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БАЗИГІН ЯК ПУХЛИНО­
АСОЦІЙОВАНИЙ ГЛІКОПРОТЕЇН  
ТА ЙОГО ПРОГНОСТИЧНЕ 
ЗНАЧЕННЯ
Базигін (також відомий як TCSF, EMMPRIN, CD147 або HAb18G) є 
трансмембранним глікопротеїном I типу, що належить до надродини 
імуноглобулінів. Існують щонайменше чотири ізоформи базигіну людини, 
які утворюються шляхом альтернативного сплайсингу, з базигіном-2 
(BSG) як прототиповою ізоформою. BSG посттрансляційно модифі-
кується через N-глікозилювання та існує у високо- або низькоглікози-
льованих формах. На додачу до трансмембранної форми, BSG також 
вивільняється з клітин у секретованій формі (через відокремлення з по-
верхні клітин ектодомену після його протеолітичного відщеплення) або 
у повнорозмірній формі у складі позаклітинних везикулів. Окрім участі 
у регулюванні широкого спектра фізіологічних процесів, BSG надмірно 
експресується в багатьох типах злоякісних новоутворень та залучений 
до ключових шляхів або процесів, пов’язаних з прогресією онкологічно-
го захворювання та розвитком рецидивів. Цей огляд сфокусований на 
важливому значенні BSG у регуляції проліферації, апоптозу, міграції 
та інвазії пухлинних клітин, епітеліально-мезенхімального переходу, 
виживаності пухлинних стовбурових клітин, пухлинному ангіогенезі та 
лімфангіогенезі, метастатичній дисемінації пухлинних клітин, ухилянні 
від протипухлинного імунітету та розвитку стійкості до лікувальних 
заходів. Крім того, коротко обговорюється прогностичне значення як 
трансмембранних, так й секретованих форм BSG для різних форм зло-
якісних новоутворень.

Базигін (також відомий як TCSF, EMMPRIN, 
CD147 або HAb18G) вперше був виявлений та 

ідентифікований у 80-х роках минулого століття 
в лабораторії C. Biswas як один із продуктів пух-
линних клітин [1, 2]. Надалі білок, що стимулює 
вироблення колагенази фібробластами, був виді-
лений з клітин раку легені людини й отримав на-
зву TCSF (tumor cell-derived collagenase stimulatory 
factor) [3]. Пізніше з урахуванням ролі TCSF як 
одного з індукторів позаклітинних матриксних 
металопротеїназ (MMP), він був перейменований 
на EMMPRIN (extracellular matrix metalloproteinase 
inducer) [4]. Тепер для позначення зазначеного 
білка використовується офіційне найменування 
“базигін” (basigin; basic immunoglobulin family), 
вперше запропоноване в 1990 р. японськими до-
слідниками [5]. Після VI Міжнародної робочої 
наради з диференційних антигенів лейкоцитів лю-
дини (Кобе, Японія, 1996) білок став також зна- 
ним як антиген CD147 [6].

Базигін належить до надродини імуноглобулі
нів [7, 8] та відрізняється від інших глікопротеїнів 
плазматичних мембран високим рівнем глікози
лювання. Його молекулярна маса (м.м.) коли-
вається від 42,2 до 66,0 кДа залежно від ступеня 
глікозилювання; м.м. неглікозильованої форми —  

27 кДа [7]. Ген BSG людини локалізований на ко-
роткому плечі 19-ї хромосоми, локус 19p13.3. Вияв
лено щонайменше чотири ізоформи базигіну, що 
утворюються в результаті альтернативного сплай- 
сингу: базигін-1 (форма, специфічна для клітин 
епітелію сітківки), базигін-2, базигін-3 й базигін-4. 
Найбільш поширеною формою є базигін-2, ана-
лізу результатів досліджень якої присвячена дана 
робота. Тому в подальшому тексті вказана форма 
позначатиметься як базигін.

Базигін є трансмембранним білком I типу, 
який здатний утворювати димери як у цис-, так 
й в транс-положенні [9, 10]. Позаклітинна части-
на базигіну містить три сайти N-глікозилювання 
(Asn44, Asn152, Asn186), яке відіграє важливу роль 
у стимуляції продукції MMP [11, 12]. Внаслідок 
посттрансляційної модифікації утворюються фор-
ми базигіну високого або низького ступеню гліко-
зилювання (~40–60 кДа та ~32 кДа, відповідно). 
Завдяки трансмембранній ділянці базигіну реа-
лізується його взаємодія з іншими трансмебран-
ними білками, тоді як цитоплазматичний домен  
CD147 бере участь у передачі різних регулятор-
них сигналів усередину клітини [7]. Важливим у 
механізмах дії базигіну є утворення його секре-
тованих форм. Вони вивільняються з клітин у 
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вигляді повнорозмірної форми базигіну [13] або 
його функціонального N-кінцевого домену, який 
утворюється після розщеплення трансмембранної 
форми CD147 металопротеїназою MT1-MMP [14]. 
Альтернативний шлях пов’язаний з вивільнен-
ням з пухлинних клітин мікровезикул, що містять 
повнорозмірну форму базигіну [15]. Показано, що 
секретований базигін здатен підтримувати про-
ліферацію пухлинних клітин шляхом утворення 
димерних форм з базигіном плазматичної мемб-
рани [16].

Плейотропні функції базигіну реалізуються шля- 
хом його взаємодії з численними білками-парт
нерами, серед яких слід зазначити монокарбок-
силатні транспортери (MCT), циклофіліни (A та 
B), інтегрини (α3β1, α6β1 та αMβ2), Р-глікопротеїн, 
CD44, CD43, CD98, γ-секретазу, NOD2, γ-катенін, 
тромбоцитарний глікопротеїн VI (GPVI), S100A9, 
аполіпопротеїн D, кавеолін-1 та анексин A2 [7, 17, 
18]. Саме взаємодія базигіну із зазначеними парт-
нерами опосередковує міжклітинний зв’язок та 
призводить до активації в клітинах різноманітних 
сигнальних шляхів, включаючи ті, які залучені до 
злоякісної трансформації й пухлинної прогресії. 
Приміром, зв’язування базигіну з циклофіліном 
A (один з природних лігандів базигіну) може пря-
мо чи опосередковано активувати такі онкогенні 
сигнальні шляхи, як PI3K/AKT, Wnt/β-катенін, 
MAPK, STAT3, Notch та NF-κB, сприяючи, та-
ким чином, проліферації та інгібуванню апоптозу 
пухлинних клітин, утворенню метастатичних вог-
нищ, ангіогенезу, розвитку стійкості до лікарських 
засобів, та збільшуючи виживаність пухлинних 
стовбурових клітин (ПСК) [19].

Мета даного огляду — аналіз останніх досяг- 
нень у галузі вивчення ролі базигіну у розвитку 
злоякісних новоутворень різної локалізації та ге-
незу, а також перспектив його використання як 
маркера прогнозу перебігу онкологічного захво-
рювання.

