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ОСОБЛИВОСТІ ПРОГРАМИ 
ЛАТЕНТНОЇ ІНФЕКЦІЇ ВІРУСОМ 
ЕПШТЕЙНА-БАРР В-КЛІТИН ПРИ 
ХРОНІЧНОМУ ЛІМФОЛЕЙКОЗІ
Лікування гематологічних захворювань є однією з найскладніших проб
лем сучасної медицини. Відомо, що в основі гуморального імунітету 
лежать В-лімфоцити, які на термінальних стадіях диференціювання 
перетворюються в антитілоутворюючі імунобласти та плазматичні 
клітини. Хронічний лімфолейкоз (ХЛЛ) розвивається зі значним збіль-
шенням фенотипово зрілих, але імунонекомпетентних В-лімфоцитів, 
які характеризуються наявністю атипової експресії маркерів. Питання 
щодо причин інгібування клітинного сигнального шляху, відповідального 
за проліферацію та апоптоз у зрілих В-лімфоцитах пацієнтів з ХЛЛ, є 
надзвичайно важливими, але все ще недостатньо вивченими. Поглиблений 
аналіз ключових гравців сигнальних каскадів і факторів транскрипції, 
які функціонально пригнічуються при ХЛЛ, покращить прогноз перебігу 
захворювання та допоможе розробити персоналізоване лікування для 
таких пацієнтів.

Вивчення молекулярних механізмів, що лежать 
в основі канцерогенезу, є важливою сферою 

онкології. Глибше розуміння складних і багаторів-
невих процесів канцерогенезу може призвести до 
розробки більш точних методів ранньої діагнос-
тики та лікування злоякісних новоутворень.

Лейкемії становлять близько 2,2% усіх ново-
виявлених випадків раку, рівень захворювано
сті дещо вищий у чоловіків (2,73%) порівняно з 
жінками (1,79%) [1]. В Європі та Україні найпо-
ширенішим видом гемобластозів є хронічний лім-
фолейкоз (ХЛЛ), на який припадає близько 30% 
усіх онкогематологічних випадків. Рівень захво-
рюваності становить приблизно 4,2 на 100 000 осіб 
[1–3]. Захворювання в основному діагностується у 
людей похилого віку, причому чоловіки хворіють 
в 1,5–2,0 раза частіше, ніж жінки. Середній вік на 
момент встановлення діагнозу становить близько 
70 років для чоловіків і 74 роки для жінок. Слід 
зазначити, що пацієнти молодше 65 років вважа-
ються “молодими” в контексті ХЛЛ, що вказує 
на те, що ХЛЛ є злоякісним новоутворенням, яке 
переважно проявляється у старшому віці.

ХАРАКТЕРИСТИКА І ПЕРВИННА 
ДІАГНОСТИКА ХЛЛ

ХЛЛ характеризується накопиченням лейкоз-
них В-лімфоцитів, які експресують поверхневі 
маркери Т-клітин (CD5) і В-клітин (CD19 і CD23) 
[4]. Для діагностики ХЛЛ необхідна кількість цир-
кулюючих В-лімфоцитів, що перевищує (5–10)·106 
на мл, а також клональна проліферація В-клітин 
у кістковому мозку [5]. Основною гіпотезою по-
ходження ХЛЛ є накопичення імунологічно не-

компетентних В-лімфоцитів, які демонструють 
мінімальну проліферацію [6].

Згідно з класифікацією Всесвітньої організа-
ції охорони здоров’я, ХЛЛ та мала лімфоцитарна 
лімфома (МЛЛ), попередник ХЛЛ, що переважно 
вражає лімфатичні вузли та демонструє подібний 
морфологічний фенотип, відносяться до злоякіс-
них новоутворень зрілих B-клітин [7].

