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ПЕРСПЕКТИВИ ВИКОРИСТАННЯ 
МЕЛАТОНІНУ У ПРОМЕНЕВІЙ 
ТЕРАПІЇ
Променева терапія (ПТ) відіграє ключову роль у лікуванні злоякісних 
пухлинних захворювань у більшої частини онкологічних хворих. На жаль, 
незважаючи на вдосконалення методів та інструментів ПТ (зокрема, 
її конформну стратегію) та сучасних способів дозиметрії, ПТ проявляє 
шкідливу дію не тільки на пухлину, але і на нормальні тканини з ото-
чення пухлини. Це у ряді випадків призводить до розвитку променевих 
реакцій та ускладнень, лікування яких тривалий, часом малоефективний, 
процес. Однією зі стратегій запобігання або зменшення цих ускладнень 
є використання природних радіопротекторів, серед яких на увагу за-
слуговує гормон шишкоподібної залози — мелатонін, що є потужним 
антиоксидантом з імунорегуляторними властивостями, які можуть 
зменшити токсичність, викликану іонізуючим випромінюванням (ІВ) в 
різних органах. Ці ефекти опосередковуються модуляторними впливами 
мелатоніну на різних рівнях реакції тканин на ІВ. Найбільш важливим є 
вплив на систему відновлення ДНК, антиоксидантні ферменти, імунні 
клітини, секрецію цитокінів, фактори транскрипції та протеїнкінази. 
Висвітлені в огляді дані свідчать, що мелатонін має великий потенціал 
для запобігання побічним ефектам ПТ і включення його як допоміжно-
го засобу в ПТ уможливить використання вищих доз опромінення при 
лікуванні. Крім того, завдяки протипухлинним і радіосенсибілізуючим 
властивостям мелатоніну, його застосування може посилити пошко-
дження пухлини. Отже, мелатонін є перспективним радіозахисним 
засобом нормальних тканин з оточення пухлини з ефектом підвищення 
терапевтичного співідношення ефективність/токсичність хіміопроме-
невого лікування хворих.

Невід’ємною складовою сучасної онкології є 
променева терапія (ПТ). При певних локалі-

заціях і стадіях захворювання ПТ може бути аль-
тернативою хірургічному лікуванню і застосову-
ватись, як паліативний засіб, коли інші спеціальні 
методи лікування виявляються неприйнятними чи 
неефективними.За оцінками, майже 80% хворих 
на рак отримують лікування ПТ як окремо, так і 
у поєднанні з хірургічним та хіміотерапевтичним 
лікуванням у різних варіантах і комбінаціях [1, 2]. 
Хоча технологічні вдосконалення покращили ці-
льову ПТ, проте можливість ушкоджень нормаль-
них тканин з оточення пухлини та виникнення 
гострих і віддалених променевих ускладнень все 
ще викликає занепокоєння. Найбільш небезпеч-
ним при цьому є поява радіаційно-індукованих 
вторинних пухлин, що у значній мірі залежить від 
радіочутливості здорових тканин з оточення пух-
лини, а також підвищеної індивідуальної радіочут-
ливості пацієнта, наявності супутніх захворювань, 
раніше перенесених запальних процесів та обмеж-
ує терапевтичний ефект лікування. Гострі/ранні 
променеві реакції виникають протягом годин піс- 
ля опромінення і супроводжуються шкірними ре-
акціями, набряком, збільшенням набухання клі-

тин ендотелію, проникністю судин, апоптозом, 
адгезією та інфільтрацією лімфоцитів, зниженням 
кількості лейкоцитів. Однак пізні променеві реак-
ції, включаючі некроз, фіброз, дисфункцію орга-
нів, смерть і вторинний рак, можуть виникнути 
через кілька місяців або років після лікування. 
Зважаючи на це, прогрес у ПТ спрямований на 
попередження ускладнень у ранній та віддалений 
період і, таким чином, підвищення ефективності 
лікування та покращення якості життя пацієнтів. 
Визначальна роль у вирішенні цього питання на-
лежить радіаційним біологам.

Вчені знаходяться в постійному пошуку страте-
гії зменшення ранніх і пізніх ефектів ПТ, а також 
посилення реакції пухлини на променеве лікуван-
ня. Це надасть можливість покращити терапев-
тичне співвідношення ефективність/токсичність, 
що призведе до зменшення побічних ефектів і 
збільшення рівня виживаності пацієнтів. Вико-
ристання радіопротекторів для зменшення шкід-
ливих побічних ефектів на нормальні тканини і 
радіосенсибілізаторів, націлених насамперед на 
ракові клітини для зниження їх резистентності 
залишаються актуальними на сьогоднішній день 
терапевтичними стратегіями в радіаційній онко-
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логії [3]. При цьому радіосенсибілізуючі агенти 
повинні підвищувати дію радіації на пухлинні 
клітини з підвищенням їх радіочутливості без 
посилення токсичності нормальних тканинах. 
Водночас якісний радіопротектор повинен мати 
низьку токсичність і вибірково захищати клітини 
нормальних тканин без будь-якої захисної дії на 
пухлинні клітини, тобто без підвищення їх резис-
тентності [4, 5].

Слід відзначити, що через згубну дію іонізу-
ючого випромінювання (ІВ) радіобіологи давно 
зацікавлені в нових, нетоксичних, ефективних і 
зручних сполук для захисту нормальних тканин 
людини від радіаційних ушкоджень. Це широко-
масштабна проблема, так як опроміненню можуть 
піддаватися і медичний персонал, який викорис
товує джерела ІВ для діагностики та терапії, і 
люди, які проходять таке діагностичне обстежен-
ня, а також спеціалісти, які займаються вироб-
ництвом ядерних технологій. Вплив космічного 
опромінення на космонавтів також є критичним 
фактором для космічних польотів поза орбітою 
Землі [6]. Крім того, на даний час через воєнну 
агресію є велика загроза виникнення радіаційних 
або ядерних інцидентів чи аварій.

Alonso-González C, et al. у своїй роботі підсу-
мували основні дії ІВ, шляхи, задіяні у відповіді 
клітин на опромінення, впливаючи на які можна 
або зменшити або посилити пошкоджуючу дію ра- 
діаційного чинника [7]. У випадку застосування 
променевої терапії онкологічним хворим — підви
щити радіорезистенність нормальних клітин та/чи  
радіочутливість клітин. Liu L, et al. визначили 
основні критерії ідеального радіозахисного за-
собу: захисний ефект повинен проявлятися при 
введенні до або після опромінення; повинен за-
побігати або відновлювати індуковані ІВ пошкод
ження тканин; мати швидкий початок дії і довгий 
період напіврозпаду; застосовуватися перорально 
і бути стійким до згубного впливу ІВ і високих 
температур [8].

Добре відомо, що індукована радіацією ток-
сичність для живих систем здебільшого є резуль-
татом продукції вільних радикалів (активних форм 
кисню — АФК та активних форм азоту — АФА) у 
клітинах, що утворюються внаслідок взаємодії ІВ 
з молекулами води. Вільні радикали у свою чергу 
реагують з клітинними макромолекулами, таки-
ми як ДНК, РНК, білки, ліпіди мембран тощо, 
та, запускаючи каскад біохімічних та біологічних 
реакцій, спричиняють різного роду пошкодження. 
Найбільш небезпечними є пошкодження ДНК. 
Навіть низькі дози ІВ можуть спричинити їх ви-
никнення безпосередньо або через АФК і АФА. Ін-
дуковане ІВ пошкодження ДНК включає одно- та 
двониткові розриви, пошкодження нуклеотидних 
основ та перехресне зшивання ДНК, причому най-
небезпечнішими є двониткові розриви [9, 10]. Ці 

пошкодження можуть активувати серію сигналів, 
які контролюють зупинку клітинного циклу, від-
новлення ДНК і долю клітини, що може призвести 
до серйозних наслідків, таких як загибель клітин, 
хромосомні аберації та геномна нестабільність. 
Крім того, пошкодження ДНК з подальшим ано-
мальним відновленням і генетичними мутаціями 
є важливою ланкою у розвитку пухлин [11].

