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Злоякісна трансформація клітин є тривалим 
комплексним процесом, що включає зміну та/або 
набуття клітиною нових морфо-функціональних 
ознак, які забезпечують можливість трансформова-
них клітин активно конкурувати за поживні ресур-
си, уникати контролю з боку імунної системи, збіль-
шує здатність до неконтрольованого поділу, інвазії 
та метастазування тощо. На сьогодні виділяють ці-
лий ряд ознак, які є характерними для пухлинного 
процесу, однією з яких є наявність мутацій та не-
стабільність геному в цілому [1]. Загалом для будь-
якого типу пухлин можна назвати перелік характер-
них для певної нозології мутацій, наявність яких є 
не  лише пасивним маркером цього типу пухлин-
ного процесу або такого, що корелює із характером 
перебігу захворювання, а й змінює функціональний 
стан клітин у цілому. Зокрема, зміни рівня експресії 
протоонкогенів та генів-супресорів, які виникають 
внаслідок генетичної нестабільності, зумовлюють 
високу генетичну пластичність пухлинних клітин 
і, отже, відіграють провідну роль у процесах ініціа-
ції та прогресії пухлинного росту [2]. Уперше гіпо-
тезу про вагомість виникнення мутацій у соматич-
них клітинах як ініціювального фактора у процесі 
канцерогенезу було висунуто Альфредом Кнудсо-
ном ще у 1970-х роках; згодом її було трансформо-
вано у теорію мутаційного канцерогенезу, яка нара-
зі є ключовою і загальноприйнятою [3, 4].

Слід наголосити, що реплікативний стрес, який 
часто супроводжується формуванням розривів 
у  ланцюгах ДНК не  є характерною ознакою саме 
злоякісно трансформованих клітин, також він час-

то виникає в нормальних клітинах під час процесу 
транскрипції. Однак, на відміну від пухлинних клі-
тин, у  нормі в  клітинах функціонує цілий спектр 
точок контролю (чекпойнти) та репараційних про-
цесів, що або відновлюють цілісну структуру ДНК 
ланцюга у  разі наявних пошкоджень, або активу-
ють програму апоптозу з  метою елімінації таких 
клітин [5].

РЕГУЛЯЦІЯ КЛІТИННОГО 
ЦИКЛУ У ТОЧКАХ ЧЕКПОЙНТІВ 
ЗА НОРМАЛЬНИХ УМОВ І у разі 
ВИНИКНЕННя ПОШКОДЖЕНЬ ДНК
Під час проходження клітинного циклу виділя-

ють три основні чекпойнти, тобто контрольні точ-
ки, на яких відбувається перевірка основних етапів 
циклу з  метою попередження потенційних пору-
шень та вирішується, чи готова клітина переходити 
до наступної фази циклу. До таких основних чек-
пойнтів відносять G1/S, G2/M та чекпойнт веретена 
поділу [6]. Щодо останнього, то основна його роль 
полягає у контролі правильного формування мета-
фазної пластинки та наявності зв’язку мікротрубо-
чок веретена поділу із сестринськими хроматидами, 
і тому в контексті аналізу відповіді клітин на виник-
нення пошкоджень ланцюгів ДНК детально розгля-
датися не буде.