Можна виділити два підтипи ХЛЛ, незважаючи 
на їх схожі морфологічні та імунологічні феноти-
пи. Клінічні прояви ХЛЛ відрізняються між цими 
підтипами та визначаються мутаційним статусом 
варіабельної ділянки гена важкого ланцюга іму-
ноглобуліну (Ig). Такими підтипами є ХЛЛ з му-
тованою формою варіабельної області гена важ-
кого ланцюга Ig (IGHV-M) і ХЛЛ з немутованою 
формою (IGHV-UM). Підтип IGHV-M зазвичай 
пов’язаний зі сприятливим прогнозом, тоді як під- 
тип IGHV-UM пов’язаний із гіршим прогнозом 
[8, 9]. Ця різниця, ймовірно, пов’язана з різни-
ми генетичними змінами, рівнем клональності, 
епігенетичними змінами, активацією або інгібу-
ванням клітинних сигнальних шляхів і взаємо- 
дією з мікрооточенням у лімфатичних вузлах або 
кістковому мозку.

Невелика частка хворих на ХЛЛ має сімейний 
анамнез захворювання, і в таких випадках ризик 
розвитку ХЛЛ серед найближчих родичів у кіль-
ка разів перевищує середньопопуляційний ризик 
[10].

Мікрооточення має важливе значення для під-
тримки життєздатності клітин ХЛЛ. Допоміжні 
клітини (nurse cells) кісткового мозку, мезенхі-
мальні стромальні клітини, Т-клітини та природні 
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кілери (Natural killer, NK), клітини виконують цю 
роль, взаємодіючи з клітинами ХЛЛ через різні  
молекули адгезії, хемокінові рецептори, білки ро-
дини TNF та інші розчинні фактори[11].

ЗМІНИ ФУНКЦІОНУВАННЯ  
КЛІТИННИХ СИГНАЛьНИХ ШЛЯХІВ  
У В-КЛІТИНАХ ПРИ ХЛЛ

Зазвичай В-клітинні рецептори (BCR) та їхні 
сигнальні каскади активуються (ауто-)антигенами 
або автономними механізмами [12]. Слід зазна-
чити, що сигнальні шляхи, які контролюються 
протеїнами NOTCH1, TP53 і TNFR2-TRAF не 
функціонують у клітинах ХЛЛ [13]. Це підкреслює 
необхідність виявлення змінених клітинних сиг-
нальних шляхів у В-лімфоцитах, уражених ХЛЛ,  
для підтримки розробки нових підходів до ліку-
вання.

Так, нещодавно нами було виявлено, що низ-
ка генів, які індукуються в результаті активації 
клітинного сигнального шляху TGFB-SMAD2/3 
на базальному рівні, а саме BCL2L1 (BCL-XL), 
CCND2 (Cyclin D2), ID1 і MYC, також є залежни-
ми від активації клітинного сигнального шляху 
IL2- JAK-STAT2/5. Було показано, що рівень екс- 
пресії мРНК генів, які можуть бути трансакти-
вовані завдяки активації цих двох сигнальних 
шляхів, значно знижений у клітинах ХЛЛ порів-
няно з В-клітинами периферичної крові здорових 
донорів, і що клітинні сигнальні шляхи TGFB-
SMAD2/3 та IL-2-STAT2/5 (JAK-STAT5) не функ-
ціонують на базальному рівні в В-лімфоцитах па-
цієнтів із ХЛЛ [14].

Нами було показано, що одним із факторів, 
що обумовлюють неактивність сигнального шляху 
TGFB-SMAD у лейкозних клітинах є низька екс-
пресія (нижче можливого рівня її виявлення за 
допомогою імунофлуоресцентного аналізу) білка 

SMAD2, а також відсутність SMAD3 і SMAD4 та 
білкових гетеродимерів з ядерною локалізацією.

Причина інгібування сигнального шляху IL-2-
STAT (JAK-STAT5) на базальному рівні в клітинах 
ХЛЛ ще не виявлена, але це може бути низький 
рівень фосфорилювання або повна відсутність 
фосфорилювання білків STAT5 (STAT5A і STAT5B) 
в лейкозних клітинах. Білок STAT5A має цито-
плазматичну локалізацію, тобто в В-лімфоцитах 
хворих на ХЛЛ відсутні ядерні білкові комплекси, 
які зазвичай активують трансактивацію генів, за-
лежних від фактора транскрипції STAT5. Таким 
чином, В-клітини при ХЛЛ не мають можливості 
ні диференціюватися, ні проліферувати, ні увійти 
в апоптоз, хоча вони продовжують секретувати 
певні цитокіни (рис. 1).