Отже, оскільки викликане радіацією клітинне 
пошкодження в першу чергу пов’язане з шкідли-
вим впливом вільних радикалів, основною власти-
вістю ефективного радіопротектора повинна бути 
здатність поглинання радикалів. Саме можливість 
мелатоніну інактивувати гідроксильні радикали 
була обгрунтуванням для перевірки його радіо-
захисної здатності [12]. Мелатонін виявився над-
звичайно ефективним серед численних сполук, 
які пройшли доклінічні випробування як радіо-
протектори, оскільки він зменшував ефекти ІВ 
in vitro та in vivo [12, 13]. В даний час мелатонін 
широко використовується клінічно як адаптоген-
ний препарат, що нормалізує циркадні ритми, і 
все частіше знаходить клінічне застосування як 
допоміжний засіб при променевій терапії пухлин 
[14–16]. Наукові дані вказують на роль мелатоніну 
в ліпідному обміні, терморегуляції, у регуляції 
мезенхімальної диференціації стовбурових клітин 
і підтримці росту та мінералізації остеобластів, 
енергетичному обміні, а також імунітеті у під-
тримці серцево-судинного, репродуктивного та 
неврологічного здоров’я [17–20].

Рецептори та механізми дії мелатоніну. Мелато-
нін (N-ацетил-5-метокситриптамін,), індолеамін, 
переважно секретується та синтезується шишко-
подібною залозою. Особлива структура мелато- 
ніну (рис. 1) визначає його високу ефективність 
у детоксикації вільних радикалів на основі його 
здатності віддавати електрон або атом водню.

Синтез мелатоніну (рис. 2) включає кілька ета-
пів, але початковий попередник — це ароматична 
амінокислота L-триптофан, що шляхом гідро-
ксилювання триптофангідроксилазою (TPH) при  

Рис. 1. � Молекулярна структура мелатоніну [21]
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5 вуглеці перетворюється на 5-гідрокситриптофан. 
Наступні етапи перетворення включають декар-
боксилювання, ацетилювання та метилювання 
[22, 23]

Завдяки високій розчинності мелатоніну в ліпі-
дах і воді, він здатний проникати через більшість 
клітинних мембран, включаючи гематоенцефа-
лічний бар’єр [24]. Коли він потрапляє в крово-
обіг, він легко проникає в різні рідини організму, 
клітинні відділи та тканини. Свою дію мелатонін 
здебільшого проявляє через пов’язані з мембраною 
G-білкові рецептори (GPCR): MT1, MT2, MT3 
[25]. Окрім цього його дія опосередковується через 
зв’язування з внутрішньоклітинними білками, 
такими як кальретикулін, кальмодулін і тубулін 
[26]. Мелатонін безпосередньо конкурує з кальці-
єм за зв’язування з кальмодуліном [26, 27], який 
може відповідати за антипроліферативний ефект. 
Також він проявляє свою дію, а саме імуномоду-
дюючу, зумовлену синтезом інтерлейкіну-2 (IL-2) 
та IL-6 мононуклеарними клітинами шляхом 
зв’язування з ядерними гормональними рецеп-
тори RZR/ROR [28]. Крім того, виявляє проти-
запальну дію, знижуючи рівні фактора некрозу 
пухлини альфа (TNF-α), IL-2 і інтерферону-гамма 
(IFN-γ), та підвищуючи кількість IL-4, IL-10 та  
IL-27 [29].

Крім опосередкованих рецепторами дій мела-
тонін за допомогою своїх рецепторно-незалежних 
дій, проявляє прямі антиоксидантні властивості, 
які і лягли в основу вибору його як радіопротекто-
ра [30]. Наявність індольного кільця робить його 
молекулою прямого поглинання вільних радика- 
лів. В результаті каскаду ферментативних реак-
цій після взаємодії мелатоніну з різними АФК/
АФА виробляється ряд метаболітів, включаючи  
гідроксильовані метаболіти мелатоніну (6-гідро- 
ксимелатонін, 2-гідроксимелатонін і 4-гідрокси- 
мелатонін), N1-ацетил-N2-формил-5-метокси- 
кинурамин (АФМК), N-ацетил-5-метоксикину
рамин (АМК), і циклічний 3-гідроксимелатонін 
(3ГOM), які є підсилювачами його антирадикаль-
ної дії. Дослідники зазначають, що одна молекула 
мелатоніну детоксикує до 10 молекул радикалів 
[31]. Таким чином, мелатонін є дуже ефективною 
антиоксидантною молекулою навіть у малих дозах 
порівняно з іншими антиокисниками [32]. При 
цьому його вторинні, третинні та четвертинні ме-
таболіти (AФMK, AMK і 3-ГOM) є більш потужни-
ми поглиначами вільних радикалів. Дослідження 
in vitro засвідчило, що мелатонін у 5 та 14 разів є 
сильнішим за глутатіон і маніт, відповідно, щодо 
поглинання гідроксил радикалу [33]. In vitro пока-
зано, що мелатонін безпосередньо поглинає гідро-
ксильний радикал, пероксид водню і синглетний 
кисень, а також високо реакційноздатний аніон 
пероксинітрит [34]. Загалом, мелатонін, безсум-
нівно, здатний безпосередньо нейтралізувати різ-

номанітні вільні радикали та/або їхні реакційно- 
здатні проміжні сполуки та, таким чином, змен-
шувати руйнування біомакромолекул.

Звертає на себе увагу той факт, що мелатонін  
крім прямого поглинання вільних радикалів під-
вищує активність антиоксидантних ферментів на 
молекулярному рівні, включаючи супероксиддис-
мутазу (СОД), глутатіонпероксидазу, глутатіон 
S-трансферазу і глутатіонредуктазу та підвищує 
рівень внутрішньоклітинного глутатіону шляхом  
стимуляції синтезу ферменту, що обмежує швид-
кість, γ-глутамілцистеїнсинтази, яка пригнічує 
прооксидативні ферменти — NO-синтазу і ліпо
ксигеназу [33–36]. Є окремі докази того, що ме-
латонін стабілізує мікросомальні мембрани і, та-
ким чином, ймовірно, допомагає їм протистояти 
окислювальному пошкодженню [37]. Високі його 
концентрації у мітохондріях забезпечують по-
тужний антиоксидантний захист білків, ліпідів 
та ДНК від окисного пошкодження, спричине-
ного вільними радикалами [38–40]. Окрім цього 
у мітохондріях мелатонін відіграє головну роль в 
регуляції I і IV комплексів дихального ланцюга та 
запобігає мутації і делеції мітохондріальної ДНК 
[41], а також пошкодженню ДНК шляхом знижен-
ня експресії ATM-кінази і процесу фосфорилю-
вання гістону H2AX, який бере участь у деградації 
ДНК [42]. Препарат відіграє роль антагоніста в 
деградації білка шляхом його прямої взаємодії з 
Ca2+-кальмодуліном, таким чином пригнічуючи 

Рис. 2.  Синтез мелатоніну
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Ca2+/кальмодулін-залежну активність протеїн
кінази II і аутофосфорилювання [43].

Таким чином, антиоксидантний ефект мелато-
ніну може бути прямим або непрямим. Перший 
включає поглинання вільних радикалів (АФК і 
АФА), а другий пов’язаний з варіаціями в транс
крипції генів, а також діяльністю антиоксидантів 
і ферментів [34, 44–46], зокрема збільшенні мо-
лекулярних кількостей антиоксидантних фермен-
тів, що сприяють детоксикації вільнорадикальних 
сполук [35, 47]. А так як ІВ інгібує антиоксиданти, 
то ця виявлена властивість мелатоніну може по-
силити поглинання утворених радіацією радика- 
лів [48, 49]. Інші непрямі методи, що використо-
вуються для оцінки ефективності антиоксиданту, 
включають вимірювання окислювально пошко-
джених продуктів. Велика частина досліджень in 
vitro та in vivo була спрямована на вивчення ролі 
мелатоніну в захисті мембранних ліпідів від руй
нування вільними радикалами, показано змен-
шення накопичення основних продуктів пере-
кисного окислення ліпідів (малоновий діальдегід 
(МДА) і 4-гідроксіалкеналь). Незалежно від інгі-
бування окислення ліпідів, мелатонін також під-
тримує стабільність клітинних мембран, тобто 
запобігає змінам їх плинності [50]. Joseph T, et al. 
узагальнили роль мелатоніну як потужного анти-
оксиданта і протизапального засобу, що зменшує 
окислювальний стрес і запалення, зокрема для 
підтримки сприятливого гомеостатичного серед-
овище в плаценті протягом усієї вагітності, тим 
самим запобігаючи таким укладненням як пре-
еклампсія та передчасні пологи [51].

