b∫
a

f(t)∆t

∥∥∥∥∥∥ ≤ lim
i→∞

∥∥∥∥∥∥inf
n≥i

HKQ

b∫
a

fn(t)∆t

∥∥∥∥∥∥ ≤
≤ lim

i→∞

∥∥∥∥∥∥sup
n≥i

HKQ

b∫
a

fn(t)∆t

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥HKQ

b∫
a

f(t)∆t

∥∥∥∥∥∥,
and the result follows.

Lemma 4.1 is proved.
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