Чекпойнт G1/S (також відомий під назвою «точ-
ка рестрикції») є найвагомішим етапом клітинно-
го циклу і тією точкою відліку, від якої почина-
ється новий цикл поділу клітини, тобто клітина 
переходить у фазу G1 або ж вона залишається у ста-
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МОЛЕКУЛЯРНІ МЕХАНІЗМИ 
ВИНИКНЕННЯ ПОШКОДЖЕНЬ 
ДНК ТА ЇХ РЕПАРАЦІЇ 
В НОРМАЛЬНИХ І ЗЛОЯКІСНИХ 
КЛІТИНАХ
Реплікативний стрес є одним з вагомих факторів, який відіграє значну роль 
у процесах формування та прогресії багатьох типів злоякісних новоутво-
рень, що неодноразово було продемонстровано експериментальним шляхом. 
Помилки в роботі полімерази, які виникають під час процесу реплікації; по-
рушення процесів регуляції, координації та контролю над процесом реплі-
кації; виникнення мутацій у генах, задіяних у цьому процесі тощо — усе це 
призводить у кінцевому підсумку до розбалансування та затримки репліка-
ції, руйнування реплікативних вилок, виникнення порушень цілісності лан-
цюгів ДНК, у тому числі за рахунок появи дволанцюгових розривів. Як на-
слідок, усе вищезазначене зумовлює виникнення нових мутацій та хромо-
сомних перебудов, що спричиняє пухлинну прогресію в цілому. У цій роботі 
проаналізовано та систематизовано молекулярні механізми, які координу-
ють процеси репарації пошкоджень ДНК у нормальних клітинах та за умов 
виникнення пухлинного росту.
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ні спокою  (G0). Основними регуляторами почат-
ку клітинного циклу є члени родини транскрип-
ційних факторів E2F (так звана група активуваль-
них E2F факторів, до яких належать E2F1, E2F2 та 
E2F3а), які координують запуск транскрипції ге-
нів, необхідних для проходження клітинного ци-
клу. У  фазі G0 та на  початку G1 E2F знаходиться 
у  зв’язаному з  білком-інгібітором  (білок ретино-
бластоми (retinoblastoma — RB)) стані, унеможлив-
люючи таким чином ініціацію транскрипції E2F-
залежних генів [7, 8]. Коли ж клітина отримує сигнал 
до початку поділу, упродовж фази G1 відбувається 
двоетапне фосфорилювання білка RB за  рахунок 
циклінів D (D1, D2 або D3) і E (E1 або E2) та ци-
клін-залежних кіназ CDK4 і CDK2 відповідно, що 
в кінцевому підсумку призводить до дисоціації RB 
від E2F та активації транскрипції E2F-залежних ге-
нів [9] (рис. 1).

У разі якщо у клітині виникають порушення ці-
лісності структури ДНК, відбувається активація кі-
наз ATM і CHK2, які надалі фосфорилюють білок 
ТР53 (в нефосфорильованому стані TP53 зв’язаний 
з білком MDM2 і може підлягати убіквітин-залеж-
ній деградації). Фосфорилювання TP53 призводить 
до  його дисоціації від MDM2 та активації транс
крипції TP53-залежних генів, спектр яких включає 
білок P21, який є інгібітором CDK2 і перешкоджає 

взаємодії CDK2 із цикліном Е, таким чином призво-
дячи до блокування G1/S-переходу [10, 11] (рис. 2).

Однак для пухлин характерне розбалансування 
цієї регуляторної моделі: за рахунок високого рівня 
експресії в клітинах MYC/CCND1, які позитивно 
регулюють активність E2F [12]; виникнення мута-
цій в гені TP53 [13]; інактивації білка RB [14] тощо.

Чекпойнт G2/M відбувається перед початком 
власне мітотичної фази клітинного циклу, основ
ною метою якого є перевірка завершеності проце-
су реплікації ДНК та детекція наявності порушень 
у структурі ДНК-ланцюгів; у разі виявлення пору-
шень виникає тимчасова затримка клітинного ци-
клу та активація репараційних процесів, за  необ-
хідності  [15]. Pегуляція G2/M-переходу та перехід 
у фазу М клітинного циклу зумовлені активацією 
кінази CDK1 у результаті її фосфорилювання CDK-
активувальною кіназою  (CDK activating kinase  — 
САК) та формування комплексу CDK1-циклін 
В1 з попереднім фосфорилюванням цикліну В1 кі-
назою PLK1 (див. рис. 1).

У  разі виникнення порушень у  структурі ДНК 
аналогічно до чекпойнту G1/S відбувається зупин-
ка клітинного циклу в  результаті активації ТР53-
залежних сигнальних шляхів: зокрема, через ATR/
ATM-опосередковане інгібування PLK1 та акти-
вацію, відповідно, кіназ CHK1/CHK2, які нада-
лі блокують CDK1  (під час чекпойнту G2/M) та 
CDK2  (під  час чекпойнту G1/S)  [16]. Додатковою 
ланкою координації зупинки G2/M при порушенні 
ДНК є фосфорилювання CHK1 кінази WEE1, яка 
надалі гіперфосфорилює, а відтак, інактивує комп-
лекс CDK1-циклін В1 [11] (див. рис. 2).