Протипухлинні властивості мелатоніну. Вико-
ристання мелатоніном різних рецепторів та його 
широка рецепторнезалежна дія призводять до різ-
них біологічних ефектів і це спонукало вчених на 
вивчення його не тільки в якості радіопротектора, 
але й як протипухлинного агента. Існує велика 
кількість доказів експериментальних і клінічних 
досліджень, які свідчать про те, що мелатонін має 
потенціал для прояву протипухлинної активності,  
такої як апоптотична, антипроліферативна, анти-
ангіогенна та інгібування метастазів. Ряд дослід
жень, проведених як in vitro, так і in vivo, показали, 
що мелатонін може запобігати росту пухлин та 
проявляти профілактичну роль при різних типах 
раку [15, 52–54]. Зокрема, повідомляється про за-
хисну роль мелатоніну проти раку молочної залози 
[55, 56]. Chu L, et al. відмітили у своїй роботі, що 
зниження циркулюючого мелатоніну пов’язане зі 
збільшенням поширеності пухлин молочної зало-
зи, а лікування мелатоніном мінімізує захворюва-
ність [57]. Спостереження за хворими з легеневими 
та колоректальними злоякісними новоутворення-
ми, які отримували лікування мелатоніном, про-
демонстрували ремісію раку та покращений спосіб 
життя [58]. Cucielo M, et al. прийшли до висновку, 

що мелатонін відіграє вирішальну роль в енерге-
тичному метаболізмі та цілісності мітохондрій, а 
застосування мелатоніну зменшує потенціал міто-
хондріальної мембрани та розмір клітин карцино-
ми яєчників людини (SKOV-3) [59].

Зростаюча кількість досліджень виявила ре-
гуляторний вплив мелатоніну на лікування пух-
лини на різних стадіях раку, включаючи ініціа-
цію, промоцію, прогресію та метастазування [60]. 
Показано, що мелатонін пригнічує несприятливу 
тенденцію здорових клітин до злоякісного розви-
тку шляхом зниження регуляції факторів росту, 
включаючи пролактин інсуліноподібний фактор 
росту-1 (IGF-1), епідермальний фактор росту 
(EGFR), фактор росту гепатоцитів (HGF), транс-
формуючий фактор росту (TGF), гормонозалежні 
фактори росту (GHF) і тромбоцитарні фактори 
росту (PDGF) [61]. На стадії промоції мелатонін 
прявляє апоптотичну дію. Наприклад, у клітинах 
раку сечового міхура мелатонін індукував апоп-
тоз шляхом пригнічення o-GlcNAcylation циклін-
залежної подібної кінази 5 (CDK5) [62], а на моделі 
пухлини яєчника миші шляхом стабілізації Bim за 
допомогою Sp1-опосередкованої регуляції білка 1, 
що містить пухлинний домен (OTUD1) [63].

Протипухлинна активність мелатоніну регу-
люється кількома механізмами, до яких включені 
незалежні та залежні від мембранних рецепторів 
шляхи (рис. 3).

Рецептор-залежні протипухлинні ефекти ме-
латоніну проявляються регуляцією проліферації  
і диференціювання клітин, ангіогенезу та інгібу
вання міграції [65–67]. Антиангіогенна дія пов’я
зана із впливом на фактор росту ендотелію судин 
(VEGF) та ангіопоетину (ANG)-2, посилюючи ра- 
діаційно-індукований інгібуючий ефект [68]. Так 
дослідження показали, що рівень VEGF у крові 
та розвиток судинної мережі пухлини були пору-
шені у мишей при застосуванні мелатоніну [69]. 
Спостереження за пацієнтами з метастазами раку, 
які приймали мелатонін, виявило зниження рівня 
VEGF у сироватці крові [70]. Крім того, мелатонін 
нейтралізував стимулюючу дію радіації на про-
никність ендотеліальних клітин і на експресію 
деяких проангіогенних генів, таких як FGFR3, 
TGFα, IGF-1, KDR, JAG1, MMP14, CXCL6, CCL2, 
ERK1, ERK2 і AKT1, а також посилював експресію 
інгібітора ангіогенезу — TIMP1. Потенціювання 
мелатоніном індукованого опроміненням інгібу-
ючого ефекту на експресію VEGF може бути важ-
ливим механізмом, за допомогою якого мелатонін 
підвищує радіочутливість пухлини. Існує велика 
кількість доказів, які документують потенційні ко-
рисні ефекти мелатоніну в інгібуванні розвитку та 
прогресування раку яєчників через його численні 
потенційні особливості, включаючи антиоксидант- 
ну, протизапальну, метаболічну дії та активності 
індукції апоптозу в цих пухлинних клітинах [71]
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На стадії прогресії мелатонін може пригнічу-
вати ріст ракових клітин, знижуючи регуляцію 
матриксної металопротеїнази- 2 і 9 (MMП-2 і 
ММП-9) [72, 73] і фактора росту фібробластів 19 
(FGF19) [74], щоб перешкоджати інвазії та мігра- 
ції ракових клітин. Крім того, показано, що мела-
тонін пригнічує міграцію та інвазію клітин раку 
простати [75] і клітин раку товстої кишки, блоку-
ючи епітеліально-мезенхімальний перехід (ЕМП) 
[76]. Мелатонін також проявляє свою протипух-
линну дію шляхом імуномодуляції у мікроото-
чення пухлини. Так він стимулює проліферацію  
цитотоксичних Т-клітин через підвищення рівня 
експресії цитокінів запалення, таких як IFN-γ, 
TNF-α та IL-6 [77]. Minocha T, et al. показали, що 
мелатонін демонструє потужний протираковий 
потенціал і пригнічує проліферацію клітин раку 
шийки матки лінії HeLa (ВПЛ-18 позитивний) і 
SiHa (ВПЛ-16 позитивний) за рахунок його анти-
проліферативної, протизапальної, проапоптозної 
та антиміграційної дії, ймовірно, через модуляцію 
сигнального шляху NF-kB [78]. Автори відміти-
ли, що мелатонін зупиняє клітини HeLa і SiHa 
в суб-G1 і G1 фаз відповідно, знижує експресію 
прозапального фактора транскрипції, NF-κB і екс-
пресію білка ЦОГ-2, основного медіатора клітин-
ної проліферації. Крім того, мелатонін знижував 
експресію інвазивного маркера, MMP-9, анти-
апоптотичного білка Bcl-2, і посилив експресію 

проапоптозного білка Bax як на транскрипційно-
му, так і на трансляційному рівнях.

Незалежна від рецепторів дія мелатоніну ре-
гулюється шляхом запобігання циркадним пору-
шенням, індукції апоптозу, імуномодуляції, змі- 
ни метаболізму раку, прооксидантно-антиокси- 
дантної активності та зниження активності тело-
мерази [79]. У ракових клітинах мелатонін здатний 
проявляти себе як прооксидант. В деяких лініях 
пухлинних клітин висока концентрація (мкМ  
до мМ) мелатоніну може підвищити рівень АФК, 
що призведе до індукованої цитотоксичності 
[80]. Дослідження показали, що мелатонін здат-
ний модулювати утворення АФК комплексами I  
і III електрон-транспортного ланцюга мітохондрій 
[81, 82]. Відмічено індукцію мелатоніном АФК в 
ракових клітинах через алостеричну модуляцію 
комплексу III. Автори зазначають, що ця актив-
ність більш очевидна в ракових клітинах, ніж у 
нормальних клітинах, і може викликати актива-
цію проапоптозного шляху [82]. Посилення ви-
робництва АФК мелатоніном було підтверджено 
у плоскоклітинних карциномах порожнини рота 
[83], при колоректальному раку [84] і раку молоч-
ної залози [85], передміхурової залози, шлунку, 
легені [52].