УЧАСТЬ БАЗИГІНУ У РОЗВИТКУ 
ЗЛОЯКІСНИХ НОВОУТВОРЕНЬ

Регуляція проліферації та апоптозу пухлинних 
клітин. Базигін пов’язаний з регуляцією пролі-
феративної активності пухлинних клітин [20, 21]. 
Результати імуногістохімічного аналізу у хворих на 
рак січового міхура (РСМ) показали, що експре-
сія CD147 у тканині пухлин з високим ступенем 
проліферації (III та IV стадії) суттєво вище за таку 
у пухлинній тканині з низькою проліферацією  
клітин (I та II стадії) [20]. На ряді моделей пухлин-
них клітин (наприклад, гепатоцелюлярної карци-
номи (ГЦК), раку шлунка (РШ), раку підшлунко-
вої залози (РПЗ), раку легені, гострої мієлоїдної 
лейкемії показано, що пригнічення активності  
гена BSG за допомогою технології РНК-інтерфе
ренції супроводжується інігібуванням їх проліфе-

рації [22–26]). Показано залучення до реалізації 
проліферативної активності CD147 рецептора 
VEGF-2 [21], PI3K/AKT/MDM2-, ERK1/2- або 
NF-κB-залежних сигнальних шляхів [22, 23, 26], 
білка гасдерміну D [20] (сприяє піроптозу клітин 
шляхом формування отворів в їх цитоплазматич-
них мембранах [27]). Функція базигіну як стиму-
лятора проліферації клітин може бути пов’язана з 
регуляцією клітинного метаболізму глюкози [22]. 
Примітно, що при гіперекспресії мікроРНК miR-
890 і miR-485-5p, однією з мішеней яких служить 
ген BSG, відзначено інгібування проліферації та 
інвазії клітин тричі-негативного раку молочної 
залози (РМЗ) та раку товстої та прямої кишки 
(РТПК), відповідно [28, 29].

Інший механізм базигін-опосередкованої сти-
муляції проліферації пухлинних клітин пов’яза- 
ний з дією циклофіліну А. При цьому попередня 
обробка клітин антитілами проти CD147 блокує 
ріст-стимулюючий ефект циклофіліну А, який 
фосфорилює та активує ERK1/2 та p38 кінази в 
ініційованих до проліферації клітинах [30].

Механізми антиапоптотичної дії базигіну вклю-
чають, серед іншого, регуляцію експресії білків  
родини BCL-2 та пригнічення активності каспаз-3 
та -7 [21, 31]. Цікаво, що низькомолекулярна спо-
лука НА-08, яка вибірково пригнічує активність 
базигіну, здатна індукувати апоптоз пухлинних 
клітин різного гістогенезу шляхом порушення 
взаємодії між CD147 й CD44 та пригнічення сиг-
нального шляху JAK/STAT3/BCL-2 [32].

У цьому контексті безперечний інтерес ста-
новлять дані про роль базигіну у формуванні стій-
кості пухлинних клітин до аноїкозу — особливої 
форми апоптотичної загибелі клітин, що викли-
кається втратою контакту клітин з адгезивним 
субстратом. На моделі клітин SMMC-7721 ГЦК, 
адаптованих до росту в суспензійній культурі, 
показано участь антигену CD147 у забезпеченні 
їхнього виживання шляхом стимуляції міжклі-
тинних контактів та утворення кластерів [33]. 
При цьому виявлено залучення кінази AKT до 
формування CD147-залежної стійкості до аної-
козу клітин ГЦК. В іншому дослідженні вивчали 
залежність формування агрегатів та виживання 
клітин РМЗ (після їх відкріплення від субстрату) 
від рівня експресії в них базигіну [34]. Виявило-
ся, що клітини ліній MDA-MB-231 та MDA-MB-
436 з високим вмістом CD147 утворюють менш 
компактні агрегати з більшою площею поверхні 
та більшою кількістю живих клітин порівняно з 
такими, у яких рівень експресії CD147 був незна-
чним. Сайленсинг гена BSG викликає анаїкоз пух- 
линних клітин, що підтверджується активацією 
каспази-3 та підвищенням вмісту фрагментованої 
ДНК. Встановлено також, що стимульоване ба-
зигіном виживання клітин РМЗ у складі рухомих 
агрегатів опосередковується залежним від кінази 
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ERK1/2 зниженням рівня проапоптотичного білка  
BIM [34].

Регуляція інвазивного потенціалу пухлинних клі-
тин. Інвазія пухлини є багатоетапним та складним 
процесом, який включає ослаблення міжклітинних 
контактів, адгезію клітин до позаклітинного мат
риксу (ПКМ) та їх міграцію. Ключовими молеку-
лами, що беруть участь у ремоделюванні ПКМ,  
є численні протеази (MMP, катепсини, активатор 
плазміногену урокіназного типу (uPA), плазмін 
тощо), які продукуються пухлинними клітинами 
та/або клітинами стромального мікрооточення. 
Крім цього, важливу роль у здатності пухлинних 
клітин до інвазії відіграють зміни пухлинного 
мікрооточення, які сприяють виживанню та про-
ліферації таких клітин.

Численні дані свідчать про пряму або опосе
редковану участь базигіну в стимуляції інвазив- 
ного потенціалу пухлинних клітин. Так, надекспре
сія CD147 у пухлинних клітинах була пов’язана зі 
збільшенням експресії та продукції певних MMP,  
включаючи MMP-1, -2, -3, -9, -14, або uPA, які 
сприяють руйнуванню ПКМ [35]. Сайленсинг 
гена BSG в клітинах меланоми змінює клітинну 
локалізацію β1-інтегрину, приводить до активації 
кінази FAK та послаблює адгезивність клітин до 
колагенів I та IV типів [36]. Результати, нещодав-
но отримані P. Dana та співавт. [37], свідчать про 
те, що індукована надмірна експресія CD147 у 
клітинах холангіокарциноми зменшує їх здатність 
до адгезії та підвищує інвазивну активність у по-
рівнянні з клітинами вихідної лінії. При цьому в 
клітинах із надмірною експресією CD147 експре- 
сія молекул адгезії ICAM-1 та E-кадгерину по-
слаблюється.

У дослідженнях in vitro встановлено, що дода-
вання екзогенного CD147 посилює рухову актив-
ність клітин меланоми, тоді як сайленсинг гена 
BSG має протилежний ефект [21]. При вивченні 
механізму такої дії базигіну виявлено його залеж- 
ність від HIF-2α-опосередкованої регуляції екс-
пресії рецептора VEGFR-2/KDR. Трансфекція клі- 
тин плоскоклітинного раку ротової порожнини 
(ПРРП) вектором, який містить BSG, призводить  
до посилення їх рухомості [38]. Зміну міграційної 
активності пухлинних клітин автори пов’язують зі 
здатністю CD147 послаблювати взаємодію E-кад
герину з β-катеніном (внаслідок інгібування екс-
пресії E-кадгерину), що сприяє потраплянню β-ка
теніну до ядра. Сайленсинг гена BSG у пухлинних 
клітинах шийки матки приводить до зниження 
внутрішньоклітинного вмісту нейтральних ліпідів, 
що супроводжується пригніченням здатності та-
ких клітин до спонтанної міграції [39]. Крім того, 
показано пряму участь CD147 у процесах пере-
творення фібробластів на пухлино-асоційовані 
фібробласти [40]. Так, спільне культивування фіб
робластів із клітинами РМЗ або обробка фібро-

бластів кондиційованим середовищем клітин РМЗ 
чи рекомбінантним базигіном сприяють значному 
підвищенню міграційної активності пухлинних 
клітин.