Через накопичені знання виникають питання: 
чи можливо змусити клітини В-ХЛЛ відповідати на 
сигнали через, наприклад, рецептори IL-2, TGFB, 
TNFB або інші? Як можна примусити клітини 
ХЛЛ відповідати на сигнали із мікрооточення, 
заставивши їх проліферувати і стати мішенню для 
хіміотерапії або направивши їх у апоптоз?

ВІРУС ЕПШТЕЙНА-БАРР  
ЯК ТРАНСФОРМУЮЧИЙ АГЕНТ  
ДЛЯ ЛІМФОЦИТІВ

Однім із найбільш відомих трансформуючих 
агентів В-клітин є вірус Епштейна-Барр (Epstein-
Barr virus, EBV), який було відкрито у 1964 р. та 
який і досі використовують у моделі трансформації 
В-клітин in vitro. EBV є лімфотропним вірусом, 
що належить до сімейства Herpesviridae і класи-
фікується як гамма-герпесвірус. EBV був вперше 
виявлений Ентоні Епштейном (Antony Epstein) та 
Деніз Барр (Denise Barr) з лінії клітин лімфоми 
Беркітта (Burkitt lymphoma, BL) і став першим 
людським вірусом, визначеним як потенційно 

онкогенний [15, 16].
Близько 90% дорослого населення світу ін-

фіковано EBV. У регіонах, що розвиваються, 
первинне інфікування зазвичай відбувається 
протягом перших кількох років життя і, як 
правило, протікає безсимптомно. Однак, коли 
первинне зараження відбувається в підлітко-
вому або дорослому віці, це може призвести до 
самообмежувального синдрому інфекційного 
мононуклеозу [17].

Окрім лімфоми Беркітта, EBV асоціюєть-
ся з іншими лімфоїдними та епітеліальними 
злоякісними новоутвореннями, такими як 
лімфома Ходжкіна (Hodgkin lymphoma, HL), 
рак шлунка (gastric cancer, GC), дифузна ве-
ликоклітинна В-клітинна лімфома (diffuse 
large B-cell lymphoma, DLBCL), карцинома 
носоглотки (nasopharyngeal carcinoma, NPC), 
Т-клітинна лімфома, T/NK-клітинна лімфома 
(T- and NK cells lymphoma, NKTL), і пов’язана 

Рис. 1. � Схематичне зображення відмінностей шляхів IL2-
STAT і TGFB-SMAD у нормальних В-клітинах і у 
В-клітинах при ХЛЛ



ОГЛЯД

2 5 1ОНКОЛОГІЯ •  Т.  26 •  № 4 •  2024

зі СНІДом лімфома центральної нервової сис-
теми [18–23].

EBV передається через слину, що призво-
дить до продуктивної орофарингеальної інфек-
ції (схематично представлено на рис. 2).

EBV має лінійний дволанцюговий геном 
ДНК розміром приблизно 170–175 кілобаз, 
укладений в ікосаедричний капсид діаметром 
100–120 нм. Нуклеокапсид оточений тегумен-
том і ліпідною оболонкою з глікопротеїнами. 
Вірусна ДНК, що містить приблизно 90 рамок 
зчитування, обмежена кінцевими прямими 
повторами та розділена на короткі та довгі уні-
кальні домени послідовностей [24].

ТИПИ ЛАТЕНТНИХ ПРОГРАМ  
ПРИ ІНФЕКЦІЇ EBV

Існує дві основних форми взаємодії вірусів 
і клітин хазяїна — продуктивна інфекція, або 
літичний цикл, коли продукуються нові віруси, 
а клітина гине, і так звана латентна інфекція, коли 
вірусний геном дублікується при поділі інфікова-
них клітин наряду із геном клітини-хазяїна.