Зазначимо, що у випадку чекпойнту G1/S, як вка-
зано вище, у пухлинних клітинах часто виникають 
інактивувальні мутації у ключовому регуляторі RB 
або спостерігається підвищення рівня експресії 
E2F, тобто відбувається перепрофілювання стану 
сигнального шляху, який координує проходження 
клітинного циклу, на проактивувальний, що в ці-
лому сприяє накопиченню та передачі мутацій до-
чірнім клітинам.

Натомість рівень експресії кіназ CHK1, CHK2 та 
WEE1, які в нормі слугують для блокування пролі-
ферації клітин, часто є підвищеним у багатьох но-
зологічних формах раку; тоді таке регулювання від-
бувається, у тому числі, с-MYC-опосередкованим 
шляхом, оскільки c-MYC здатен зв’язуватися з про-
моторними ділянками генів зазначених кіназ і ак-
тивувати їх транскрипцію.

Цей феномен пов’язують з тим, що пухлинні клі-
тини здатні в разі необхідності активувати механіз-
ми репарації пошкоджень ДНК, викликаних дією 
цитостатичних агентів, або в результаті застосування 
радіотерапії, що зазвичай асоційовано з розвитком 
резистентності до лікування [17, 18].

Окрім реакції на  наявність порушень у  ДНК, 
під  час чекпойнтів також оцінюється, чи досягла 
клітина достатніх розмірів після попереднього ета-

Рис. 1. Схематичне зображення механізмів регуляції про-
ходження чекпойнтів G1/S та G2/M у нормальних клітинах

Рис. 2. Схематичне зображення молекулярних механізмів 
блокування проходження чекпойнтів G1/S та G2/M у разі 
виникнення пошкоджень ДНК
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пу поділу, кількість синтезованих протягом G1-фази 
білків, необхідних для проходження наступних ета-
пів клітинного циклу, чи правильно відбувся про-
цес реплікації ДНК в S-фазі, чи було завершено про-
цес саме поділу клітин під час М-фази циклу тощо. 
І на кожному з етапів клітинного циклу (у нормаль-
ній клітині) у разі виявлення порушень клітина може 
зупинити цей процес з метою їх виправлення (якщо 
це можливо) або ініціювати процес запрограмова-
ної елімінації клітини/апоптозу [6].

ЕНДОГЕННІ ТА ЕКЗОГЕННІ ФАКТОРИ 
ЯК ПРИЧИНА ВИНИКНЕННЯ 
ПОШКОДЖЕНЬ У СТРУКТУРІ ДНК
Пошкодження, які виникають у структурі ДНК, 

мають різні причини і механізми; вони можуть бути 
спричинені дією різних факторів, залежно від похо-
дження яких виокремлюють ендогенно та екзоген-
но індуковане пошкодження ДНК.

У разі ендогенних пошкоджувальних агентів їх 
джерелом переважно є хімічно активні сполуки, 
які часто виникають під час окисно-відновних ре-
акцій та процесів гідролізу (так звані активні фор-
ми кисню — АФК), що відбуваються у мітохондрі-
ях, пероксисомах, ендоплазматичному ретикулумі 
тощо [19, 20]. За механізмом дії АФК безпосередньо 
призводять до виникнення пошкоджень у структурі 
ланцюга ДНК шляхом окиснення азотистих основ 
у  складі нуклеотидів. Дуже часто спостерігається 
окиснення саме гуаніну за рахунок високого окси-
дативного потенціалу цієї азотистої основи і утво-
рення таким чином 8-гідроксигуаніну, що надалі 
провокує трансверсію, перехід гуаніну в тимін та, 
як наслідок, виникнення розривів у зв’язку з наяв-
ністю неспарених пар основ [21, 22]. Окрім АФК, 
до  ендогенних чинників, що призводять до  пору-
шення структури ДНК, відносять: помилки під час 
роботи ДНК-полімераз, у результаті чого, зокрема, 
трапляються випадки неспарених пар основ і які є 
потенційними слабкими місцями у структурі полі
нуклеотидного ланцюга; порушення у роботі топо
ізомераз, які володіють нуклеазною активністю; 
спонтанне дезамінування азотистих основ у скла-
ді полінуклеотидного ланцюга ДНК; точкова втра-
та нуклеотиду, тобто формування так званих апури-
нових/апуримідинових сайтів, що відбувається або 
спонтанним шляхом, або за рахунок дії ДНК гліко-
зилази та ін. [23, 24].

