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GREEN’S FUNCTION FOR AN ELASTIC LAYER
WITH TEMPERATURE DEPENDENT PROPERTIES
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The distributions of stresses and displacements in a thermoelastic layer with temperature
dependent properties are investigated. The problem is considered for the case of antiplane
state of strains. The boundary planes are assumed to be kept at constant temperatures. The
upper boundary plane is free of loading, and the lower plane is loaded by a concentrated
force. The solution is found in the form of integrals and the singularities of stresses are
determined.
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The study of the behavior of stresses in elastic materials with temperature depen-
dent properties is of importance in many engineering applications. Some elastic mate-
rials change their mechanical modulus under temperature effect. In these cases the ap-
plication of Hookean strain-stress relations is not appropriate to describe stress distri-
butions. The theory of termoelasticity of materials with temperature-dependent pro-
perties seems to be the most adjusted for modelling of the interaction between mecha-
nical and thermal fields. One of the first investigators, who considerably developed the
theoretical basis of elastic bodies with temperature dependent modulus was J. L. No-
winski [1-3], and monograph [4]. Many experimental results for determination of me-
chanical properties of solids as functions of temperature are presented in monograph
[5] (mainly for metals), as well as in papers [6—11]. Some theoretical investigations of
solid mechanics with temperature-dependent properties are given in [12—15].

In this paper the antiplane state of strain of an elastic layer with temperature de-
pendent properties is considered. The boundary planes are assumed to be kept at given
constant temperatures, what leads to the linear temperature distribution in the conside-
red layer. The lower boundary plane is loaded by a concentrated force; the upper boun-
dary plane is free of loading. The shear modulus p as a function of temperature 6 is
taken into account in the form of linear function. The assumption connected with the
temperature dependence of shear modulus leads to the problem of FGM layer with
material properties continuously dependent on space variables. It can be observed that
in the case of classical thermoelasticity for homogeneous, isotropic bodies in the
antiplane state of strain the distributions of stresses are independent of temperature,
what is different from the considered problem.

Formulation and solution of the problem. Consider an isotropic elastic layer
with thickness /4. Let (x1, x2, x3) be the Cartesian coordinate system such that the planes
x, = 0 and x, = & are boundaries of the body, and the axis Ox; is perpendicular to the
boundaries. Let the lower and upper boundary planes are kept at given constant tem-
peratures 0y and 0,, respectively.
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Moreover, the considered layer is loaded by a linearly distributed along the axis
0Ox; and concentrated force with intensity P acting in Ox; direction. The shear modulus
u is assumed to be function of temperature 6 as follows

1(0) = o (1 - 40) (1)

where Ly, A are constant. The form of shear modulus dependence (1) agrees with the
experimental results presented in [5].
The assumptions taken into account lead to the antiplane state of strain described

by the displacement vector U(xj,x,)=(0,0,u5(x;,x,)) and the considered problem is
stationary and independent of x3;. The temperature 6 =0(x;,x,) satisfies the following
equation
ize+i§):0, xxeR, x€(0, h),
ox{ Ox5
and boundary conditions
0(x,0)=6y, O(x,h)=0;, xeRrR,
causing the distribution of temperature
0(x;, X)) =(0; =09)x, /h+0y, x €R, x,€<0,h>. 2
From equations (1) and (2) it follows that
nxp, xp) =po(og +oyxy), o =1-46y , oy =-4(0;-6¢)/%. 3)
The state of stresses is described by nonzero components 13 and 6,3 in the form
013X, Xp) = Ho (g +0yxp)0u3 /0xy,  Gp3(xy, Xp) =Hg(0g +04X)0u3 /Oy . (4)

The equilibrium equation in the case of stresses given by (4) can be written as

2 2
61?+6 2 U0y eR xe(0h). (5)
axl 6x2 O + 0yxy 8x2
The boundary conditions
023(x, 0)=P8(x;),  03(x;,)=0, x€R, (6)

where O(-) is the Dirac delta function. By using integral Fourier transform [16] with

respect to variable x; and denoting by

U3(s,%y) = \/_ I uz(x, Xp) € SMdx;

from equation (5) it follows that

d2iiy (s, x2) a,  dis(s, xp) — 20155, x,) = 0. (7)
de Qg + 0y Xy de

The linear, ordinary differential second-order equation (7) is reduced to the form

d?i di; s>
“3 +lﬂ_s_21;3:0 , (8)

where
W= (X,O + ale . (9)