Щоб підтримувати інфекцію протягом усього 
життя, EBV встановлює форму латентної інфекції 
в циркулюючих В-клітинах, де епісомальна форма 
вірусного геному зберігається в ядрах В-клітин. Ця 
латентна фаза характеризується низькими рівнями 
транскрипції ядерних антигенів вірусу (EBNA), 
латентних мембранних білків (LMP), малих не-
кодуючих РНК і транскриптів BamHI-A [19, 25, 
26]. В основному, експресується тільки EBNA-1, 
інколи, разом із LMP2А. Важливо відмітити, що у 
різних злоякісних новоутвореннях EBV викорис-
товує різні програми латентності (табл. 1).

Важливо нагадати, що взагалі EBV кодує близь-
ко 90 генів, проте для трансформації В-клітини 
і активної проліферації трансформованої кліти-
ни необхідні тільки 6 ядерних протеїнів EBNA і  
3 білка LMP. За альтернативною номенклатурою 
EBNA-3 називається EBNA-3А, EBNA-4 — EBNA-
3В, EBNA-5 — EBNA-LP (EBNA-Leader Protein) 
і EBNA-6 — EBNA-3С. У випадку раку шлунка 
експресується ще менший набір вірусних генів, 
як і у випадку карциноми носоглотки і ХЛЛ (див.  
табл. 1). Схематично функції латентних вірусних 
білків наведено на рис. 3 (адаптовано із [28]).

EBV потрапляє в В-клітини через рецептор-
опосередкований ендоцитоз. CD21 служить ре-
цептором для глікопротеїну вірусної оболонки 

Рис. 2. � Схематичне представлення інфекції EBV. Вірус 
інфікує В-клітини у носоглотці людини, причому 
активується продуктивний цикл. Після взаємодії 
з імунною системою людини вірус встановлює ла-
тентну інфекцію у В-клітинах пам’яті

Таблиця 1

Типи латентних програм EBV

Тип латентної 
програми Експресовані гени Тип промотора

In vivo  
(в організмі людини, як умовно здорової,  

так і при певному захворюванні)

In vitro 
(в культурі клітин)

Latency 0 — — В-клтини пам’яті —

Latency I EBNA-1 Qp
Зародкові центри, імуномононуклеоз 

(ІМ), BL, pleural effusion lymphoma 
(PEL), GC

Клітинні лініїї  
PEL і BL

Latency IIA
EBNA-1, LMP1, LMP2A, 

LMP2B
Qp, LMP

Зародкові центри,  
ІМ, HL, NPC

Немає

Latency IIB EBNA-1, EBNA-2 Qp, Cp
Зародкові центри,  

ІМ, ХЛЛ
Немає

Latency III

EBNA-1, EBNA-2, 
EBNA-3 (EBNA-3A), 
EBNA-4 (EBNA-3B), 
EBNA-5 (EBNA-LP), 
EBNA-6 (EBNA-3C), 

LMP1, LMP2A, LMP2B

Qp, Cp, Wp

ІМ, посттрансплантаційні лімфопролі-
феративні захворювання (posttransplant 
limphoproliferative disease, PTLD), СНІД-

лімфома

BL, лімфобластні  
клітинні лінії 

(lymphoblastoid  
cell line, LCL)
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gp350/220. Взаємодія між gp350/220 і CD21 спри-
яє прикріпленню EBV до В-клітин, дозволяючи 
вірусу проникати в клітини. Ця взаємодія має 
вирішальне значення для початкових стадій ін-
фекції. Парадоксально, але хоча CD21 сприяє 
проникненню EBV у В-клітини, він також віді-
грає певну роль у стимулюванні імунної відповіді 
проти EBV. CD21 є рецептором для компонента 
комплементу C3d, і коли C3d зв’язується з анти
генами, він посилює розпізнавання та погли-
нання цих антигенів В-клітинами. Цей процес є 
частиною відповіді імунної системи на патогени  
[29, 30].

РОЛЬ ЯДЕРНОГО ПРОТЕЇНА EBNA-2  
У ТРАНСФОРМАЦІЇ В-КЛІТИН

Як зазначено вище, основними клітинами-мі
шенями для інфекції EBV є первинні В-лімфоцити 
людини, проте вірус може інфікувати будь-які лім-
фоцити та епітеліальні клітини, що експресують 
на поверхні молекулу CD21.