До групи екзогенних пошкоджувальних агентів 
відносять ті з них, джерело яких знаходиться поза 
межами клітини/організму; більша частина з  них 
має хімічне або фізичне походження. До фізичних 
чинників зазвичай відносять вплив тривалого іоні-
зувального рентгенівського (особливо спектр гам-
ма-променів) та ультрафіолетового опромінюван-
ня  [23, 25]. Пошкодження структури ДНК у  ре-
зультаті впливу зазначених вище факторів може 
відбуватися за  двома механізмами: прямо та опо-
середковано. У разі прямої дії фотони взаємодіють 

безпосередньо з азотистими основами полінуклео-
тидного ланцюга, у результаті чого формуються так 
звані фотопродукти (наприклад циклобутанові пі-
римідинові димери), на які припадає близько 75% 
мутацій, спричинених впливом іонізувального ви-
промінювання [26]. Окрім безпосередньої взаємо-
дії з ДНК, фотони іонізувального випромінювання 
також можуть поглинатися фотосенсибілізаторами, 
що спричиняє окисно-відновні реакції у клітинах, 
у результаті яких утворюються АФК і, таким чином, 
відбувається вторинне пошкодження структур усе-
редині клітини  [25]. Окрім іонізувального випро-
мінювання, до  групи екзогенних пошкоджуваль-
них агентів належать хімічні речовини та біологічні 
агенти/токсини, що характеризуються надзвичай-
но великим різноманіттям походження та механіз-
мів дії і тому в контексті цієї роботи детально харак-
теризуватися не будуть [23].

МЕХАНІЗМИ РЕПАРАЦІЇ ПОШКОДЖЕНЬ 
У СТРУКТУРІ ПОЛІНУКЛЕОТИДНОГО 
ЛАНЦЮГА ДНК
Як було зазначено вище, порушення структури 

полінуклеотидного ланцюга ДНК є достатньо час-
тим явищем, яке постійно відбувається у клітині та 
здебільшого не призводить до серйозних наслідків 
для нормального функціонування клітини/організ-
му, що зумовлено функціонуванням систем репара-
ції. Залежно від типу пошкодження виділяють на-
ступні механізми репарації: ексцизійна репарація 
основ (base excision repair— BER), ексцизійна репа-
рація нуклеотидів (nucleotide excision repair — NER), 
репарація дволанцюгових розривів шляхом негомо-
логічного об’єднання кінців  (non-homologous end 
joining — NHEJ) та репарація дволанцюгових роз-
ривів шляхом гомологічної рекомбінації (Homolo-
gous recombination— HR).

Ексцизійна репарація основ. Ця система репарації 
призначена для коригування пошкоджених азотис-
тих основ, або так званих апуринових/апіриміди-
нових сайтів (АР-сайти). Основні етапи цього про-
цесу включають розпізнавання ДНК-глікозилазою 
пошкодженої азотистої основи та вирізання відпо-
відного фрагменту ланцюга ДНК; подальше запов
нення прогалини ДНК-полімеразою за принципом 
компліментарності та у разі необхідності (залежно 
від типу ДНК-глікозилази, див. далі) зшивання лан-
цюгів ДНК-лігазою [27–30]. На сьогодні у людини 
ідентифіковано 11 типів ДНК-глікозилаз, які роз-
поділені на три групи за механізмом їх дії, залежно 
від чого розрізняють короткий та довгий шлях екс-
цизійної репарації основ (рис. 3).

Раніше зазначені три групи ДНК-глікозилаз 
здатні видаляти лише пошкоджену азотисту осно-
ву  (монофункціональні), азотисту основу разом 
з пентозою (біфункціональні) або весь нуклеотид, 
інколи разом з декількома сусідніми (Nei-подібні); 
потрібно зауважити, що біфункціональні та Nei-
подібні ДНК-глікозилази також володіють ДНК-
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ендонуклеазною активністю для можливості руйну-
вання фосфодіефірного зв’язку в зоні репарації [31].

