УДК 546:544:54.19

СИНТЕЗ, СТРУКТУРА ТА ВОДЕНЬСОРБЦІЙНІ ВЛАСТИВОСТІ СУБНІТРИДІВ (Ti,Zr)₄Ni₂N_x

*I. Ю. ЗАВАЛІЙ*¹, *Ю. В. ВЕРБОВИЦЬКИЙ*¹, *В. В. БЕРЕЗОВЕЦЬ*¹, *В. В. ШТЕНДЕР*¹, *В. К. ПЕЧАРСЬКИЙ*², *П. Я. ЛЮТИЙ*¹

¹ Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів; ² Department of Materials Science and Engineering, Iowa State University, USA

Синтезовано ряд нових субнітридів (Ti,Zr)₄Ni₂N_{0,5-1,0} зі структурою типу Fe₃W₃C (просторова група *Fd*-3*m*, *Z* = 16, символ Пірсона *cF*112). Досліджено їх воденьсорбційні властивості як з газової фази, так і електрохімічно. Виявлено, що сплави здатні поглинати до 2,5 wt.% водню. Максимальну розрядну ємність спостерігали для Ti₄Ni₂N_{0,5}. Синтезовано три нових гідриди (Ti₄Ni₂N_{0,5}H_{6,9}, Ti₂Zr₂Ni₂NH_{7,4}, TiZr₃Ni₂N_{0,5}H₁₁) та досліджено їхню структуру. Останні зберігають структуру вихідної матриці зі збільшеним об'ємом гратки до 18%.

Ключові слова: воденьсорбційні матеріали, сплави титану, сплави цирконію, нітриди, гідриди, газове гідрування, електрохімічні властивості, електродні матеріали.

Інтерметалічні сполуки на основі Ті, Zr та Hf є ефективними поглиначами водню і тому дослідження їх гідридів становить як фундаментальний, так і практичний інтерес. Бінарні фази A₂B, які утворюються в системах титану і гафнію з *d*-металами VII–VIII груп, належать до структурного типу (CT) Ti₂Ni. Для модифікованих киснем, азотом чи вуглецем сплавів систем титану, цирконію, гафнію з *d*-металами знайдено велику кількість таких стабілізованих фаз, які в літературі позначають як η-фази (CT Fe₃W₃C, похідна включення від типу Ti₂Ni) [1–3]. Кристалографічні характеристики сполуки Ti₂Ni описані раніше [4–6]: просторова група (ПГ) *Fd*-3*m*, параметр гратки *a* = 11,319 Å, елементарна комірка складається з 96 атомів, які займають три правильні системи точок (ПСТ) (табл. 1). Укладку просторових каркасів двох типів октаедрів утворюють атоми Ti1, а двох типів тетраедрів – атоми Ni та Ti2.

Атом	ПСТ	x	у	z
Ti1	48f	0,311	0	0
Ti2	16 <i>c</i>	1/8	1/8	1/8
Ni	32 <i>e</i>	0,912	0,912	0,912

Таблиця 1. Кристалографічні характеристики сполуки Ті2Ni [4]

У металічну матрицю сполуки Ti_2Ni можуть включатися легкі неметалічні атоми (наприклад O, N чи C) і їх кількість може сягати 1 атома на формульну одиницю Ti_4Ni_2 . Наприклад, сплави Ti_2Ni можуть розчиняти до 14 аt.% атомів оксигену, які у структурі Ti_2Ni заповнюють великі октаедричні пустоти у позиціях 16d. Структурним аналізом встановлено, що для сполуки Ti_4Ni_2O атоми оксигену є центрами неправильних октаедрів, координованих 6-ма атомами титану.

Контактна особа: І. Ю. ЗАВАЛІЙ, e-mail: zavaliy@ipm.lviv.ua

Раніше дослідили багато О-стабілізованих сплавів на основі Ті, Zr та Hf, показали утворення різного складу η-фаз, вивчили їхні воденьсорбційні властивості, встановили кристалічну структуру вибраних гідридів та дейтеридів [7–10]. Для вибраних вихідних η-фаз та їх гідридів вивчали фізико-хімічні властивості. Зокрема, дослідили стійкість до диспропорціонування у водні цих фаз і показали, що зі збільшенням оксигену їхня стабільність зростає [11]. Для ряду вибраних кисеньмодифікованих сплавів на основі титану, цирконію та нікелю досліджували їхні електрохімічні характеристики для можливого використання як негативних електродів у нікель-металогідридних (Ni-MГ) хімічних джерелах струму [12–14].