Кодовані вірусом ядерні білки EBNA-2, -3, -5  
і -6 регулюють транскрипцію клітинних генів, про-
мотори яких активуються факторами транскрипції 
NOTCH1 і PU.1 (наприклад, гени C-MYC, C-FGR, 
циклін D2, CD21 і CD23) [31–33].

Ядерний антиген Епштейна-Барр 2 (EBNA2) є 
основним транскрипційним фактором, що коду-
ється вірусом EBV. Він керує експресією як вірус-
них генів, так і генів клітини-хазяїна, тим самим 
впливаючи на різні клітинні процеси.

У контексті ХЛЛ було показано, що EBNA2 
взаємодіє із декількома факторами транскрипції, 
модулюючи їх активність і сприяючи патогене-
зу захворювання. EBNA2 не зв’язується із ДНК 
і тому взаємодіє із клітинним білками, які мають 
здатність зв’язуватися із специфічними ділянками 
ДНК, наприклад, із протеїном CBF1. Така білкова 
взаємодія обумовлює транскрипційну активність 
протеїна EBNA-2 для активної експресії цільових 
генів.

За рахунок взаємодії із CBF1 протеїн EBNA2 
може посилювати регуляцію таких генів, як CD21 
і CCR7, які беруть участь в активації та міграції 
В-клітин [34]. EBNA2 індукує експресію протоон-
когену С-MYC, критичного регулятора клітинної 
проліферації [35]. Так, у всіх В-клітинах при BL 
детектується ативація гена С-MYC за рахунок тран-
слокації із генами імуноглобулінів IgG, що відіграє 
роль у злоякісній трансформації В-клітин.

Фактор транскрипції NFATc1 разом з E2F5 і 
NR3C2, є одними з найбільш взаємопов’язаних 

Рис. 3. � Сумарна схема функцій латентних білків, кодованих EBV
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факторів транскрипції генома при ХЛЛ, і його 
експресія значно вища в клітинах ХЛЛ порівняно 
з нормальними В-клітинами [36].

Хоча не має прямих доказів впливу EBNA2 на 
NFATc1 при ХЛЛ, широке перепрограмування 
транскрипції, спричинене EBNA2, потенційно 
може вплинути на активність NFATc1.

Також було показано, що EBNA2 посилює ак-
тивність BATF, фактора транскрипції, який бере 
участь у регуляції імунної відповіді. Підвищення 
транскрипційної актинрсті BATF за допомогою 
EBNA2 може змінити транскрипційний ландшафт 
клітин ХЛЛ, потенційно впливаючи на їхнє ви-
живання [37].

Поряд з РU1 під час дозрівання та розвитку 
В-клітин відбувається взаємодія з декількома ко-
факторами, включаючи E47, IRF4, IRF8 і STAT6. 
Таким чином, IRF4 має подвійну функцію, діючи 
як під час раннього розвитку В-клітин, так і в зрі-
лих В-клітинах під час відповіді зародкового цент
ру після залучення антигену. IRF4 бере участь у 
складній мережі сигналів, які визначають клітинну 
долю зрілих В-клітин після залучення антигену 
для апоптозу або диференціювання плазматичних 
клітин під час регуляції формування зародкового 
центру та дозрівання афінності.

Показано, що EBNA2 може підвищувати екс
пресію фактора транскрипції IRF4 шляхом зв’я
зування зі специфічними елементами енхансе-
ра вище промотора даного гена. Це зв’язування 
опосередковується через взаємодію EBNA2 з клі-
тинним фактором транскрипції RBPJ-kappa, що 
здатний взаємодіяти із специфічною послідов-
ностю ДНК у промоторній ділянці гена IRF4. Це 
підкреслює важливість функціонування EBNA2  
у EBV-інфікованих В-клітинах [38].