Ексцизійна репарація нуклеотидів. У  результаті 
впливу пошкоджувальних агентів часто спостеріга-
ються явища, які призводять до порушення нуклео
тидів у  складі полінуклеотидного ланцюга ДНК; 
найбільш широко розповсюдженим є формування 
циклобутанових піримідинових димерів, що вини-
кає у результаті дії на клітину іонізувального випро-
мінювання  [32]. Формування таких структур уне-
можливлює проходження РНК-полімерази під час 
транскрипції генів, тому якщо це пошкодження 
не  буде репаровано, існує висока ймовірність по-
рушення експресії деяких генів у зв’язку із зупин-
кою транскрипції у цій ділянці або розвитком ре-
плікативного стресу. Крім того, наявність непра-
вильно спарених основ призводить до локального 
послаблення цілісності ланцюга ДНК і в  майбут-
ньому може бути причиною розривів  [33]. Відпо-
відно до цього у клітині існує дві системи ексцизій-
ної репарації нуклеотидів, які відрізняються за меха-
нізмом розпізнавання таких пошкоджених ділянок: 
повногеномна NER та NER, асоційована з транс
крипцією (рис. 4).

У разі повногеномної NER відбувається розпіз-
навання пошкодженої ділянки комплексом білків 
XPC (XP-C complementing protein) та УФ-залежним 
білком системи репарації RAD23. Водночас зупинка 
РНК-полімерази перед пошкодженим нуклеотидом 
під час транскрипції і викликана таким чином ди
соціація великої субодиниці рибосомального комп-
лексу теж є сигналом для необхідності активації сис-
теми NER [34, 35]. Наступним етапом після розпіз-
навання пошкодженої ділянки ланцюга є локальне 
розплітання полінуклеотидного ланцюга довжиною 
приблизно 20–30 пар нуклеотидів, опосередковане 
дією транскрипційного фактора TFIIH, який во-
лодіє хеліказною активністю. Надалі за участю біл-
ка ERCC1 по обидва боки від пошкодженої ділян-
ки формуються ендонуклеазні комплекси, що вирі-
зають частину одного з полінуклеотидних ланцюгів 
ДНК, на якому розташована пошкоджена ділянка. 
Власне репарація ділянки відбувається шляхом до-
будови ДНК-полімеразою фрагмента ДНК з вико-
ристанням неушкодженого ланцюга в якості матри-
ці, після чого ДНК-лігази зшивають одноланцюгові 
розриви в місці новосинтезованого фрагменту [36].

Репарація дволанцюгових розривів. З  точки зору 
факторів, що спричиняють формування нестабіль-
ності геному, саме наявність дволанцюгових розри-
вів у структурі полінуклеотидного ланцюга ДНК є 
найбільш вагомою. Це зумовлено тим, що у разі на-
явності одночасного пошкодження обох ланцюгів 
ДНК виникає висока ймовірність не лише локаль-
них мутацій, а й виникнення хромосомних абера-
цій (наприклад делеції чи дуплікації цілих фрагмен-
тів хромосоми, транслокації ділянок між різними 
хромосомами тощо), наслідком чого є масштабна 
перебудова структури хромосом. Відповідно, у клі-

тині (у нормі) існують механізми швидкого реагу-
вання та репарації таких розривів, а саме: шляхом 
NHEJ або шляхом HR [23, 25].

Зазначені шляхи відновлення дволанцюгових 
розривів у структурі ДНК відрізняються за точніс-
тю репарації та за тим, на якій стадії клітинного ци-
клу виникло це пошкодження [37]. У випадку NHEJ 
відбувається розпізнавання дволанцюгових розри-
вів ДНК Ku-білковим комплексом, який є гетеро-
димером та сформований з білків Ku-70 та Ku-80; 
після фланкування вільних кінців ДНК гетероди-

Рис. 3. Основні етапи ексцизійної репарації основ

Рис. 4. Основні етапи ексцизійної репарації нуклеотидів
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мерним Ku-комплексом відбувається рекрутуван-
ня ДНК-протеїнкіназ, їх зв’язування із С-кінцем 
білка Ku-80 по обидва боки розриву і у результаті 
наступного етапу перехресного фосфорилювання 
протеїнкіназ — формування стабільного комплек-
су, який, з одного боку, надійно фіксує ділянки роз-
риву, а з другого — зближує їх для можливості по-
дальшої репарації.