Радіосенсибілізуюча дія мелатоніну при ПТ. Ана-
ліз значної кількості дослідницьких статей остан-
ніх років дає можливість зробити висновок, що 

Рис. 3. � Механізми протипухлинної та аниангіогенної дії мелатоніну [64]
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поєднання мелатоніну з хіміотерапевтичними за-
собами або променевою терапією посилює ефект 
цих методів лікування багатьох типів пухлин [59]. 
Мелатонін діє як радіосенсибілізатор, оскільки 
його введення разом із променевою терапією по-
силює терапевтичні ефекти та захищає нормальні 
клітини від побічних ефектів цього лікування.  
У радіосенсибілізації, спричиненій мелатоніном, 
бере участь декілька механізмів: збільшення ви-
робництва активних форм кисню, модуляція біл- 
ків, що беруть участь у біосинтезі естрогену (зни- 
ження рівня ароматази, сульфатази та 17β-гідро
ксистероїд дегідрогенази 1) [86], порушення ре-
парації ДНК пухлинними клітинами, зокрема 
шляхом зниження регуляції білків (RAD51 і ДНК-
протеїнкінази), які беруть участь у відновленні 
дволанцюгових розривів ДНК [87, 88], модуляція 
ангіогенезу інгібуванням деяких проангіогенних 
факторів [68, 89], зняття запалення, індукція апоп-
тозу через активацію р53 [86, 90], а також міто- 
хондріального апоптозу шляхом збільшення про-
дукції внутрішньоклітинних АФК [91, 92], стиму-
ляція диференціювання преадипоцитів і модуляції 
метаболізму [68, 89, 93–95]. Так, результати, отри-
мані Alonso-González C, et al. з використанням 
клітин MCF-7, неметастатичної та потрійно по-
зитивної лінії клітин пухлини молочної залози, 
підтверджують потенціал мелатоніну як ефектив-
ного допоміжного засобу до променевої терапії 
при лікуванні раку молочної залози [2]. У своїй 
роботі при застосуванні низьких доз мелатоніну 
(1 нМ) та рентгенівського опромінення (8 Гр) ав-
тори виявили пригнічення клітинної проліфера- 
ції, інгібування експресії генів білків залучених у 
прогресуванні раку, лікарській резистентності та 
антиапоптотичних факторів — MUC-1, c-MYC, 
BIRC5, BCL-2 і ABCB1; потенціювання стиму
люючого ефекту радіації на експресію генів-супре
сорів пухлини та проапоптотичних компонентів — 
RASFF1, CST6, TP53, CDKN1A, BAX2, BAD, RB1 
і PGR; інгібування експресії miR-20a, miR-20b, 
miR-19a, miR-29a, miR-93, miR-10a та miR-10b, що 
задіяні в проліферації, метастазуванні, ангіогенезі; 
однак стимулювання miR-34a, що є пухлинним 
супресором, пригнічуючим епітеліально-мезен
хімальний перехід, міграцію та інвазію; а також 
антиангіогенну дію. У своєму попередньому дос
лідженні [86] ці ж автори показали, що мелатонін 
посилює стимулюючий ефект ІВ на експресію гена 
p53, який втручається в гомологічну рекомбінацію 
та в негомологічне з’єднання кінців ДНК [88, 96, 
97], що асоціювалося із зниженням виживання 
клітин. При цьому фізіологічна концентрація 1 нМ 
мелатоніну, порівняно з 1 мМ або 10 мкМ, була 
більш ефективною для підвищення регуляції р53. 
Пригнічення клітинної проліферації, швидкості 
утворення колоній та міграції клітин мелатоні-
ном після дії ІВ зафіксовано на клітинній лінії 

колоректальної карциноми людини HCT 116 [87]. 
При цьому проведене дослідження in vivo також 
підтвердило, що порівняно з монотерапією мела-
тоніном чи ІВ, комбіноване лікування пригнічує 
ріст пухлинних клітин і, таким чином, посилює 
терапевтичний ефект у пацієнтів.

В інших дослідженнях виявлено пригнічення 
експресії BCL-2 при комбінаваному застосуванні  
мелатоніну та ПТ, що підвищувало чутливість 
клітин раку товстої кишки до іонізуючого випро-
мінювання [98] і збільшувало загибель клітин сар-
коми [99]. Також мелатонін підвищував регуляцію 
мікроРНК-34a/449a для сприяння апоптозу в клі-
тинах колоректального раку та моделі ксенотранс
плантата миші [100]. У високих концентраціях ме-
латонін (500 мкМ) посилював гострі цитотоксичні 
ефекти радіації при плоскоклітинному раку голо-
ви та шиї, індукуючи апоптоз шляхом утворення 
внутрішньоклітинних АФК, які відіграють роль у 
опосередкованому мітохондріями апоптозі та ауто
фагії [92]. У цих видах пухлин мелатонін у поєд
нанні з опроміненням посилює збільшення екс-
пресії ATG12-ATG5, комплексу, необхідного для 
утворення аутофагосом, індукованого радіацією. 
Крім того, мелатонін таким же шляхом потенціює 
лазерне опромінення особливо у клітинах кар-
циноми яєчників і ендотеліальних клітинах [101].  
Радіосенсибілізація клітин раку щитовидної за-
лози мелатоніном була пов’язана зі збільшенням 
активних форм кисню та інгібуванням фосфори-
лювання p65, протеїну, який бере участь у пере- 
дачі сигналу NF-kB [102]. Нещодавно також було 
продемонстровано, що мелатонін сенсибілізує не 
тільки ракові клітини, але й перитуморальні клі-
тини, такі як ендотеліальні клітини або преадипо-
цити молочної залози. Мелатонін у концентрації 
1 мМ потенціював інгібуючий ефект іонізуючого 
випромінювання в ендотеліальних клітинах люди-
ни на кількох стадіях ангіогенного процесу, таких 
як проліферація ендотеліальних клітин, міграція  
або утворення канальцевої мережі, а також на фер- 
менти, залучені в біосинтез естрогену [68]. Ліку-
вання мелатоніном перед опроміненням викли-
кало значно більше зниження експресії мРНК 
RAD51 і ДНК-протеїнкінази та сенсибілізувало 
клітини раку молочної залози людини до іоні-
зуючого випромінювання, зменшуючи їх пролі-
ферацію, сприяючи зупинці клітинного циклу та 
знижуючи ефективність відновлення ДНК [88]. 
Подібний ефект зниження ефективності репарації 
ДНК і експресії RAD51 і BRCA1 спостерігали в 
експерименті поєднання мелатоніну з ІВ на лінії 
клітин колоректальної карциноми [87]. Мелато-
нін підвищував чутливість клітин колоректаль-
ного раку до іонізуючого випромінювання та його 
онкостатичну дію було підтверджено на моделях 
пухлини ксенотрансплантата in vivo у мишей, які 
піддавалися γ-опроміненню.
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Однією з найважливіших відмінностей між 
нормальними та пухлинними клітинами є різниця 
в метаболізмі. Основним джерелом виробництва 
АТФ у ракових клітинах для підтримки проліфе-
рації та виживання є гліколіз, тоді як активність 
мітохондріального окисного фосфорилювання 
знижується, що називається ефектом Варбурга 
[103]. Підвищений коефіцієнт гліколізу до окис-
ного фосфорилювання в пухлинних клітинах по
в’язаний із резистентністю пухлини до терапев-
тичних процедур, таких як ПТ. Деякі дослідження 
показали, що перехід від гліколізу до окисного 
фосфорилювання може збільшити терапевтичний 
ефект лікування [104]. Так, було показано, що під-
вищене окислювальне фосфорилювання посилює 
апоптоз у клітинах мантійно-клітинної лімфоми 
[105] та меланоми [106]. Дослідження Escames G, 
et al. демонструють, що мелатонін якраз має влас-
тивість стимулювати окисне фосфорилювання, 
зокрема у ракових клітинах голови та шиї, що при-
зводить до підвищеного виробництва мітохонд- 
ріальних АФК і зниження проліферації [107]. При 
лейоміосаркомі мелатонін теж пригнічував гліко-
ліз, і цей факт був пов’язаний з пригніченням ме-
тастазування [93]. Інгібування мелатоніном ефекту 
Варбурга при саркомі Юінга також було пов’язане 
зі збільшенням цитотоксичності [94].