На моделях ПРРП in vitro показано, що як цик
лофілін A (ліганд CD147), так й хемокін SDF-1 
(ліганд рецептора CXCR4) викликають значне 
підвищення інвазивного потенціалу пухлинних 
клітин, і цей ефект суттєво зменшується після до-
давання антитіл проти CD147 [41, 42]. Інвазивна 
активність клітин РШ [23] або гліоми [31] значно 
зменшується після сайленсингу гена BSG. Інгі-
бування гена BSG у клітинах РШ призводить до 
пригнічення фосфорилювання ERK1/2 (але не 
інших MAP-кіназ) [23], тоді як у випадку клітин 
гліоми лінії U251 може знижувати рівень MMP-2 
та MMP-9 [31]. Вкрай цікавими є нещодавно 
отримані відомості щодо критичної ролі CD147 
у колективній інвазії пухлинних клітин [43]. Як 
свідчать отримані результати, посилена експресія 
CD147 на інвазивному фронті згуртованої багато-
клітинної групи клітин ГЦК сприяє їх інвазії через 
стимуляцію експресії катепсину В.

Епітеліально-мезенхімальний перехід. Глікопро-
теїн CD147 є важливим регулятором епітеліально-
мезенхімального переходу (ЕМП). У низці дослід- 
жень in vitro було переконливо доведено, що під-
вищення експресії базигіну в пухлинних клітинах 
різного генезу супроводжується різким зниженням 
експресії E-кадгерину (CD324; маркер епітеліаль-
них клітин) та/або навпаки [37, 39, 44–47]. При до-
даванні екзогенного базигіну до клітин раку стра-
воходу, що культивуються в умовах гіпоксії (1% 
O2), також відзначається зниження експресії гена 
та білка E-кадгерину, на тлі підвищення експресії 
фібронектину, специфічного для фібробластів біл-
ка FSP1, α-актину гладком’язових клітин (α-SMA) 
та фактора транскрипції SNAIL1 [48]. Імуногісто-
хімічний аналіз зразків пухлинної тканини хво- 
рих на ГЦК або ПРРП підтверджує зворотну ко-
реляцію між рівнями CD147 та E-кадгерину [39, 
46]. що ймовірно пов’язано зі стимуляцією ба-
зигіном ендоцитозу та деградації E-кадгерину у 
лізосомах клітин ГЦК [49]. Обговорюється також 
роль трансформуючого фактора росту типу β та 
внутрішньоклітинного сигналінгу, що ініціюєть-
ся цим цитокіном, у реалізації ЕМП пухлинних  
клітин за участю глікопротеїну CD147 [44, 46].

Підтримання та функціонування популяції пух-
линних стовбурових клітин. Складаючи лише не-
значну частину всіх клітинних елементів ново
утворення, популяція неопластичних клітин, які 
отримали назву ПСК, має критичне значення для 
розвитку злоякісної пухлини, виникненню реци
дивів та метастазів [50]. ПСК дають початок більш 
диференційованим клітинам-нащадкам, які ста-
новлять основну масу новоутворення та визнача-
ють внутрішньопухлинну гетерогенність. Відомо, 
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що пухлинні клітини різного генезу з високим 
рівнем експресії CD147 на клітинній поверхні 
виявляють властивості ПСК, такі як інвазивна 
активність, незалежна від закріплення клітин про-
ліферація, утворення сфероїдів, стійкість до тера-
певтичних засобів, вищий онкогенний потенціал 
в умовах in vivo [51–55]. Важливою особливістю 
ПСК-подібних клітин різних солідних пухлин з 
високим рівнем CD147 є коекспресія на цитоплаз-
матичних мембранах інших маркерів ПСК, таких 
як CD44, CD133, CD243 або CD338 [51–54].

Базигін може грати фундаментальну роль у 
реалізації властивостей, притаманних ПСК. По-
казано, наприклад, що моноклональні антитіла 
(МкАт) проти CD147 інгібують in vitro чисельність 
субпопуляції ПСК в постійних лініях РПЗ та їх 
здатність формувати сфероїди, а також підвищу- 
ють чутливість цих клітин до гемцитабіну або іо-
нізуючого опромінення внаслідок блокування пе-
редачі регуляторних сигналів через шлях CD44s– 
pSTAT3 [56]. Сайленсинг гена BSG в ПСК-подіб- 
них клітинах, отриманих з лінії HT-29 (РТПК), 
приводить до зниження їх інвазивного потенціалу 
[57]. Як встановили Y. Meng та співавт., вміст по-
заклітинного циклофіліну A у кондиційованому 
середовищі клітин РМЗ, що культивуються після 
відкріплення від адгезивного субстрату, значно  
перевищують такий у клітинах, що ростуть у вигля
ді моношару [58]. При цьому додавання рекомбі-
нантного циклофіліну A до клітин РМЗ сприяє 
їх перетворенню на ПСК-подібні залежним від 
CD147 чином.

Як виявилося, базигін може брати участь у під-
триманні та функціонуванні популяції лейкеміч-
них стовбурових клітин (ЛСК) Є дані про високий 
рівень експресії білка CD147 на цитоплазматич- 
них мембранах клітин всіх проаналізованих під-
типів (M1, M2, M3, M5 та M5a) гострої мієлоїдної 
лейкемії [59]. Примітно, що в цих клітинах ви-
явлено значущу коекспресію CD147 з антигенами 
CD34 та CD371, характерними для ЛСК [60]. Ці 
дані припускають існування у хворих на гостру 
мієлоїдну лейкемію субпопуляцій CD34+/CD147+ 
та CD371+/CD147+ клітин, які здатні проявляти 
функціональні властивості ЛСК.

Регуляція пухлинно-асоційованого ангіогенезу 
та лімфангіогенезу. Загальновизнано, що утво-
рення нових кровоносних судин з уже наявних, 
тобто ангіогенез, реалізується шляхом взаємодії 
між ендотеліальними клітинами, секретованими 
біорегуляторами та компонентами ПКМ. Відомо 
кілька механізмів участі базигіну у процесі нео-
пластичного ангіогенезу:
•  �Глікопротеїн CD147 пухлинних клітин стиму-

лює вироблення фібробластами різних типів 
MMP, в результаті протеолітичної дії яких із 
ПКМ вивільняється секретована форма VEGF 
[61, 62].