The general solution of equation (8) can be written as [17]:
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113(5',0)):ClJo(i(DS/(Xl)+Cz),o(l'(DS/(Xl), (10)

where C, C, are constants; Jy(x), Yo(x) are Bessel functions of the first and the second
kind. From relations [8]:

Joix)=1y(x), Yy(ix)=Ky(x), xeR,

where Iy(-), Ko(-) are modified Bessel functions, and using (9), (10), the general solu-
tion of equation (7) can be written as follows

ﬁ3(s,x2)=C110{l }‘CzKo{sw} (11)
1

o

The constants C;, C; will be determined from boundary conditions (6). From
equations (4), (6), (11) and using relations [19]:

L@ =1E), LK) =K@, (12)

where /1(x), K;(x) are modified Bessel functions, it follows that a;, a, should satisfied
the following system of algebraic equations

a1 = - 4K, e =0,a111(ﬂ]—a21<1[sa0 JZ il . (13)
o o oy o ) 27spyoy

3
where ® =0 +0yh.

From equations (13) and (11), and applying inverse Fourier transform relation
[16], the displacement 3 can be written in the form

s o) =~ L L 20| 0]y fsol e Too Tl
mag Ko o S| | o o o o

where
% O 0‘1 0‘1

The stress components 6,3, G,3 Wwill be calculated from equations (4) and (14).
Substituting (14) into (4) it follows that

613(x1,x2)_ﬂ I{K{ }IO{ } [1{ }KO[ }}sin(sxl)ds, (15)
T OW oy oy (08] (08]

023(x1,x2)—P—(0 L{ K{ }1{ }+]1|: }K{ }}cos(sxl)ds. (16)
o OW oy oy (e8] o

Equations (14)—(16) are the fundamental solution (Green’s function) to the considered
problem in the integral form.

From the view point of mechanics, the singularities of stresses at the point of
concentrated force acting should be investigated. For this purpose an asymptotic
behavior of integrand functions in (15) and (16) will be analyzed.

Stress singularities. By using relations [19]

e’ To_
I,(x) = —, K,(x) = ,|—e ", [j(x) = 1,
V( )x—)ooxlznx V( )x—>oo 2x 0( )x—>0
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Li(x) = lx, Ki(x) = l, Ko(x) = 1nz (17)
x—02 x—0 X x—0 X

from equation (14) it follows that

) .
W =~ (20 +0oy h) =const, W =~ % sinh(sh) , (18)
s—0 20 (o +ayh) so® Jag (o +oyh) s
Denoting by

oSzl
2R

and using (17) and (18) we obtain

Ly ~ {ﬂe—sxz, L ~ |20 s (20)
W s>o\ ® W sso\ ®

From equations (15), (16), (19) and (20) the singularities of stress components can be
written in the form

o131, %) = |2~ 0q1), oy50n, xﬁiJE 2 _om . @
n\ oy xi+x3 m\ oy xf+x7
From equation (21) it follows that the order of singularities of stress components 13,
0,3 is the same as in the elastic homogeneous and isotropic layer, however the diffe-
rence is observed in the coefficients of singularities.
The integrals represented the stresses 63 and 6,3 given by equations (15) and (16)
and will be calculated numerically. For this purpose the following dimensionless
variables will be used

xlle/h, )?2:)(72/}1, §=Sh,

oa3h The physical data taken into account
P are the same as in [20], where copper ma-

terial has been considered. Fig. 1 allows to
3.26 i observe the influence of parameter 4 and

differences between the boundary tempe-
ratures ¢y and 0, on the stresses c,3. The

3.22 . . .
dimensionless stresses o3 at point
\4 fl :O.O, 3?2 =0.1 as a function of ratio
3.18 0,/6, is presented in Fig. 1 for three cases
3 x of parameter 4. It can be observed that the

component of stresses is dependent

T 035 05 075 oy, limearly on the ratio 0,/6, and for 6,/ the

solutions are reduced to the case of a

Fig. 1. The dimensionless stresses homogeneous body with constant material
G,3(X), Xp)h/ P as a function of parameter properties.