Дослідження проведені Zhu H, et al. на куль-
турі клітин раку шийки матки HeLa свідчать про 
важливість дозозалежних ефектів застосування 
мелатоніну при ПТ [91]. Дослідники виявили, що 
1 мМ концентрація мелатоніну запобігає загибелі 
клітин, спричиненій ІВ (4,0 Гр), завдяки його під-
вищеній антиоксидантній здатності. При цьому 
низька концентрація мелатоніну (10 мкМ) ефек-
тивно посилювала загибель клітин через апоптоз 
шляхом активації c-Jun-NH2-термінальної кінази 
(JNK). Однак інші дослідники у своєму огляді [108] 
зібрали дані, що мелатонін виявляє протипухлинну 
дію шляхом індукування апоптозу у мілімолярній 
концентрації. При цьому автори зазначають, що 
слід враховувати факт численних відмінностей у 
метаболізмі ракових і нормальних клітин, а також 
можливу різницю в обміні речовин між різними 
видами раку. Тому вкрай важливим є вивчення 
дозозалежних ефектів застосування мелатоніну 
при ПТ з метою використання для підвищення 
ефективності ПТ шляхом посилення знищення 
ракових клітин і захисту нормальних тканин від 
радіаційного ураження.

Мелатонін і хіміотерапія. Одним із невід’ємних 
найпоширеніших методів у більшості випадків 
лікування раку залишається хіміотерапія. Основ
ними проблемами хіміотерапії є несприятливі по-
бічні ефекти для багатьох органів і систем, а також 
зростання резистентності до ліків. Повідомлялося 
про багато переваг мелатоніну, який застосовував-
ся як допоміжний засіб при хіміотерапії, включаю-

чи підвищення ефективності препарату [109–111] 
і пом’якшення побічних ефектів [112]. Повідомля-
лося, що мелатонін підвищує чутливість ракових 
клітин до хіміотерапії шляхом сприяння апоптозу  
[7, 113] і аутофагії в ракових клітинах [114]. Так 
Tran Q, et al. показали, що апоптоз у клітинах раку 
молочної залози людини, викликаний мелатоні-
ном і доксорубіцином, посилювався через залеж-
не від аутофагії зниження транскрипції AMPKα1 
[115]. Посилення антипроліферативного ефекту 
доксорубіцину мелатоніном у культурі клітин раку 
молочної залози MCF-7 спостерігалося іншими 
дослідниками [116]. Комбінована дія мелатоніну 
і доксорубіцину проявляє сильніший ефект і на 
клітинах колоректального раку Caco-2 [117]. До-
слідження на моделі миші з ксенотрансплантатом 
виявило, що мелатонін і 5-фторурацил (5-FU) ви-
являють синергічний протипухлинний ефект шля-
хом інгібування сигнальних шляхів AKT і iNOS 
[118]. Результати, отримані Hao J, et al. показали, 
що у мишей з ксенотрансплантатами меланоми 
мелатонін суттєво та синергетично посилював 
опосередковане вемурафенібом інгібування ан-
гіогенних параметрів і ослаблення стовбурової 
структури у клітинах меланоми [119]. Мелатонін 
потенціює індукований цисплатином апоптоз, по- 
в’язаний з розщепленням каспази-3 і полі-АДФ-
рибополімерази (PARP), а також експресією Bcl-2 
і пригнічує поглинання глюкози та вироблення 
АТФ шляхом зниження регуляції транспортера 
глюкози 3 (GLUT3) у клітинах гепатоцелюлярної 
карциноми [120]. Також препарат значно індуку- 
вав цитотоксичні ефекти у клітинах раку шийки 
матки HeLa викликані різними хіміотерапевтич
ними агентами, включаючи цисплатин, 5-FU та 
доксорубіцин. Він посилював активацію каспа- 
зи-3, особливо в клітинах, що зазнавали дії ци-
сплатину і 5-FU [121]. Подібним чином комбіно
ване лікування мелатоніном і цисплатином істот- 
но індукувало генерацію АФК і мітохондріальний 
апоптоз та помітно збільшувало фрагментацію 
ДНК порівняно з лікуванням лише цисплати-
ном [122, 123]. У клітинах раку яєчників люди-
ни SK-OV-3 мелатонін посилював індукований 
цисплатином апоптоз через інактивацію каскаду  
ERK/p90RSK/HSP27, пригнічував TLR4-опосе- 
редковану запальну відповідь через MyD88- і 
TRIF-залежні сигнальні шляхи та рівень експре-
сії різних білків, включаючи NF-kB p65, інгібітор 
NF-κB альфа (IkBα), IkB кіназу альфа (IKK-α), 
фактор 6, пов’язаний з рецептором TNF (TRAF6), 
TRIF, регуляторний фактор інтерферону 3 (IRF3), 
інтерферон β (IFN-β), TNF-α та IL-6 [124]. У ін-
шому дослідженні [125] комбінація мелатоніну з 
цисплатином синергічно пригнічувала життєздат-
ність клітин SK-OV-3 шляхом збільшення вмісту 
суб-G1 ДНК, TUNEL-позитивних клітин і рівнів 
каспази 3, а також пригнічувала фосфорилювання 
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ERK і дефосфорилювання 90-кДа рибосомальної 
S6 кінази (p90RSK) та білка теплового шоку 27 
(HSP27).

Значна кількість спостережень комбінованої дії 
мелатоніну та хіміотерапевтичних засобів демон-
струє, що об’єктивна швидкість регресії пухлини 
була значно вищою саме за сумісної дії препара-
тів, порівняно із застосуванням лише хіміотерапії 
[126–137]. Для прикладу, комбіноване лікування 
хворих з метастатичним недрібноклітинним раком 
легені мелатоніном та цисплатином плюс етопозид 
або гемцитабін збільшує виживаність пацієнтів і 
швидкість регресії пухлини [126, 128].

У своїй роботі Allahverdi Khani M, et al. під-
креслюють багатообіцяючу здатність мелатоніну 
протидіяти різним аспектам розвитку і прогресу-
вання раку, зазначають, що дослідження хіміопре-
вентивного потенціалу екзогенного мелатоніну у 
клінічних умовах має важливе значення для по-
вного використання терапевтичного потенціалу 
мелатоніну в протидії раку [138]. Автори наго-
лошують про важливість розширення когорти та 
подовження періоду спостереження, встановлення 
зв’язку між спостережуваними ефектами, основ
ними механізмами та значенням мелатоніну як те-
рапевтичного онкостатичного засобу, що надасть 
можливість прокласти шлях для його стратегічної 
інтеграції в парадигми лікування раку.

Радіопротекторні властивості мелатоніну. По-
бічні ефекти, які виникають у результаті ПТ ве-
ликою мірою пов’язані із запальними реакціями, 
особливо при високих дозах радіації. При цьому 
важливу роль у ранніх і пізніх реакціях клітин і 
тканин на радіацію відіграють імунні клітини, такі 
як макрофаги, Т-клітини та нейтрофіли, а також 
субклітинні органели (мітохондрії, ендоплазматич-
ний ретикулум, клітинна мембрана та лізосоми) 
через продукцію АФК та АФА, вивільнення літич-
них ферментів лізосомами [139, 140].