РОЛЬ ВІРУСНОГО  
МЕМБРАННОГО ПРОТЕЇНА LMP1  
У ТРАНСФОРМАЦІЇ КЛІТИНИ

Мембранний білок LMP1 активує TNFα/CD40-
залежні клітинні сигнальні шляхи, які стимулюють 
проліферацію та виживання трансформованих  
клітин (шляхом активації NFkB, а також JUN та 
p38/MAP кіназ). LMP-2 блокує сигнальні шляхи,  
які зазвичай контролюються В-клітинним рецеп- 
тором BCR, а саме імітує активований BCR і взає
модіє з клітинними тирозинкіназами Lyn та Syk 
через імунорецепторний тирозин-активаційний 
мотив (ITAM) у своєму N-кінцевому домені. Ця 
взаємодія блокує нормальну передачу сигналу 
через BCR, знижуючи рівні Lyn та пригнічуючи 
фосфорилювання тирозину і мобілізацію кальцію 
після активації рецептора. LMP1 активує шлях 
MAPK (мітоген-активована протеїнкіназа), що 
призводить до підвищення активності фактора 
транскрипції AP-1 (гетеродимера FOS і JUN)  
[39, 40].

LMP1 імітує передачу сигналів CD40, взаємо-
діючи з TRAF (фактори, пов’язані з рецептором 
TNF), що призводить до конститутивної активації 
шляху NF-κB. TRAF6 і TRAF2 є найбільш важли-
вими для активації NF-κB [41, 42].

LMP1 сприяє експресії антиапоптозних генів 
(наприклад, BCL-2, c-FLIP), що може вплинути на 
виживання клітин ХЛЛ. З такою ж метою для ство-
рення імуносупресивного мікрооточення, LMP1 
бере участь у стимулюванні синтезу про-запальних 
цитокінів (наприклад, IL-6 і IL-10). За участі та-
ких цитокінів LMP1 активує STAT3 за допомогою 
аутокринного та паракринного сигналінгу. Пряма 
взаємодія з кіназами JAK також активує фактор 
транскрипції STAT3. STAT3 активує транскрип
цією генів, пов’язаних із виживанням і проліфе-
рацією (наприклад, С-MYC, VEGF) [43–45].

LMP1 взаємодіє з IRF7, щоб модулювати пе-
редачу сигналів інтерферону. Так, LMP1 відіграє 
важливу роль у пригніченнв IRF-залежної проти-
вірусної відповіді, щоб уникнути імунного вияв-
лення. Це порушує контроль імунної системи над 
EBV-інфікованими та трансформованими зло-
якісними клітинами [46].

LMP1 опосередковано підвищує активність 
С-MYC через NF-κB і активацію STAT3. Стимуля-
ція проліферації шляхом посилення метаболічної 
та транскрипційної активності В-клітин корелює 
з особливостями агресивних онкогематологічних 
захворювань [43].

Показано, що LMP1 стабілізує HIF-1α за нор-
моксичних умов, можливо, через шляхи NF-κB та 
PI3K/AKT, що також сприяє перепрограмуванню 
метаболізму та адаптації до гіпоксичного мікро-
оточення солідних пухлин, таких, як карцинома 
носоглотки [47].

Загалом, EBV-модульовані механізми імунно-
го ухилення створюють сприятливе для пухлин 
мікрооточення, захищаючи клітини ХЛЛ від імун-
ної атаки.

СУЧАСНІ ЛІКАРСЬКІ ЗАСОБИ  
ДЛЯ ЛІКУВАННЯ ХЛЛ

В приципі, всі сучасні лікарські засоби, які 
використовують у клінічних умовах для хворих на 
ХЛЛ, грунтуються на їх здатності блокувати певні 
клітинні сигнальні шляхи. Слід відзначити, що 
часто пацієнти з ХЛЛ не потребують такого ліку-
вання, тому що більшість клітинних сигнальних 
шляхів, особливо тих, що індукують апоптоз, не 
є активними у В-клітинах при ХЛЛ [48–52]. Де-
тальний опис ряду хімічних сполук і сигнальних 
шляхів наведено у табл. 2.

Проте, як обговорено раніше, це все допущен-
ня за умов активності даних клітинних сигнальних 
шляхів у клітинах ХЛЛ. Які ж ланки наведених 
та інших сигнальних шляхів інактивовано та/або 
блоковано у клітинах ХЛЛ?