•  �Базигін сприяє продукції пухлинними клітина-
ми in vitro та in vivo біологічно активного VEGF 
[63]. При цьому в пухлинах з високим рівнем 
антигену CD147 зазначено достовірне підви-
щення щільності мікросудин [63].

•  �Базигін підвищує рівень експресії рецептора 
VEGFR-2/KDR на ендотеліоцитах та продук-
цію ними VEGF, що стимулює проліферацію 
клітин ендотелію та утворення з них канало-
подібних структур [64]. До того, стимулюючи 
VEGF-опосередковану димеризацію VEGFR-2  
і подальшу передачу регуляторного сигналу все-
редину клітини, CD147 здатний виступати як 
функціональний корецептор VEGFR-2/KDR 
[65].

•  �Базигін стимулює продукцію пухлинними та 
ендотеліальними клітинами активатора плазмі-
ногену uPA та експресію його рецептора uPAR 
на пухлинних клітинах [66]. Як один з ключо- 
вих регуляторів протеолізу білків ПКМ, uPA 
впливає не тільки на проліферацію, але і на міг- 
рацію клітин судинної стінки.

•  �Проангіогенну активність ендотеліальних клі-
тин також здатні індукувати секретовані пух-
линними клітинами мембранні мікровезикули, 
що містять CD147 [67].

•  �В умовах гіпоксії секреція пухлинними кліти-
нами цитокіну IGF-I (insulin-like growth fac- 
tor-I), що активує утворення нових кровонос-
них судин регулюється базигіном [68]. При цьо-
му IGF-I, своєю чергою, стимулює експресію 
гена та білка CD147 в пухлинних клітинах та 
ендотеліоцитах.
Питання участі базигіну в пухлинно-асоційо

ваному лімфангіогенезі поки що залишаються 
мало вивченими. W. Guo зі співавт. [38] нещодавно  
встановили здатність глікопротеїну CD147 сти-
мулювати лімфангіогенез та ангіогенез при раку 
шийки матки. Примітно, що зазначені ефекти ба-
зигіну опосередковуються через активацію в кліти- 
нах пухлинних генів ацетил-КоА-карбоксилази 1  
(ACACA) і синтази жирних кислот (FASN) — фер- 
ментів, що каталізують ліпогенез. Визначено ко-
реляційний зв’язок між високими рівнями екс-
пресії CD147 та щільністю лімфатичних судин у 
лімфатичних вузлах хворих на меланому [69]. Ре-
зультати експериментів з використанням клітин 
ендотелію, одержаних з лімфатичних судин шкіри 
людини, показали, що рекомбінантний базигін 
значно посилює лімфангіогенез in vitro. До того, 
після сайленсингу гена BSG у клітинах меланоми 
відзначається суттєве зниження кількості метаста-
тичних вогнищ у лімфатичних вузлах, легенях та 
печінці тварин-пухлиноносіїв [69]. Таким чином, 
накопичені дані свідчать про залучення базигіну 
до механізмів прогресії злоякісних новоутворень, 
які пов’язані зі стимуляцією як ангіогенезу, так й 
лімфангіогенезу.
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Формування метастатичних вогнищ. Загально-
визнано, що метастазування пухлини — одна з 
основних причин неефективності лікування та 
високої смертності онкологічних хворих. Форму
вання вторинних вогнищ пухлинного росту (ме-
тастазів) є складним, багатоетапним процесом, 
який починається з від’єднання клітин від пер-
винної маси пухлини [70]. Зокрема, внаслідок 
зниження експресії або повної втрати молекул 
міжклітинних та клітинно-матриксних контактів 
утворюється популяція дисемінованих пухлин-
них клітин (ДПК). CD147 здатний стимулювати 
формування нових кровоносних та лімфатичних 
судин з підвищеною проникністю, що створює 
сприятливі умови для потрапляння пухлинних 
клітин до кровотоку [71]. Хоча у судинну мере-
жу може потрапляти значна кількість пухлинних 
клітин, переважна частина циркулюючих пух-
линних клітин (ЦПК) гине. Виживанню ЦПК у 
таких несприятливих умовах сприяє утворення 
циркулюючих кластерів, до складу яких входять 
лише ЦПК або ЦПК та клітини імунної системи. 
Опосередковані базигіном стимуляція міжклітин-
них контактів, утворення кластерів та ухиляння  
від загибелі шляхом антоїкозу вважаються важ-
ливими елементами підтримки життєздатності 
пухлинних клітин [33, 34]. У ряді робіт наводяться 
переконливі аргументи на користь важливої ролі 
білка CD147 у стимуляції проліферації, незалежної 
від закріплення до субстрату пухлинних клітин 
[53, 72]. Крім того, підвищенню виживання, міг
рації, інвазивного потенціалу пухлинних клітин  
та, відповідно, утворенню метастазів може сприя
ти процес ЕМП, регулювання якого базигіном 
було розглянуто нами вище.

Після вдалої екстравазації пухлинні клітини 
(які з ЦПК знову перетворюються на ДПК) потра-
пляють у віддалені тканини та органи, де, залежно 
від контактів з мікрооточенням, що включає пре-
метастатичні ніші, опиняються у стані метастатич-
ного росту, загибелі або спокою [70]. При цьому 
контакти інтегринів з білками ПКМ в периваску-
лярній тканині розглядаються як визначальні для 
того, чи колонізовані ДПК будуть продовжувати 
проліферувати або перейдуть в стан спокою [73]. 
Як показали G. Feigelman та співав. [74], знижена 
експресія CD147 у клітинах CT26-KD карциноми 
товстої кишки миші може обмежувати їх здатність 
виходити зі стану спокою.

Про значну роль CD147 у метастазуванні пухлин 
свідчать дані про те, що мРНК базигіну часто акти-
вується в клітинах мікрометастазів, що виявляються 
в кістковому мозку у хворих на рак передміхурової 
залози або РМЗ [75]. До того, близько 90% мікро-
метастатичних клітин, виділених з кісткового мозку 
55 хворих на РМЗ, виявились CD147-позитивними 
[76]. Встановлено позитивну кореляцію між рівнем 
базигіну та ризиком метастазування в лімфатичні 

вузли у хворих на недрібноклітинний рак легені 
(НДРЛ) та плоскоклітинний рак язика [77, 78].  
Відомості про потужну антиметастатичну дію малих 
інтерферуючих РНК проти гена BSG, метузумабу 
(IgG1 химерне антитіло проти CD147) або сполуки 
72 (інгібітор глікозилювання CD147) [79–81] також 
підтверджують факт безпосередньої участі CD147 
в утворенні метастазів.