Особливістю мелатоніну порівняно з інши-
ми антиоксидантами та радіопротекторами, як 
зазначалось вище, є його здатність проникати 
в більшість органів та їх субклітинні органели 
[39, 141]. Впливаючи на різні імунні клітини та 
органели мелатонін зменшує функціональні по-
рушення, спричинені ІВ. Будучи амфіфільним, 
він може захищати від пошкодження вільними 
радикалами по всій клітині і, дійсно, було пока-
зано, що мелатонін обмежує розпад мембранних 
ліпідів, білків у цитозолі та ДНК у ядрі [142]. Ці 
особливості дозволяють припустити, що мелатонін 
є хорошим кандидатом для захисту нормальної 
тканини від радіаційної токсичності. Крім того, 
показано, що екзогенно введений мелатонін кон-
центрується у мітохондріях [143], тобто мелатонін 
є агентом, спрямованим на мітохондрії. З огляду 
на те, що мелатонін функціонує як антиоксидант, 
він особливо важливий для мітохондрій, оскільки 

ці органели є основним місцем утворення віль-
них радикалів. Захист мітохондріальних мембран, 
відновлення дихального ланцюга мітохондрій і 
потенціалу мембрани є унікальними властивос-
тями мелатоніну, які не спостерігалися з іншими 
антиоксидантами [141].

Отримані дані свідчать про те, що мелатонін 
може впливати на імунні клітини через його ядер-
ні та мембранні рецептори, які знаходяться і на 
макрофагах, В-клітинах і Т-клітинах [144, 145]. 
Через ці рецептори мелатонін може модулювати 
проліферацію та секрецію цитокінів і, таким чи-
ном, імунну відповідь на радіацію [146]. Лікування 
мелатоніном зменшує пошкодження ДНК і посла-
блює вплив радіації на кількість лімфоцитів пери-
феричного та кісткового мозку [147]. Мелатонін 
також підвищує здатність до відновлення ДНК, 
щоб знизити загибель клітин [148]. Зменшення 
пошкодження ДНК і загибелі клітин, особливо 
в радіочутливих клітинах, якими є лімфоцити, 
робить мелатонін радіопротектором та імуномоду-
лятором для управління імунною реакцією на дію 
радіації. Крім того, мелатонін стимулює вироб
лення IL-2, IL-12, IL-10 та IFN-γ та індукує по-
силення відповіді моноцитів на гранулоцитарно-
макрофагальний колонієстимулюючий фактор 
(GM-CSF), IL-3, IL-4 та IL-6, з підвищенням ак-
тивності NK і продукції макрофагів, нейтрофілів, 
гранулоцитів та еритроцитів [147]. Мелатонін діє 
як протизапальна молекула та зменшує експресію 
TNF-α, IL-1β або IFN-γ, цитокінів Th1, які беруть 
участь у запаленні, і, навпаки, стимулює протиза-
пальну Th2 імунну відповідь [149, 150]. Показано, 
що при раку легенів застосування мелатоніну пе-
ред опроміненням зменшує підвищення TNF-α, 
IL-6 і TGF-β, викликане іонізуючою радіацією, 
а також підвищення активності СОД і каталази, 
рівнів GSH та зменшення окислювального по-
шкодження легеневої тканини [151]. При багатьох 
видах раку підвищення цитокінів після опромі-
нення опосередковується через NF-кВ [152]. Як 
було показано Jang S, et al., мелатонін знижує його 
експресію [151]. У щурів, легені яких опроміне-
ні гамма-променями 60Co в дозі 15 Гр, введення 
мелатоніну перед опроміненням послаблювало 
інфільтрацію запальних клітин (макрофагів та 
лімфоцитів) та експресію прооксидантних генів 
Duox1 і Duox2, і, таким чином, запобігало розвитку 
фіброзу та запалення [153]. За допомогою інгібу-
вання Toll-подібних рецепторів (TLR), факторів 
транскрипції, прооксидантних ферментів, а також 
профіброзних і прозапальних цитокінів мелатонін 
послаблює окисно-відновну активність і знімає 
пізні ефекти ІВ [154, 155]. Отже, мелатонін через 
ці шляхи націлений на зменшення як гострих, так 
і хронічних наслідків, спричинених запаленням 
після ПТ. Дослідження засвідчують, що введення 
мелатоніну може запобігти або полегшити хро-
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нічне запалення та окисне пошкодження, фіброз, 
некроз, тромбоз, пошкодження судин і збільшення 
кількості імунних клітин у різних тканинах, таких 
як серце, легені, привушні та підщелепні залози, 
нирки, спинний мозок, кришталик, сечостатева 
система та інші [54, 156–161].

Аналіз наукових публікацій засвідчує, що ме-
латонін, який вводиться разом з ПТ, здатний під-
вищити її терапевтичний ефект і може захистити 
нормальні клітини від побічних ефектів цього 
лікування. Радіосенсибілізуючу дію мелатоніну і 
механізми, які пояснюють, як мелатонін посилює 
дію радіації у пухлині ми частково розглянули. 
Проте слід зауважати, що оскільки мелатонін ха-
рактеризується високими антиоксидантними, а 
також, імуномодудюючими властивостями, він 
цікавий саме з точки зору використання його в 
якості радіопротектора. Такий його ефект було 
продемонстровано в дослідженнях на тваринах 
для різних органів, таких як легені, товста кишка, 
клубова кишка [162], шкіра [163], печінка [162, 
164–166], кришталик [160, 167], селезінка [168, 
169], мозок [170] та спинний мозок [159].

На додаток до антиоксидантних властивостей 
мелатоніну, численні дані вказують на антиапоп-
тозну його функцію в нормальних клітинах. В ряді 
досліджень на тваринах зареєстровано захисний 
ефект мелатоніну від індукованого ІВ апоптозу 
шляхом зниження активності каспази-3 [169], 
відносного зниження експресії p53 мРНК і білка 
[171], підвищення регуляції bcl-2, а також змен-
шення співвідношення bax/bcl-2 [172]. Окрім цьо-
го, зафіксовано інгібування ЦОГ-2, що є одним із 
найважливіших факторів, залучених до запалення, 
викликаного радіацією, а також NF-κB, iNOS і 
Sirt1, з іншої сторони активація TGF-β також по-
яснюється його антиапоптотичним ефектом [173]. 
У більш ранніх публікаціях повідомлялося про 
зниження індукованого радіацією апоптозу у ней
ронах щурів [174], клітинах сітківки [175] клітинах 
кісткового мозку [176], тимоцитах [177] та тонкій 
кишці мишей [178].

Jang S, et al. стверджують, що мелатонін як ра
діосенсибілізатор посилює радіаційно-індукова
ний апоптоз у клітинах лейкемії Jurkat, тоді як він 
зменшує радіаційно-індукований апоптоз у нор-
мальних спленоцитах мишей [171]. Вони виявили, 
що додавання мелатоніну до клітин спленоцитів 
мишей знижує індукцію апоптозу через збільшен-
ня Bcl-2 і зниження експресії p53 і Bax. Навпаки, 
коли клітини Jurkat leukemia обробляли мелато-
ніном перед опроміненням, індукція апоптозу та 
р53 посилювалася.

Крім того, мелатонін також може впливати на 
ферменти відновлення ДНК безпосередньо та/або 
опосередковано, стимулюючи внутрішньоклітин-
ні сигнали для активації генів, відповідальних за 
ферменти, що беруть участь у репарації ДНК [179]. 