Зауважимо, що ДНК-зв’язувальна активність 
гетеродимера Ku70/Ku80 може негативно регулю-
ватися за  рахунок дії комплексу циклін А1/кіна-
за CDK2 через безпосередню взаємодію Ku70 із 
С-кінцем цикліну А1. Наслідком такої взаємодії 
є фосфорилювання білка Ku70 кіназою CDK2, у ре-
зультаті чого ДНК-зв’язувальна активність Ku70 і, 
як наслідок, рівень репарації пошкоджень у струк-
турі ДНК значно знижуються [38].

У випадках гострого мієлоїдного лейкозу (ГМЛ) 
рівень експресії цикліну А1 зазвичай є значно під-
вищеним, що може бути пов’язано з низькою ефек-
тивністю репараційних процесів у зв’язку з вище
описаним інгібувальним ефектом цикліну А1. Окрім 
Ku70, циклін А1 здатен диференційно регулювати 
експресію ряду інших генів, серед яких особливої 
уваги заслуговує ген WT1, білковий продукт яко-
го, з одного боку, задіяний у контролі над процеса-
ми транскрипції та сплайсингу, а з другого — може 
сприяти арешту клітин у фазі G1 клітинного циклу 
та активації апоптозу [39].

Надалі після збирання комплексу Ku70/
Ku80 на місці виявленого розриву ДНК ланцюга, ре-
крутована ДНК-протеїнкіназа (у фосфорильовано-
му стані) є сайтом зв’язування ДНК-репарувального 
білка  (DNA repair protein) XRCC4 та ДНК-лігази 
4-го типу, основним завданням яких є об’єднання 
вільних кінців ДНК між собою та відновлення фос-
фодіефірного зв’язку (рис. 5а) [40, 41]. Існують дані 
стосовно того, що наявність генетичних аберацій ді-
лянки довжиною в 30 нуклеотидів у межах 3-го ін-
трону гена XRCC4 є характерною для випадків ГМЛ 
з перебудовами в гені KMT2A, який кодує лізин-ме-
тилтрансферазу 2а, і що є ознакою несприятливого 
прогнозу для хворих із ГМЛ [42].

Потребує уваги також той факт, що прогноз пе-
ребігу ГМЛ для пацієнтів, у яких перебудови в гені 
KMT2A виникли внаслідок лікування з  приводу 
ГМЛ, є більш несприятливим порівняно з тими 
хворими, у яких перебудови у KMT2A було виявле-
но de novo [43]. Загалом важливим недоліком NHEJ 
є низька специфічність такого шляху репарації дво-
ланцюгових розривів, адже тоді відбувається просто 
об’єднання вільних кінців ДНК між собою, які у разі 
масивного пошкодження ДНК можуть належати різ-
ним хромосомам і, таким чином, здатні формувати-
ся нові хромосомні аберації.

Слід зазначити, що репарація шляхом NHEJ за-
звичай відбувається протягом G1/S-фази клітинно-
го циклу. У разі активації процесів поділу клітини та 
входження її у S/G2-фазу, що супроводжується ак-

тивним реплікативним процесом з метою подвоєн-
ня генетичної інформації та її рівноправної переда-
чі дочірнім клітинам, репарація ДНК є надзвичайно 
важливим процесом та вимагає високоспецифічної 
системи виправлення пошкоджень у разі їх виник-
нення [37]. У цьому випадку репарація відбувається 
шляхом гомологічної рекомбінації. Окрім необхід-
ності високого рівня точності, використання саме 
цього методу репарації протягом циклів S та G2 зу-
мовлено наявністю у цей період гомологічних хро-
мосом, які виступають у якості матриці.