В останнє десятиліття було розкрито низку 
інтимних механізмів метастазування пухлин, по
в’язаних з особливостями клітин строми орга
нів-мішеней. Встановлено, наприклад, як різні 
компоненти мікросередовища кісткового мозку  
сприяють утворенню вторинних пухлинних вузлів 
у кістках скелета [82]. Отримано дані, що свідчать 
про участь остеобластів, що секретують цитокін 
RANKL (ліганд рецептора активатора ядерного 
фактора NF-κВ), у залежному від базигіну літич-
ному ураженні кісткової тканини, спричинено-
му метастазами раку легені [83]. Примітно, що 
лептин, який активно продукується адипоцита-
ми кісткового мозку [84], здатний, подібно до 
RANKL, стимулювати експресію гена BSG в пух-
линних клітинах [85].

Порушення протипухлинної імунної відповіді.  
Для розуміння ролі CD147 у механізмах “висли-
зання” пухлини від імунної відповіді важливо від- 
значити, що спочатку цей глікопротеїн був іден-
тифікований як антиген, пов’язаний з активацією 
Т-клітин [86]. Дослідження останнього часу свід-
чать про безпосередню участь базигіну у створенні 
імуносупресивного мікрооточення пухлини. Так, 
X. Li та співавт. [87] виявили кореляцію між зміна-
ми популяційного складу лімфоцитів, що інфільт- 
рують пухлину (tumor-infiltrating lymphocytes, TILs), 
та експресією CD147 у клітинах пухлин хворих на 
ГЦК. Зокрема, спостерігалася позитивна кореляція 
між рівнем експресії базигіну та часткою в популяції 
CD3+ TILs регуляторних FOXP3+ клітин з імуносу-
пресивними властивостями. При цьому рівень екс-
пресії антигену CD147 негативно корелював з від-
сотковим співвідношенням інфільтруючих пухлину 
природних клітин-кілерів (CD3–CD56+), природних 
Т-клітин-кілерів (CD3+CD56+) та CD8+ цитоток-
сичних Т-лімфоцитів. При вивченні рівня експресії 
базигіну на CD8+ TILs у хворих на НДРЛ був нещо-
давно виявлений достовірний зв’язок між високою 
частотою CD147+CD8+ TILs та несприятливим про-
гнозом [88], що автори пов’язують з роллю CD147 
як негативного регулятора вмісту та функціональ-
ного стану в пухлині CD8+ Т-лімфоцитів. Оскільки 
CD147 може опосередковувати взаємодію CD8+ 
TILs з пухлинними клітинами, блокаду цього гліко
протеїну слід розглядати як перспективний підхід 
до імунотерапії онкологічних хворих.

Розвиток стійкості неопластичних клітин до 
дії протипухлинних лікарських засобів. Наявність 
зв’язку між лікарською стійкістю онкологічних 
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хворих і базигіном підтверджують результати іму-
ногістохімічного аналізу, згідно з якими експре-
сія CD147 була значно вищою в групі хворих на 
РМЗ, стійких до хіміотерапії, порівняно з групою 
хворих, чутливих до медикаментозного лікування 
[89].Є дані про те, що базигін може змінювати 
рівень експресії та функціональну активність різ-
них ABC-транспортерів. Так, WJ. Wang зі співавт.  
[90] повідомили про існування фізичної та функ-
ціональної взаємодії між P-gp та CD147 у клітинах 
MCF7/Adr РМЗ з множинною лікарською стій-
кістю. Показано, що обробка цих клітин паклі-
такселом (один із субстратів P-gp) призводить 
до агрегації P-gp та CD147 на цитоплазматичних 
мембранах. Крім того, інгібування тунікаміцином 
N-глікозилювання білків P-gp та CD147 сприяє 
їх убіквітин-залежній деградації в протеасомах, а 
також підвищує чутливість клітин MCF7/Adr до 
цитотоксичної дії доксорубіцину [90].

Як відомо, на відміну від так званих повних 
транспортерів ABCB1 і ABCC1, білок ABCG2 міс-
тить по одному трансмембранному та АТР-зв’язу
ючому домену, тобто є неповним транспортером, 
тому його функціональна активність залежить від 
утворення димерних чи олігомерних форм. Після 
котрансфекції кДНК BSG і ABCG2 клітини MCF7 
РМЗ стають більш стійкими до дії епірубіцину 
(субстрат ABCG2) порівняно з клітинами MCF-7, 
що несуть лише кДНК BSG [89]. Базигін виявився 
здатним регулювати димеризацію транспортера 
ABCG2 та його перехід із цитоплазми на поверх-
неві мембрани клітин лінії MCF7.

Унікальною особливістю транспортера ABCG2 
слід вважати його характеристику як маркера ПСК 
при нейробластомі, дрібноклітинному раку легені, 
РПЗ, раку шийки матки, раку яєчника, раку перед-
міхурової залози, ГЦК, остеогенній саркомі [91]. 
Враховуючи наведені вище відомості про те, що 
CD147 може опосередковувати лікарську стійкість 
через транспортер ABCG2, а також антиапопто-
тичну активність базигіну [92], резонно припусти-
ти участь білка CD147 у забезпеченні виживання 
популяції ПСК у хворого після медикаментозного 
впливу. У даному контексті безперечний інтерес 
представляють дані про те, що сайленсинг гена 
BSG в ПСК-подібних клітинах стабільної лінії  
HT-29 РТПК призводить до значного підвищення 
їх чутливості до ряду лікарських засобів (гемцита-
біну, цисплатину й доцетакселу) [57].

Y. Zhou та співавт. нещодавно показали, що 
вміст мРНК та білка CD147 у гемцитабін-резис
тентних клітинах R1 та R2 РПЗ значно підвищено 
порівняно з чутливими до цього препарату клі-
тинами вихідної лінії CFPAC-1 [93]. При цьому 
зазначено значне зростання рівня апоптотичної 
загибелі клітин сублінії R1, індукованої гемци-
табіном, після додаткової обробки МкАт HAb18 
або 6H8 проти CD147. Інші приклади залучення 
базигіну до розвитку стійкості пухлинних клітин 
до широко вживаних хіміотерапевтичних засобів 
наведено у табл. 1.

На сьогодні схарактеризовано ряд механізмів, 
що опосередковують формування в пухлинних 
клітинах стійкості до таргетної терапії, у тому 

Таблиця 1

Можливі механізми участі базигіну у формуванні лікарської стійкості клітинами пухлин різного генезу

Тип пухлини Препарат Клас препарату Механізм участі CD147 у формуванні ЛС Посилання

РМЗ Доцетаксел
Цитостатики  

з групи таксанів

Регулює трансмембранний градієнт pH шляхом 
впливу на експресію та активність АТФази ва-
куолярного типу

[94]

РМЗ 5-фторурацил Антиметаболіти
Підвищує виживаність пухлинних клітин шляхом 
активації MAPK/ERK сигналінгу

[47]

ГЦК Етопозид
Інгібітори  

ДНК-топоізомерази II
Сприяє виживанню пухлинних клітин через по-
силення експресії шаперона BiP

[95]

ГЦК Цисплатин ДНК-алкілуючі агенти
Утворення комплексу CD147 з G3BP1 пригнічує 
активність mTOR, що сприяє розвитку цитопро-
текторній аутофагії пухлинних клітин

[96]