0,/0, for 0y =819 K, ¥ =0.0, X, =0.1: In Fig. 2 the cases 4 :.O are adequate

1—A4=0.00051 K 2-0.00025 K ": for the homogeneous elastic body. Small

3-0.000125 K\ changes of the stresses o3 with respect to
the boundary temperatures near the boun-
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dary plane loaded by a concentrated force can be observed for thee cases of 4: 4 =
=0.00051 K™'; 4=0.00025 K'; 4 = 0.

023’13 G|3h
5 @ 5 ® //'\
| 04 l
[\ 02
0.8
[\ :
0.6
/ \ 0.2
/
0.2 -0.6 /
0 -0.8
-1 -0.5 0 05 -1 -0.5 0 0.5 %

Fig. 2. The dimensionless stresses as a function of parameter A:
a— 023h/P; b— 013h/P: 90 =819 K, 91 =0.5 90, 5C12 =0.25.

The stresses o3 change the sign at X; =0 (the curve represented o3 is antisym-

metric, the curve represented G,3 is symmetric). The maximal values of o,; are
achieved at a point of the concentrated force action.

CONCLUSIONS

The problem of stress distribution in the thermoelastic layer with temperature
dependent properties loaded by a concentrated force on the boundary plane is solved
under condition of antiplane state of strain. It was assumed that the shear modulus is
dependent linearly on temperature. The obtained results for stresses at a point of con-
centrated force action are characterized by the singularity of order, which is the same
as for the case of an isotropic homogeneous body with constant material properties.
The difference between the singularities for two mentioned materials is the singularity
coefficients. Moreover, it can be underlined that for the case of the classical elasticity
(when the shear modulus is constant), the boundary temperatures do effect the stresses
013 and oy3. In the considered problem of the layer with temperature dependent proper-
ties, the temperature is coupled with the displacement us5.

PE3FOME: TIpoaHanizoBaHO PO3MOLIH IEPEMIlleHb i HAPYXEHb B IIOCKOIApaeIbHO-
My IIapi 3a yMOB aHTHILIOCKOT Aedopmallii 3a JiHIHHOT 3aJIe)KHOCTI MOJYJIsI 3CYBY BiJl Temrepa-
Typu. Ha moBepXHsX mapy miATPUMYIOTECS CTali TEMIIEpaTypH, BEPXHs IIOBEPXHS BilbHA, a JI0
HIJKHBOI NPUKJIAJICHO 30CepeKeHy cuily. Po3B’s30K 3aia4i OTpUMAaHO B KBajpaTtypax. Jocmi-
JDKEHO OCOOJIHBICTE HAINPYKEHb B MICI JIif 30CepeKeHOT CHIIH.

PE3IOME: Tlpoananu3rupoBaHbl paclpeaeseH s epeMenIeHI 1 HallpsDKeHUH B MJI0CKO-
MapayielbHOM CJI0€ B YCIOBHSAX aHTHIUIOCKOW JedopMaluy Mpu JTHMHEHHON 3aBUCUMOCTH MOJIY-
15 cZIBUTa OT TeMIiepaTypbl. Ha MOBEpXHOCTAX CI0s MOJEPKUBAIOTCS IOCTOSHHbBIE TeMIIepary-
PBI, BEpXHIS TIOBEPXHOCTH CBOOOIHA, a K HIDKHEH MPUIIOKEHA COCPEIOTOYCHHAs crJla. PerneHne
3aJjaui TI0JIy4eHO B KBajpaTypax. MccinenoBaHo 0COOCHHOCTh HAINPsDKEHUH B MeCTe JICHCTBHS
COCpPENOTOUYCHHON CHIIBI.
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