ОГЛЯД

2 5 4 ОНКОЛОГІЯ •  Т.  26 •  № 4 •  2024

ГІПОТЕТИЧНИЙ СПОСІБ  
ЗНАХОДЖЕННЯ ЗАГУБЛЕНОЇ ЛАНКИ — 
КЛІТИННОГО ФАКТОРА ТРАНСКРИПЦІЇ

Щоб відповісти на поставлене вище питання, 
треба звернути увагу, що такий трансформуючий 
агент В-клітин, як EBV, при інфікуванні клітин 
ХЛЛ не призводить до їх проліферації навіть in 
vitro. Причому інфіковані клітини ХЛЛ експресу-
ють програму латентності ІІВ, тобто експресують-
ся протеїни EBNA-1 і EBNA-2, проте не експресу-
ється ген LMP1. Відомо, що промотор гену LMP1 
може активуватися як гетеродимерами, в яких є 
вірусний білок EBNA-2, наприклад, із NOTCH1, 
RBPj-kappa і PU.1, так і гомо/гетеродимерами клі-
тинних факторів транскрипції, наприклад, суб
одиниць NFkB — RELA-RELB або RELB-RELB,  
а також ATFF2-c-JUN і PAX5-TFAP2.

Варто відзначити, що згідно з нашими даними, 
експресія TFAP2 майже в 20 разів нижча в кліти-
нах ХЛЛ порівняно з нормальними В-клітинами, 
активованими анти-CD40 та IL4 [14].

Також, як ми обговорювали вище, шляхи 
TGFB-SMAD2/3 та IL-2-STAT2/5 (JAK-STAT5) не 
функціонують на базальному рівні в В-лімфоци- 
тах пацієнтів із ХЛЛ. Це пов’язано з дуже низькою 
експресією SMAD2 і відсутністю гетеродимерів 
SMAD3-SMAD4 в ядрі. Сигнальний шлях IL-2-
STAT (JAK-STAT5) інгібується на базальному рівні 
в клітинах ХЛЛ, швидше за все, через низькі рів-
ні фосфорилювання або його повну відсутність 
[14].

Тобто, якщо знайти відсутню ланку (клітинний 
фактор транскрипції), що зазвичай бере участь 
у трансформації нормальних В-клітин, можна 
спробувати привести В-клітини ХЛЛ до реакцій-
ного стану за рахунок екзогенної експресії тако-

го протеїна. Тоді можна сподіватися на відповідь 
В-клітин ХЛЛ на сигнали, які індукують апоптоз, 
кращі результати при хіміотерапії, тощо. Гіпоте-
зу можна перевірити при інфекції EBV В-клітин 
ХЛЛ, які експресують екзогенний ідентифікова-
ний фактор транскрипції, in vitro. Прогнозується, 
що за таких умов інфіковані В-клітини ХЛЛ будуть 
проліферувати in vitro та реагувати на зовнішні 
сигнали, що індукують апоптоз.

Вивчення молекулярних механізмів регуляції 
клітинних сигнальних шляхів у В-лімфоцитах при 
ХЛЛ є фундаментальною основою для подаль-
шого використання отриманих даних у пошуку 
потенційних мішеней впливу та розробці методів 
індивідуалізованої терапії.

Робота виконана в межах гранту № 0124U003787 
НФДУ “Активація сигнальних каскадів для елімі-
нації трансформованих В-клітин при хронічному 
лімфолейкозі”.
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активність NF-κB, 
індукуючи апоптоз 

у клітинах ХЛЛ
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The treatment of hematological diseases is one of the most 
complex problems of modern medicine. It is known that 
humoral immunity is based on B-lymphocytes, which 
at the terminal stages of differentiation turn into anti-
body-forming immunoblasts and plasma cells. Chronic 
lymphocytic leukemia (CLL) develops with a significant 
increase in phenotypically mature but immunocompetent 
B lymphocytes, that are characterized by the presence of 
atypical patterns of marker expression. The reasons for 

the inhibition of the cell signaling pathway responsible 
for proliferation and apoptosis in mature B lymphocytes 
of patients with CLL are extremely important, but still 
poorly understood. In-depth analysis of the key players 
of signaling cascades and transcription factors that are 
functionally suppressed in CLL will improve the prognosis 
of the disease and help develop personalized treatment 
for such patients.
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