Вивчали воденьсорбційні властивості стабілізованих азотом та вуглецем сполук $Ti_2Ni_2N(C)_x$ [15, 16]. Отримані залежності в координатах тиск–склад–температура (РСТ) (рис. 1) показали, що заміна кисню на азот або вуглець призводить до зростання воденьсорбційної ємності сполук. Отже нові матеріали можуть продемонструвати поєднання підвищеної ємності з поліпшеною стійкістю до диспропорціонування, яке становить інтерес як з фундаментальної, так і прикладної точок зору. Це дало підстави припустити, що такі азотомодифіковані сплави можуть мати і кращі зарядно-розрядні характеристики. В цьому дослідженні вперше синтезували стабілізовані азотом сполуки (Ti,Zr)₄NiN_x та дослідили їх воденьсорбційні властивості як з газової фази, так і електрохімічно.

Рис. 1. РСТ залежності в системах Ті₄Ni₂O-H₂ (*a*) та Ті₄Ni₂N-H₂ (*b*) [15].

Fig. 1. PCT dependences for the Ti₄Ni₂O-H₂ (a) and Ti₄Ni₂N-H₂ (b) systems [15].

Методика експерименту. Сплави $(Ti,Zr)_4Ni_2N_x$ синтезували із порошків відповідних лігатур та нітридів титану або цирконію (чистота не менше 99,9%) методом дугового плавлення в атмосфері очищеного аргону. Зразки відпалювали за температури 800 або 900°С у кварцових вакуумованих ампулах упродовж 2 тижнів, а потім загартовували в холодній воді. Газове гідрування здійснювали за кімнатної температури в автоклаві під тиском водню 0,5...2,0 МРа після попередньої активації зразків нагрівом у вакуумі при 500°С упродовж 15 min. Кількість поглинутого водню вимірювали об'ємним методом. Рентгенофазовий та рентгеноструктурний аналізи виконували за результатами, отриманими на дифрактометрі ДРОН-3М (Си K_{α} -випромінювання). Теоретичні дифрактограми розраховували за допомогою програми РоwderCell [17], а експериментальні – уточнювали методом Рітвельда за допомогою програм FullProf [18] та CSD [19].

Вихідними матеріалами для металогідридних електродів служили порошки сплавів та нікелю у співвідношенні 1:3. Суміш пресували між двома нікелевими губками за навантаження 1 GPa у вигляді таблеток \emptyset 10 mm і завтовшки 1 mm. До виготовлених електродів попередньо прикріплювали нікелеву стрічку або дріт – провідники струму. Отримані електроди перед початком роботи активували, занурюючи на 30 min у гарячий розчин КОН. Приготовані електроди тестували в скляних чарунках з допоміжним платиновим і порівняльним хлоридсрібним (потенціал відносно водневого електрода $\phi^{\circ} = 0,222$ V) електродами. Об'єм чарунок заповнювали свіжовиготовленим електролітом – 6 М розчином КОН. Хлоридсрібний електрод (занурений у насичений розчин KCl) з'єднували з чарункою агар-агаровим містком. Електрохімічні дослідження електродів виконували у гальваностатичному режимі на комп'ютеризованому приладі PGStat-8. Експериментальне значення розрядної ємності для всіх електродів розраховували за формулою: $C = I \times t$, де C – розрядна ємність електрода (mA·h/g); I – густина струму (mA/g); t – час розряду (h).

Результати дослідження та їх обговорення. Синтез нових фаз $(Ti,Zr)_4Ni_2N_x$ зі структурою типу Ti_2Ni . Пошук нових інтерметалічних фаз зі структурою типу Ti_2Ni здійснювали, враховуючи попередньо отримані результати для відповідних кисеньмодифікованих сплавів. Виготовили ряд сплавів $(Ti,Zr)_4Ni_2N_x$ із різним співвідношенням компонентів Ti/Zr та з x = 0,5 і 1 (табл. 2). Результати уточнення кристалічної структури вибраних нітридів наведені в табл. 3, а дифрактограми $Ti_4Ni_2N_{0,5}$, $Ti_2Zr_2Ni_2N$ та $TiZr_3Ni_2N_{0,5}$ – на рис. 2a-c.

Рис. 2. Рентгенівські дифрактограми синтезованих субнітридів (*a*–*c*) та гідридів (*d*–*f*): Ti₄Ni₂N_{0,5} (*a*), Ti₂Zr₂Ni₂N (*b*), TiZr₃Ni₂N_{0,5} (*c*), Ti₄Ni₂N_{0,5}H_{6,9} (*d*), Ti₂Zr₂Ni₂NH_{7,4} (*e*) та TiZr₃Ni₂N_{0,5}H₁₁ (*f*).