НДРЛ,  
рак яєчника

Паклітаксел
Цитостатики з групи 

таксанів
Регулює стабільність та динаміку мікротрубочок 
шляхом взаємодії з білком RanBP1

[97]

Плоскоклітинний 
рак голови та шиї

Цисплатин ДНК-алкілуючі агенти
Взаємодіє з рецептором активатора плазміногену 
урокіназного типу

[98]

Плоскоклітинний 
рак голови та шиї

Гемцитабін Антиметаболіти

Підвищує виживаність пухлинних клітин шляхом 
активації MAPK/ERK сигналінгу

[99]
Доцетаксел

Цитостатики  
з групи таксанів

Цисплатин ДНК-алкілуючі агенти

5-фторурацил Антиметаболіти
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числі за участю базигіну. Встановлено, наприк
лад, що сайленсинг гена BSG посилює in vitro та 
in vivo ефекти трастузумабу — препарату, який 
широко використовується в лікуванні хворих на 
HER2-позитивні форми РМЗ [103]. Як показали 
C. Tabolacci та співавт., секретована форма CD147 
може брати участь у розвитку в клітинах мелано-
ми стійкості до вемурафенібу (інгібітор BRAF-
кінази), що призначається як препарат першої 
лінії для пацієнтів із неоперабельною або мета-
статичною меланомою, в клітинах якої виявлено 
мутацію BRAFV600E [104].

Формування радіорезистентності пухлинних клі-
тин. Накопичено переконливі докази участі ба-
зигіну у формування стійкості до дії іонізуючого 
випромінювання у клітинах пухлин стравоходу, 
шийки матки, гортані та печінки [105–108]. Ре-
зультати нещодавніх експериментів in vitro та in 
vivo свідчать про те, що стійкість клітин плоско-
клітинного раку стравоходу до рентгенівського 
випромінювання тісно пов’язана з підвищеною 
експресією фукозилтрансферази 8 (FUT8; КФ 
2.4.1.68) [105]. Пошук можливих механізмів фор-
мування стійкого до опромінення фенотипу у клі-
тин пухлин стравоходу з високим рівнем експресії 
FUT8 показав, що одним із ключових субстратів 
цього ферменту є глікопротеїн CD147, а сайлен-
синг гена BSG підвищує чутливість пухлинних клі- 
тин до рентгенівського випромінювання в дозах 
4 або 8 Гр [105].

Як відомо, вплив іонізуючого випромінювання 
на живі клітини призводить до структурних по-
шкоджень ДНК, з яких визначальне значення у 
формуванні відповіді на опромінення відіграють 
двониткові розриви ДНК. Одним із найпошире-
ніших маркерів двониткових розривів ДНК вва-
жається формування скупчень (фокусів) фосфо-
рильованої форми гістону H2AX (γ-H2AX) [109]. 
Згідно з даними, представленими X. Ju зі співавт. 
[106], рівень γ-H2AX в культурі клітин SiHa раку 
шийки матки починає зростати протягом 30 хв 
після одноразового променевого впливу в дозі  
10 Гр, але ледве виявляється через 6 і 24 год. Про-
те у клітинах SiHa-1575, позбавлених активності 
гена BSG, рівень γH2AX збільшується через 30 хв 

після опромінення та продовжує залишатися на 
високому рівні до 24 год. Аналіз розподілу пухлин-
них клітин шийки матки за фазами мітотичного 
циклу показав суттєве збільшення частки опромі-
нених SiHa-1575 клітин у G2/M стадіях порівняно  
з такою CD147+ клітин SiHa. Оскільки зупинка  
клітинного циклу у фазах G2/M вважається харак-
терною реакцією клітини на опромінення [109], 
наведені вище дані свідчать про те, що блокада мі-
тотичного циклу та порушення репарації двонит-
кових розривів ДНК у клітинах раку шийки мат-
ки є важливими механізмами участі білка CD147  
у формуванні радіорезистентності.

Альтернативний механізм дії базигіну, спря-
мований на зниження радіочутливості пухлинних 
клітин, пов’язаний з його здатністю утворювати 
функціонально активні комплекси з β1-интег
рином [107, 108]. Слід зазначити, що локалізація 
β1-інтегрину в ліпідних мікродоменах (рафтах) 
цитоплазматичних мембран виявилася критич-
ною умовою для розвитку радіорезистентності у 
клітинах раку гортані [108]. З погляду перспектив 
використання в терапевтичній практиці препара-
тів, що інгібують активність базигіну, важливим 
є визначення на моделях ГЦК можливості підви-
щення ефективності променевого лікування за 
допомогою МкАт проти CD147 [108].

Білки родини шаперонів давно привертають 
увагу як ефекторні молекули, які серед іншого 
регулюють виживання клітин. Хоча представни-
ки цієї родини одержали первісну назву “білки 
теплового шоку” (HSP), тепер відомо, що вони 
активуються не лише у відповідь на гіпертермію, 
але й під впливом цитотоксичних препаратів та 
іонізуючого випромінювання. Найбільш вивче-
ним серед молекулярних шаперонів вважається  
HSP90. Інгібітори HSP-90 (гелданаміцин, гербі-
міцин А, радицикол тощо) зазвичай пригнічують 
активність цього шаперона шляхом дестабілізації 
ряду залежних від нього білків (так званих “білків-
клієнтів” HSP-90), серед яких є й базигін [110].  
Q. Song та співавт. показали, що для клітин раку 
шийки матки з нокдауном BSG характерним є 
знижене утворення колоній під впливом рентге
нівського випромінювання, тоді як опромінені 

Тип пухлини Препарат Клас препарату Механізм участі CD147 у формуванні ЛС Посилання

РСМ Цисплатин ДНК-алкілуючі агенти
Регулює експресію транспортерів лактату MCT1 
та MCT4

[100]

Гліома Темозоломід ДНК-алкілуючі агенти
Пригнічує продукцію АФК шляхом інгібування 
деградації фактора транскрипції Nrf2

[101]

Хронічна  
мієлоїдна лейкемія

Доксорубіцин
Цитостатики  

антрациклінового ряду
Регулює рівень транспортера P-gp у лейкемічних 
клітинах

[102]

АФК — активні форми кисню; ГЦК — гепатоцелюлярна карцинома; ЛС — лікарська стійкість; НДРЛ — недрібноклітинний рак легені; РМЗ — 
рак молочної залози; РСМ — рак сечового міхура.

Закінчення таблиці 1
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клітини з надлишковою експресією CD147, нав
паки, здатні до посиленого утворення подібних 
колоній [110]. У радіорезистентних клітинах раку 
шийки матки за дії препарату 17-AGG (модифі-
кована для перорального приймання форма гел-
данаміцину) відбувається поліубіквітування та 
деградація CD147 у протеасомах, що сприяє під-
вищенню чутливості пухлинних клітин до опромі-
нення. Важливо зазначити, що в умовах надмірної 
експресії CD147 радіосенсибілізуючі ефекти, ви-
кликані 17-AAG, певною мірою скасовуються як 
in vitro, так й in vivo [110].