Показано, що мелатонін у поєднанні з аміфости-
ном запобігає індукованому гамма-опроміненням 
пошкодженню ДНК у лімфоцитах периферичної 
крові людини in vitro. В іншому дослідженні одно-
часне застосування мелатоніну та вітаміну С, як 
радіопротекторних речовин, перед опроміненням 
зменшувало генотоксичність, спричинену рентге-
нівським опроміненням [180]. Відмічено значне 
зниження кількості мікроядер у лімфоцитах по-
рівняно з контрольною групою. Максимальний 
синергічний захист і зниження частоти мікроядер 
(57%) спостерігався через 1 годину після спільного 
введення вітаміну С і мелатоніну добровольцям 
перед опроміненням зразків крові рентгенівським 
опроміненням у дозі 200 сГр. Eskandari А, et al. 
констатують, що мелатонін не тільки значною мі-
рою захищає ДНК від мутагенного пошкодження, 
але також від індукції двониткових розривів (ДР)  
ДНК. Так, у лімфоцитах крові хворих, які прохо
дили комп’ютерну томографію, реєстрували ін-
дукцію ДР ДНК. Однак, у групі, яка отримувала 
одноразову пероральну дозу 100 мг мелатоніну за 
5–10 хв до та через 30 хв після неї, цих пошкод
жень ДНК не відмічали [181]. Такий же резуль-
тат отримали при застосуванні 100 мг мелатоніну 
перед опроміненням лімфоцитів у дозах 10 мГр і 
100 мГр [182]. В іншому дослідженні при інкубації 
лімфоцитів крові людини в середовищі з додаван-
ням радіоактивного йоду I131 протягом 2 годин 
у присутності мелатоніну кількість індукованих 
ДР ДНК зменшилася на 40% [183]. Мелатонін у 
концентрації 125 мг/кг за 30 хв до опромінення  
мишей у дозі 5 Гр знижував кількість копій му-
тантної мітохондріальної ДНК, яка збільшує окис-
лювальний стрес, та рівень H2O2, рівень МДА, 
сприяв відновленню рівня АТФ та вмісту глута-
тіону у селезінці та корі головного мозку [184]. 
Протекторний ефект мелатоніну продемонстро-
вано не тільки відносно соматичних клітин, але 
й статевих. Введення мелатоніну (10 мг/кг маси 
тіла) мишам, за 1 год до опромінення у дозі 1,5 Гр  
значно зменшило помітне підвищення через  
24 год частоти мікроядер у поліхромних еритро-
цитах, а також хромосомних аберацій у спермато-
гоніях і сперматоцитах [185].

Першопочаткові in vitro дослідження викорис-
тання мелатоніну як цитопротекторного агента 
були проведені групою Vijayalaxmi [186, 187]. Пока-
зано, що передінкубація 20 хв лімфоцитів перифе-
ричної крові людини, підданих γ-опроміненню у 
дозі 1,5 Гр, з мелатоніном призводила до значного 
зниження хромосомних аберацій обмінного типу, 
ацентричних фрагментів та мікроядер. Позитив-
ний цитозахисний ефект мелатоніну посприяв 
подальшому in vivo/in vitro дослідженню, де здорові 
люди-добровольці одноразово отримували 300 мг 
мелатоніну перорально [188]. Через 1 і 2 години 
після прийому препарату зібрану кров піддавали 
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γ-опроміненню в дозі 1,5 Гр і потім культивували 
протягом 48 і 72 год. У лімфоцитах реєстрували 
істотне зниження кількості хромосомних аберацій 
та мікроядер та зниження кількості однониткових 
розривів ДНК. Результати і дали підставу авторам 
стверджувати, що мелатонін, окрім прямої анти-
оксидантної дії здатний активувати ферменти, 
залучені до відновлення уражень ДНК.

Велика кількість експериментальних робіт на 
підтвердження радіопротекторної дії мелатоніну 
виконана на тваринах. Проведено ряд досліджень 
щодо впливу мелатоніну на виживаність тварин 
за дії ІВ. Так виживаність опроміненених мишей 
CD2-F1 в дозі 8,15 Гр на 30 день спостереження 
становила лише до 45–50%; попереднє введення 
мелатоніну у дозі 125 мг/кг маси тіла підвищило 
її до 60%, тоді як збільшення дози мелатоніну до 
250 мг/кг маси тіла підвищило виживаність до 85% 
[189]. В іншому випадку тотальне опромінення 
мишей лінії Swiss ND4 в дозі 9,5 Гр призводило до 
загибелі усіх тварин впродовж 12 днів, тоді як при 
попередньому введенні мелатоніну (1,076 мМ/кг) 
43% особин залишалися живими протягом 30 днів 
після опромінення [190].

Цикл робіт був спрямований на антиоксида-
ний захисний потенціал мелатоніну, що націле-
ний на запобігання оксидативних пошкоджень. 
У літературі є низка публікацій, які показують, 
що радіопротекторний ефект мелатоніну, який 
спостерігався в експериментах на тваринах, пов’я
заний зі зниженням у їхніх тканинах рівня MДA та 
підвищенням рівня GSH, що є основними марке-
рами окисного стресу та антиоксидантної системи, 
відповідно [161, 170, 191]. Дворазове опромінення 
самок щурів Wistar у дозі 360 сГр, з інтервалом 12 
годин, викликало значне збільшення рівня МДА в 
яєчниках і плазмі через 6 годин після опромінення 
[192]. При цьому введення тваринам мелатоніну 
у дозі 100 мг/кг маси тіла значно знижувало рі-
вень MДA. А дослідження, проведене на щурах 
Wistar:Han SPF, виявило, що мелатонін, який да- 
вали з питною водою (доза не уточнена) протягом 
15 днів запобігав підвищенню печінкових ліпі-
дів і рівня триацилгліцеролу в тимусі, спричи-
нені безперервним опромінення в добовій дозі  
96 мГр [193]. Також відмічено зниження рівня  
МДА і оксиду азоту та значне збільшення ак-
тивності СОД та глутатіонпероксидази у тканині 
печінки опромінених щурів у дозі 6 Гр за попе-
реднього введення мелатоніну (5 або 10 мг/кг) 
[164]. Подібно зафіксовано зниження рівня МДА 
у нирках мишей, опромінених в такій же дозі за 
попереднього введення мелатоніну 100 мг/кг [194]. 
El-Missiry M, et al. [165] показали, що введення 
мелатоніну щурам у дозі 10 мг/кг протягом 4 днів 
(щодня) перед гострим опроміненням (2 і 4 Гр) 
суттєво знижувало індуковане радіацією підви-
щення рівнів МДА та карбонілу білка у печінці 

та значною мірою підтримувало вміст глутатіону, 
активності глутатіон-S-трансферази і каталази 
близькі до значень контрольної групи. Мелатонін 
(100 мг/кг мелатоніну за 30 хвилин до опромі-
нення та 5 мг/кг один раз на добу вдень протягом  
30 днів) покращує біохімічні (зниження вмісту 
МДА, підвищення СОД і КАТ), електрофізіоло-
гічні та морфологічні характеристики опромі-
нених одноразовою дозою гамма-опромінення  
в 30 Гр тканин литкового м’яза щурів [195]. Ре-
зультати досліджень захисних ефектів мелатоніну 
від гамма- або рентгенівського випромінювання 
на тваринах показали, що екзогенний мелатонін 
за його введення перед впливом ІВ зменшує окис-
лювальний стрес і запалення у всіх досліджуваних 
тканинах. Крім того, відмічено захисний ефект від 
радіаційного ентериту та збільшення виживаності 
тварин. На експериментальній моделі мишей по-
казано, що мелатонін, який вводили до (100 мг/кг)  
і після (50 мг/кг) опромінення в дозі 15 Гр, при-
гнічував викликаний радіацією мукозит порож-
нини рота шляхом інгібування апоптозу та по-
шкодження ДНК [196]. Результати отримані на 
моделі мишей C57BL/6 показали, що мелатонін 
як профілактичний засіб захищає чоловічу репро-
дуктивну систему проти радіаційно-індукованого 
ураження [197].

Варто зазначити, що автори у багатьох дослід
женнях стверджують, що наявний радіозахисний 
ефект мелатоніну проявляється за його присут
ності в організмі під час опромінення, тобто ме-
латонін слід вводити до початку дії ІВ.

Слід відмітити, що на даний час існує мало клі-
нічних випробувань, які вивчають терапевтичну 
користь поєднання мелатоніну та променевої те-
рапії у людей. Аналіз показує, що більшість до-
сліджень спрямовані на ефективність стандартної 
протипухлинної терапії і в основному проводи- 
лись групою Lissoni, а дослідження щодо захисної 
дії нормальних клітин з оточення пухлини обме
жені.