У  разі виникнення дволанцюгових розривів 
у структурі полінуклеотидного ланцюга ДНК пер-
шочерговим завданням є їх стабілізація та поперед-
ження процесу деградації, що відбувається шляхом 
збирання MRN-комплексу (включає білки MRE11, 
RAD50 та NBS1) на місцях розриву. Для процесу го-
мологічної рекомбінації необхідна наявність віль-
них 3’-кінців фрагментів ДНК. Розрив у  структу-
рі ДНК може відбуватися будь-яким чином, у ре-
зультаті чого кінці ДНК по обидва боки від місця 
розриву можуть бути різними, тому існує механізм, 
який забезпечує формування таких вільних 3’-кінців 
фрагментів незалежно від того, який «край» ланцюга 
утворився у місцях розриву. Для цього відбувається 
часткова деградація ланцюга і формування вільно-
го 3’-кінця ДНК-ланцюга, з яким одразу зв’язується 
реплікативний білок А (Replication protein A —RPA), 
що захищає одноланцюгову ДНК від деградації ну-
клеазами. Надалі одноланцюговий фрагмент ДНК 
розпізнається рекомбіназою RAD51, що надалі заді-
яна у пошуку комплементарної ділянки на гомоло-
гічній хромосомі; після встановлення такого зв’язку 
відбувається добудовування ДНК-полімеразою від-
повідного фрагмента другого ланцюга ДНК на по-
шкодженій хромосомі та відновлення фосфодіе-
фірного зв’язку ДНК-лігазою. Після цього фактич-

Рис. 5. Основні етапи репарації дволанцюгових розривів 
у полінуклеотидному ланцюзі ДНК шляхом NHEJ (а) та 
шляхом HR (б)
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но формується вже одноланцюговий розрив, який 
легко заповнюється ДНК-полімеразою за принци-
пом комплементарності з  використанням у  якос-
ті матриці щойно репарованого другого ланцюга 
ДНК (рис. 5б) [11, 44, 45].

Відомо, що наявність порушень у структурі біл-
ків — складових компонентів MRN-комплексу — 
асоційована з порушенням нормального функціо-
нування систем репарації пошкоджень у ланцюгах 
ДНК. Зокрема, наявність у зразках хворих на ГМЛ 
мікросателітної нестабільності в  гені MRE11 асо-
ційована зі  зниженням ефективності репарації 
ДНК шляхом гомологічної рекомбінації [46]. Вод-
ночас у  пацієнтів з ГМЛ внаслідок певної мута-
ції в гені NBS1 після транскрипції мРНК вищезга-
даного гена відбувається порушення нормально-
го процесу сплайсингу і, як наслідок, втрачається 
13-й екзон. Важливість цієї мутації з точки зору по-
рушень у  процесах репарації при  ГМЛ зумовле-
на тим, що саме цей 13-й екзон у нормі кодує до-
мен білка, за  рахунок якого власне відбувається 
зв’язування NBS1 з  MRE11 під час формування 
MRN-комплексу [47].

Одним з основних факторів, що спричиня-
ють розвиток нестабільності геному при  онколо-
гічних захворюваннях різного ґенезу (у тому числі 
при ГМЛ), є реплікативний стрес [48]. Наразі можна 
знайти багато інформації щодо причин, які лежать 
в основі виникнення реплікативного стресу, однак 
у контексті цієї роботи важливим фактом для нас є 
те, що у результаті порушень, які виникають внаслі-
док розрегулювання нормальних процесів репліка-
ції, відбувається формування та накопичення роз-
ривів у структурі ДНК [49–51]. Враховуючи, що ре-
плікативний стрес асоційований з накопиченням 
пошкоджень ДНК та часто супроводжується акти-
вацією ATR-сигнального шляху, нами було постав-
лено за мету дослідити наявність зв’язку між клю-
човими елементами ATR-сигнального шляху (а саме 
білками CHK1 і claspin) та білками, що є складови-
ми систем репарації. Окрім того, до переліку дослі-
джуваних білків нами було включено c-MYC, адже 
відомо, що при  ГМЛ відмічена висока експресія 
гена c-MYC, який є відомим онкогеном і також ві-
діграє роль у ініціації розривів у структурі ДНК та 
спричиняє формування стану реплікативного стре-
су в клітині [52].