ПРОГНОСТИЧНЕ ЗНАЧЕННЯ БАЗИГІНУ 
ПРИ ОНКОЛОГІЧНИХ ЗАХВОРЮВАННЯХ

Аналізу можливостей використання в онко-
логічній практиці базигіну як прогностичного 
молекулярного маркера присвячений вичерпний 
огляд [8]. Зокрема, при дослідженні більш ніж 20 
типів злоякісних новоутворень різного гістогенезу 
та локалізації виявлено високий вміст базигіну в 
тканині пухлини, і його гіперекспресія розгля-
дається як несприятлива прогностична ознака, 
включаючи асоціацію з коротшими термінами за-
гальної виживаності (ЗВ) та/або безрецидивної 
виживаності (БВ) хворих. За останні роки окрім 
одноцентрових клінічних досліджень було про-

ведено кілька метааналізів, у яких були проаналі-
зовані результати кількох однорідних досліджень 
різних авторів щодо визначення прогностичного 
значення експресії базигіну у пухлинних клітинах 
різного походження. 

Результати статистичного аналізу об’єднаних 
даних продемонстрували наявність кореляційних 
зв’язків між рівнем експресії базигіну та клініко-
патологічними показниками й результатами лі-
кування хворих на РШ, РМЗ, РТПК, РСМ, рак 
передміхурової залози, нирково-клітинний рак, 
рак стравоходу, НДРЛ, ГЦК та гліому (табл. 2).  
У всіх досліджуваних випадках встановлена пряма 
кореляція між високим рівнем експресії базигіну 
та несприятливим прогнозом перебігу захворю-
вання.

Біоінформатичний аналіз тисяч зразків пух-
линних тканин онкологічних хворих із кількох 
загальнодоступних баз даних показав, що експре
сія BSG була асоційована з гіршими показниками 
виживаності при гліомі головного мозку низького 
ступеня злоякісності, аденокарциномі легені та 
карциносаркомі матки та з довшим часом вижи-
вання при папілярній нирково-клітинній карци-
номі [121]. Крім того, високий рівень експресії 
BSG також був фактором ризику для хворих на 
інвазивний РМЗ. Проте підвищена експресія BSG 

Таблиця 2

Результати метааналізу кореляційних зв’язків між високім рівнем експресії базигіну  
та клініко-патологічними показниками й результатами лікування онкологічних хворих

Тип пухлини Кількість хворих Клініко-патологічні показники Результати лікування Посилання

РШ 2496
Розмір пухлини, глибина інвазії, наявність метастазів 
у ЛВ, стадія захворювання

↓ ЗВ, ↓ виживаність  
без прогресування

[111]

РМЗ 1014*
Стадія захворювання, наявність метастазів у ЛВ, моле
кулярний підтип РМЗ, мутації TP53

НД [112]

РШ, РТПК 1993
Стадія захворювання, глибина інвазії, наявність мета-
стазів у ЛВ та віддалених метастазів

↓ ЗВ, ↓ виживаність  
без прогресування

[113]

РСМ 2493*
Стадія захворювання, глибина інвазії, ступінь дифе-
ренціації пухлини 

↓ ЗВ, ↓ БВ [114]

РПЗ 12591
Стадія захворювання, ступінь диференціації пухлини, 
показник Глісона, наявність метастазів у ЛВ та від-
далених метастазів

НД [115]

НКР 1392*
Розмір пухлини, стадія захворювання, ступінь дифе-
ренціації пухлини, наявність метастазів у ЛВ

↓ ЗВ (як коротко-,  
так й довгострокова)

[116]

Рак  
стравоходу

1140
Стадія захворювання, глибина інвазії, наявність мета-
стазів у ЛВ

↓ 3- та 5-річна  
виживаність

[117]

НДРЛ 1605 Стадія захворювання, наявність метастазів у ЛВ ↓ ЗВ [118]

ГЦК 880 Стадія захворювання, глибина інвазії ↓ БВ [119]

Гліома 1806 Розмір пухлини, стадія захворювання
↓ ЗВ, ↑ ризик рецидиву,  
↓ 5-річна виживаність

[120]

БВ — безрецидивна виживаність; ГЦК — гепатоцелюлярна карцинома; ЗВ — загальна виживаність; ЛВ — лімфатичний вузол; НДРЛ — не-
дрібноклітинний рак легені; НД — не досліджували; НКР — нирково-клітинний рак; РМЗ — рак молочної залози; РПЗ — рак передміхурової 
залози; РСМ — рак сечового міхура; РТПК — рак товстої та прямої кишки; РШ — рак шлунка.

* Загальна кількість хворих + контроль.



2 1ОНКОЛОГІЯ •  Т.  27 •  № 1  •  2025

ОГЛЯД

була асоційована зі сприятливим прогнозом у ви-
падках РПЗ або тимоми.

Як згадувалося вище, функціональна активність 
базигіну реалізується не лише шляхом активації 
трансмембранної форми, але й утворення його 
секретованих структур. Вони вивільняються з клі-
тин у біологічні рідини організму у концентраціях, 
достатніх для їх кількісного аналізу. Хоча біопсія 
тканини дає більш точне розуміння морфологіч-
них особливостей пухлини та її мікрооточення, 
дослідження біомаркерів, виявлених у зразках біо-
логічних рідин, може мати додаткову діагностичну 
та/або прогностичну цінність. Найчастіше з цією 
метою використовуються зразки периферичної 
крові (плазма або сироватка). Наприклад, X. Qiao 
та співавт. встановили, що зміни концентрації ба-
зигіну у сироватці крові хворих на НДКРЛ під час 
хіміотерапії на основі препаратів платини тісно 
пов’язані з результатом лікування [122]. А саме: 
якщо концентрація базигіну знижується або зали-
шається без змін, то це вказує на повну відповідь, 
часткову відповідь або стабілізацію захворювання, 
проте підвищення концентрації CD147 свідчить 
про прогресію захворювання. Хоча чутливість тесту 
на вміст базигіну у сироватці крові була помітно 
вищою за його специфічність, додавання до тесту 
одночасного виявлення рівня секретованої MMP-9 
значно підвищило специфічність аналізу. Як вва-
жають дослідники, комбіноване визначення вмісту 
секретованих форм базигіну та MMP-9 у сироватці 
крові має значну прогностичну цінність щодо ефек-
тивності хіміотерапії у хворих на НДКРЛ [122].

Автори іншої роботи встановили значно під-
вищені рівні базигіну у плазмі крові у хворих на 
інвазивний РМЗ з локально поширеними мета-
стазами в лімфатичних вузлах та високим ризи-
ком рецидиву захворювання [123]. Високі рівні 
базигіну у плазмі крові хворих на ГЦК виявилися 
асоційованими з ранньою летальністю пацієнтів  
та дозволяють достовірно передбачити прогресу-
вання захворювання протягом 90 діб [124]. При 
цьому у випадках різних хронічних захворювань 
печінки жодної кореляції між строками виживання 
та вмістом базигіну у плазмі крові встановлено не 
було. Тож ідентифікація за допомогою тесту на 
вміст секретованого базигіну пацієнтів із прогре-
суючою ГЦК й прогнозованою високою леталь-
ністю може дозволити уникнути для таких хворих 
проведення неефективної терапії та пов’язаних з 
нею побічних ефектів.