Таким чином, мелатонін характеризується пев- 
ними властивостями зниження радіаційної ток-
сичності в нормальних тканинах з оточення пух-
лини і управління реакцією пухлин на променеву 
терапію. Мелатонін здатний безпосередньо нейт
ралізувати токсичні вільні радикали ефективніше 
порівняно з іншими класичними антиоксиданта-
ми, що пояснюється так званою каскадною реак
цією, яка відбувається, коли він при взаємодії з 
АФК генерує похідні, які також є поглиначами 
вільних радикалів, іноді навіть більш агресивні-
шими, ніж сам мелатонін. Через регуляцію міто-
хондріальної функції та інгібування прооксидант-
них ферментів, що активуються після впливу ІВ, 
мелатонін пригнічує хронічний окислювальний 
стрес. Як протизапальний засіб мелатонін зни-
жує експресію деяких цитокінів, що беруть участь 
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у запаленні, викликаному радіацією. Однією із 
особливостей мелатоніну є стимулюючий вплив 
на репарацію ДНК у нормальних тканинах, що 
підвищує їх толерантність до токсичної дії ІВ і 
може зменшити ризик геномної нестабільності 
у пацієнтів, які проходять ПТ. За допомогою цих 
механізмів мелатонін здатний послаблювати по-
бічні ефекти променевої та хіміотерапії. На від-
міну від класичних антиоксидантів, дослідження 
показали, що мелатонін проявляє протипухлинну 
дію при застосуванні разом із опроміненням, а 
також сенсибілізуючу при хіміотерапевтичному 
лікуванні. Поєднання мелатоніну з ПТ дає чудові 
результати як in vitro, так і in vivo. Радіосенсибі-
лізація деяких типів ракових клітин мелатоніном 
пов’язана зі збільшенням АФК та посиленням 
ефекту ІВ, що вбиває клітини. Водночас, окрім 
збільшення виробництва АФК, у радіосенсибі-
лізації, спричиненій мелатоніном, та підвищенні 
радіочутливості пухлинних клітин залучені такі 
механізми, як, модуляція білків, що беруть участь 
у біосинтезі естрогену; порушення репарації ДНК 
пухлинними клітинами; модуляція ангіогенезу; 
зняття запалення; індукція апоптозу; інгібуван-
ня гліколізу; стимуляція диференціювання пре-
адипоцитів і модуляції метаболізму. Мелатонін 
знижує здатність пухлинних клітин відновлювати 
пошкоджену ДНК і посилює пошкодження ДНК, 
спричинене опроміненням, шляхом модулювання 
білків, які втручаються як у гомологічну реком-
бінацію, так і в негомологічне з’єднання кінців 
ДНК. Цікавим фактом у властивостях мелатоні-
ну є його антиапоптотичний ефект у нормальних 
тканинах і проапоптотичний у ракових. Також 
варто звернути увагу на сенсибілізуючі властиво- 
сті мелатоніну до ряду хіміопрепаратів. Усі резуль-
тати вказують на те, що мелатонін є ефективною 
допоміжною молекулою хіміопроменевої терапії 
при лікуванні раку. Окрім цього, мелатонін має 
дуже низький рівень цитотоксичності, і навіть 
високі дози мелатоніну не викликають серйозних 
побічних ефектів як у тварин, так і у людей. Щоб 
визначити потенційну токсичність мелатоніну  
було випробувано широкий діапазон доз, від фі-
зіологічних до фармакологічних концентрації, на 
різних видах тварин. Дози мелатоніну, які були 
перевірені в дослідженнях in vivo були такими: 
10–250 мг/кг у мишей, 100–200 мг/кг у щурів, або 
навіть 800 мг/кг у мишей, кроликів, котів, і со-
бак. Результати цих та багатьох інших досліджень 
вказують, що наявність як гострої, так і хроніч-
ної токсичності мелатоніну надзвичайно низька. 
Пероральне застосування мелатоніну людьми-
добровольцями в дозах 1–300 мг або 1 грам щодня 
протягом 30 днів не призводило до жодних поміт-
них негативних наслідків. Побічні ефекти, такі як 
втома, сонливість, запаморочення, інколи головні 
болі, апатія спричинені введенням мелатоніну, 

були мінімальними, отже, розвіювали будь-які 
занепокоєння щодо безпеки для людей. Є дані, 
що введення мелатоніну після променевої терапії 
покращувало якість життя пацієнтів, включаючи 
кращий сон і зниження тривоги.

Отже, проведений аналіз даних літератури дає  
підставу зробити висновок, що застосування ме- 
латоніну може уможливити використання вищих  
доз опромінення під час ПТ та пом’якшити усклад- 
нення лікування, зокрема знизити ризик виник-
нення ранніх та пізніх побічних ефектів ПТ для 
нормальних тканин з оточення пухлини і, отже, 
підвищити терапевтичну ефективність хіміопроме
невої терапії та покращити якість життя хворих.

Однак, незважаючи на значну кількість дос
ліджень, проведених на тваринах та клітинних 
моделях, щодо радіозахисних ефектів мелатоніну, 
клінічні випробування досить обмежені. Водно-
час дослідниками було виявлено, що механізми 
захисту від радіації залежать від типу тканини і 
відрізняються залежно від структури органів, а та- 
кож функцій, типу захворювання на додаток до 
відповіді імунної системи. У зв’язку з цим є необ-
хідність проведення широкомаштабних досліджень 
та клінічних випробувань з залученням значної 
кількості пацієнтів для розуміння ряду питань та-
ких, як оптимальна доза мелатоніну та проміжок 
часу між введенням і опроміненням. І, що вкрай 
важливим є при ПТ, дослідження залежності “доза 
опромінення – радіозахисний ефект – концентра-
ція” для повного з’ясування радіопротекторної дії 
мелатоніну у відповідності до типу захворювання 
та/або патології і ефективності його застосування 
для захисту нормальних тканин з оточення пух-
лини, особливо найбільш радіочутливих клітин 
організму — лімфоцитів крові, від радіаційного 
ураження і, таким чином, попередження побічних 
наслідків опромінення.

Робота виконана в рамках НДР “Досліджен-
ня впливу поєднаної променевої і хіміотерапії на 
генетичні та метаболічні зміни у лімфоцитах пе-
риферичної крові хворих на рак шийки матки”  
(№ держреєстрації 0121U113837).
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PROSPECTS OF THE USE OF MELATONIN  
IN RADIATION THERAPY

L.I. Makovetska, E.A. Domina
RE Kavetsky Institute of Experimental Pathology, 
Oncology and Radiobiology, National Academy  
of Sciences of Ukraine, Kyiv, Ukraine

Summary. Radiation therapy (RT) plays a key role in the 
treatment of malignant tumor diseases in the majority of 
cancer patients. Unfortunately, despite the improvement 
of RT methods and tools (in particular, its conformal 
strategy) and modern methods of dosimetry, RT has a 
harmful effect not only on the tumor, but also on normal 
tissues surrounding the tumor. In some cases, this leads to 
the development of radiation reactions and complications, 
the treatment of which is a long, sometimes ineffective 
process. One of the strategies to prevent or reduce these 
complications is the use of natural radioprotectors, among 
which the pineal hormone melatonin deserves attention. It 
is a powerful antioxidant with immunoregulatory proper-
ties that can reduce toxicity caused by ionizing radiation 
(IR) in various organs. These effects are mediated by 
the modulatory effects of melatonin at different levels of 

tissue response to IR. The most important are the effects 
on the DNA repair system, antioxidant enzymes, immune 
cells, cytokine secretion, transcription factors and protein 
kinases. The data highlighted in this review indicate that 
melatonin has great potential to prevent the side effects of 
RT and its inclusion as an adjuvant in RT would enable 
the use of higher radiation doses in treatment. In addi-
tion, due to the antitumor and radiosensitizing proper-
ties of melatonin, its use can increase tumor damage. 
Therefore, melatonin is a promising radioprotective agent 
of normal tissues surrounding the tumor with the effect 
of increasing the therapeutic efficiency/toxicity ratio of 
chemoradiation treatment of patients.
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radiation, radioprotector, radiosensitization
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