Аналіз інформації, що представлена у базі даних 
Funcoup5 (https://funcoup5.scilifelab.se/), дозволяє ви-
явити наявність функціональних зв’язків між різни-
ми білками в клітині. Тому нами було проаналізо-
вано наявність асоціативних зв’язків між білками 
CHK1, claspin, с-MYC та елементами систем репара-
ції пошкоджень ланцюгів ДНК. Загалом встановле-
но наявність функціональних зв’язків CHEK1 з ве-
ликою вибіркою білків, що беруть участь у різних 
сигнальних шляхах, серед яких на наступному ета-
пі нами було обрано ті з них, які задіяні у механіз-
мах репарації пошкоджень ДНК  (рис. 6а). Зокре-

ма, білок CHK1 має функціональний зв’язок з біл-
ком  PARP1  (BER); MSH2  (репарація помилково 
спарених нуклеотидів, mismatch repair); TOPBP1, 
BRCA1, RAD51 (HR), а також із рядом білків, за-

Рис. 6. Функціональні зв’язки CHEK1 (а), claspin (б) та 
с-myc (в) із білками, що задіяні в процесах репарації та 
регуляції клітинного циклу. Сектори: синій — HR, зеле-
ний — BER, червоний — mismatch repair, фіолетовий — 
NER, жовтий — клітинний цикл
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лучених до  регуляції прогресії клітинного циклу: 
CDK1, PLK1, CCNB1, MCM2, MCM3.

Згідно з результатами аналізу даних, представ-
лених у  Funcoup5, лише невелика частина білків, 
з якими було встановлено функціональний зв’язок 
з claspin, задіяна у сигнальних шляхах, шо регулю-
ють процеси репарації в  клітині  (рис. 6б). Зокре-
ма, claspin має функціональний зв’язок з білками 
PCNA, POLD1, RPA1, RPA2 (NER; mismatch repair; 
HR (окрім PCNA) та ексцизійна репарація основ, 
BER (тільки PCNA та POLD1)). Щодо білків, заді-
яних у координації проходження етапів клітинного 
циклу, то для claspin відомо про наявність зв’язків 
з CDC20, CHEK1, PLK1, PCNA, CDC45 та ATR.

Серед вибраних нами для аналізу білків найменш 
задіяним у процесах репарації пошкоджень ДНК є 
білок c-MYC, свідченням чого є зовсім невелика ви-
бірка білків, які напряму взаємодіють з c-MYC і пев-
ним чином задіяні в репараційних процесах у кліти-
ні (рис. 6в). До таких білків належать RFC2, RFC3, 
RFC4, CCNH (NER, mismatch repair (окрім CCNH)). 
Щодо білків, задіяних у регуляції клітинного циклу, 
то функціонально пов’язаними із c-MYC є лише 
CCNH та HDAC1.

Як обговорювалося вище, сигнальний шлях 
ATR-CHK1, який розпізнає пошкодження однолан-
цюгової ДНК (single stranded DNA — ssDNA) і в яко-
му задіяний протеїн ATR, активується при підвище-
ній експресії с-MYC, що призводить до підсиленої 
проліферації клітин. З іншого боку, слід відзначи-
ти, що с-MYC одночасно індукує сигнальний шлях 
АТМ, який часто призводить до  апоптозу. Тому 
не встановлено кореляції рівня експресії гена с-MYC 
з рівнем дволанцюгових розривів ДНК. При ГМЛ рі-
вень експресії онкогена с-MYC не корелює з рівнем 
експресії генів CHK1 і claspin; тобто с-MYC не від-
повідає за порушення клітинних шляхів репарації 
пошкоджень ДНК при ГМЛ.

Роботу виконано в  рамках науково-дослідно-
го проєкту молодих учених НАН України «Реплі-
кативний стрес при  гострому мієлоїдному лейко-
зі» (2020–2021 рр., № держреєстрації 0121U112028).
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MOLECULAR MECHANISMS OF DNA 
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Summary. Replicative stress is one of the important fac-
tors that plays a significant role in the processes of ma-
lignant neoplasms formation and progression, what had 
been demonstrated experimentally. Polymerase errors 
that occur during the replication process; violation of the 
processes of regulation, coordination and control over the 
replication process; the occurrence of mutations in the 
genes involved in this process etc. — all this leads to an 
imbalance and delay in replication, the destruction of 
replicative forks, the occurrence of violations of the in-
tegrity of DNA chains, including due to the appearance 
of double-stranded breaks. As a result, all of the above 
result in the emergence of new mutations and chromo-
somal rearrangements, which contributes to tumor pro-
gression in general. This work analyzed and systematized 
the molecular mechanisms that coordinate DNA dam-
age and repair processes in normal and malignant cells.
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