За останні кілька років завдяки технологічним 
інноваціям спостерігається значний прогрес у на-
прямку, в межах якого здійснюються дослідження 
позаклітинних везикул (ПВ) як ключових посе-
редників міжклітинної комунікації. Як відомо,  
ПВ являють собою невеликі пухирці, вкриті по-
двійною ліпідною мембраною. У випадку онко-
логічних хворих ПВ вивільняються з пухлинних 

клітин у біологічні рідини організму та можуть 
слугувати пухлиноасоційованими маркерами, які 
виявляються за допомогою технології рідинної 
біопсії. В контексті нашого огляду важливо зазна-
чити, що ПВ несуть на своїй поверхні маркери, 
специфічні для клітини їхнього походження. При 
виборі об’єкта дослідження ПВ, які походять з 
пухлинних клітин, слід враховувати, що у пери-
феричну кров вивільняється велика кількість ПВ 
з клітин здорових органів та тканин. Тому іденти-
фікація ПВ, які походять саме з пухлинних клітин, 
є досить складним завданням, може потребувати 
додаткових етапів дослідження та, відповідно, до-
даткових витрат. Проте біологічні рідини організ-
му, які безпосередньо контактують зі злоякісним 
новоутворенням, можуть містити значно більшу 
концентрацію пухлинних ПВ у порівнянні з ПВ, 
що вивільняються нетрансформованими клітина-
ми. Наприклад, для сечі характерним є високий 
вміст ПВ, пов’язаних з РСМ [125], для слини —  
ПВ з клітин злоякісних новоутворень ротової по-
рожнини [126], а для спинномозкової рідини —  
ПВ з пухлинних клітин мозку [127].

Іншим перспективним джерелом пухлинних 
ПВ, збір якого є неінвазійним, простим та не по-
требує спеціальних навичок чи складних маніпу-
ляцій, виявилися калові маси у випадку хворих 
на РТПК. Повідомлялося, що кількісний аналіз 
вмісту CD147-позитивних ПВ у зразках фекалій 
дозволяє відрізнити хворих на РТПК від умовно 
здорових людей, а одночасне визначення вмісту 
ПВ, які експресують CD147 у комбінації з A33 
(трансмембранний глікопротеїн A33 виявляється 
в 95% випадків РТПК) забезпечує клінічну чутли-
вість тесту близько 89% [128]. Цікаво, що досто
вірної різниці між рівнями CD147 або A33 у зраз-
ках ПВ, отриманих з плазми крові хворих на РТПК 
та умовно здорових людей, виявлено не було. При 
дослідженні можливого прогностичного значення 
визначення вмісту CD147- або A33-позитивних 
ПВ у зразках калу встановлено, що середні рівні 
CD147 і A33 були значно нижчими у хворих на 
РТПК після хірургічного втручання у порівнянні 
з тими ж хворими до проведення операції.

ЗАКЛЮЧЕННЯ

Вже понад 40 років минуло відтоді, як впер-
ше в експериментальних дослідженнях був вияв
лений та ідентифікований базигін. Його пряма 
або опосередкована участь у розвитку злоякісних 
новоутворень різної локалізації та генезу давно 
перестала бути предметом дискусії. Результати 
численних експериментальних та клінічних дос
ліджень доводять значну роль базигіну у регуляції 
ключових процесів злоякісного росту та прогресії 
онкологічного захворювання. Наявність значущої 
позитивної кореляції між рівнем експресії базигіну 
в клітинах пухлинної тканини або в біологічних 
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рідинах організму та прогресією захворювання, 
розвитком рецидивів, коротшими термінами ви-
живання хворих з різними видами пухлин дозво-
ляє оцінити базигін як перспективний фактор 
прогнозу перебігу захворювання та результатів 
застосованого лікування. Розроблено декілька 
нових технологій, які дозволяють неінвазивно та 
безпечно для хворого отримувати в масштабі ре-
ального часу об’єктивну інформацію щодо рівнів 
базигіну у клітинах пухлинної тканини та ПВ, що  
вивільняються такими клітинами [129–133]. Роз- 
почато клінічне випробування технологій, спря-
мованих на візуалізацію солідних пухлин за до-
помогою позитронно-емісійної томографії з ви-
користанням різних базигін-специфічних зондів 
(NCT0 4841421, NCT06646952, NCT06720298; 
https://classic.clinicaltrials.gov). Є всі підстави очі-
кувати, що подальша розробка та впровадження  
у лабораторну практику автоматизованих техноло- 
гій оцінки рівнів базигіну буде сприяти покращен-
ню онкологічної допомоги населенню.

Робота виконувалася в рамках НДР “Гормо
нально-рецепторний статус клітин пухлинного 
мікрооточення як фактор модуляції онкогенезу в 
ендометрії та молочній залозі” (№ держреєстрації 
0123U100100; керівник — д.б.н., проф. Л.Г. Бучин
ська).
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BASIGIN AS A TUMOR-ASSOCIATED 
GLYCOPROTEIN WITH PROGNOSTIC VALUE

A.A. Philchenkov
R.E. Kavetsky Institute of Experimental Pathology, 
Oncology and Radiobiology, NAS of Ukraine,  
Kyiv, Ukraine

Summary. Basigin (alias TCSF, EMMPRIN, CD147 or 
HAb18G) is a type I transmembrane glycoprotein belong-
ing to the immunoglobulin superfamily. There are at least 
four isoforms of human basigin generated by alternative  
splicing with basigin-2 (BSG) as prototypical isoform. BSG 
is post-translationally modified through N-glycosylation 
and exists in highly or low glycosylated forms. In addition 
to transmembrane form, BSG is also released from cells in 
soluble form (through proteolytic shedding of its ectodo-
main) or full-length form in extracellular vesicles. Apart 
from regulating a wide variety of physiological processes, 
BSG is overexpressed in many types of cancers and involved 
in key pathways or processes linked to tumor progression 

and recurrence. This review focuses on the essential roles 
of BSG in regulating the proliferation, apoptosis, migra-
tion, and invasion of tumor cells, epithelial-mesenchymal 
transition, CSC maintenance, tumor angiogenesis and 
lymphangiogenesis, metastatic dissemination, immune eva-
sion, and treatment resistance. Furthermore, the prognostic 
value of both surface-bound and secreted forms of BSG for 
a wide spectrum of neoplasms is briefly discussed.

Keywords: CD147, anoikis resistance, DNA damage, 
cancer stem cells, conventional anti-cancer drugs, 
radiotherapy, prognostic biomarker, body fluids, pre-
clinical studies, clinical findings.
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