Fig. 2. X-ray diffraction patterns of the subnitrides (a-c) and hydrides (d-f): Ti₄Ni₂N_{0.5} (a), Ti₂Zr₂Ni₂N (b), TiZr₃Ni₂N_{0.5}(c), Ti₄Ni₂N_{0.5}H_{6.9} (d), Ti₂Zr₂Ni₂NH_{7.4} (e) and TiZr₃Ni₂N_{0.5}H₁₁.

На рис. 3 подана розрахована за результатами рентгенівського аналізу кристалічна структура субнітриду $TiZr_3Ni_2N_{0.5}$, яку можна розглядати як впорядкова-

ний варіант від типу Ti₂Ni. Показано, що атоми титану та цирконію займають позиції 16*c* та 48*f*, атоми Ni локалізовані в позиціях 32*e*, а атоми нітрогену займають пустоти, яким відповідає позиція 16*d*. Аналіз координаційного оточення атомів у структурі TiZr₃Ni₂N_{0,5} показує, що ікосаедри [Zr₆Ni₆] є характерними для оточення атомів титану, чотирнадцятивершинники Франка–Каспера [Zr₈Ti₂Ni₄] є координаційними багатогранниками для атомів цирконію, атоми Ni знаходяться всередині ікосаедрів [Zr₆Ti₃Ni₃], а октаедри [Zr₈] є сусідами атомів нітрогену.

		······································
Склад шихти	Фазовий склад	Температура синтезу, °С
$Ti_4Ni_2N_{0,5}$	$Ti_4Ni_2N_{0,5}$	800
$Zr_4Ni_2N_{0,5}$	Zr ₃ NiN _{0,5} +Zr ₂ Ni	800
Ti ₃ ZrNi ₂ N _{0,5}	$Ti_{3}ZrNi_{2}N_{0,5} + TiZrNi + Ti_{2}Zr_{2}Ni_{2}N_{0,5}$	800
$Ti_2Zr_2Ni_2N_{0,5}$	$Ti_2Zr_2Ni_2N_{0,5} + TiZrNi$	800
TiZr ₃ Ni ₂ N _{0,5}	$TiZr_3Ni_2N_{0,5}$	800
Ti_4Ni_2N	Ti ₄ Ni ₂ N	900
Zr_4Ni_2N	$Zr_3NiN+ZrNi+Zr_4Ni_2N$	900
$Ti_2Zr_2Ni_2N$	$Ti_2Zr_2Ni_2N$	900
$Ti_{3,8}Zr_{0,2}Ni_2N$	$Ti_{3,8}Zr_{0,2}Ni_2N$	900
$Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}$	$Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}$	900
Ti ₃ ZrNi ₂ N	$Ti_3ZrNi_2N+TiZrNi$	900
TiZr ₃ Ni ₂ N	$TiZr_3Ni_2N$ + Zr_4Ni_2N	900

Таблиця 2. Умови синтезу та фазовий аналіз вибраних сплавів (Ti,Zr)₄Ni₂N_x

Таблиця 3.	Результати	уточнення	кристалічної	структури
	$Ti_4Ni_2N_{0.5}$, 7	Γi ₂ Zr ₂ Ni ₂ N τ	a TiZr ₃ Ni ₂ N _{0.5}	

			.,=
Склад	$Ti_4Ni_2N_{0,5}$	$Ti_2Zr_2Ni_2N$	TiZr ₃ Ni ₂ N _{0,5}
СТ	Fe ₃ W ₃ C	Fe ₃ W ₃ C	Fe ₃ W ₃ C
ПГ	Fd-3m	Fd-3m	Fd-3m
Z	16	16	16
<i>a</i> (Å)	11,3341(4)	11,8789(3)	12,0422(3)
V (Å ³)	1456,0(2)	1676,2(1)	1746,2(2)
ρ (g/cm ³)	5,762	6,489	6,782
Mr (g/mol)	315,86	409,58	445,91
R _I	0,0485	0,0554	0,0442
wR _p	0,1521	0,1189	0,1177
M1 (0 0 0)	1Ti	1Ti	1Ti
$B_{\rm iso}({\rm \AA}^2)$	0,97(5)	0,97(2)	0,78(3)
M2 (<i>x</i> ¹ / ₈ ¹ / ₈)	1Ti	0,33(2)Ti + 0,67(2)Zr	1Zr
<i>x</i> _{M2}	0,4382(4)	0,4372(3)	0,4362(2)
$B_{\rm iso}({\rm \AA}^2)$	0,89(4)	0,60(2)	0,46(3)
M3 (<i>x x x</i>)	1Ni	1Ni	1Ni
<i>x</i> _{M3}	0,2119(3)	0,2073(3)	0,2100(2)
$B_{\rm iso}({\rm \AA}^2)$	0,79(5)	0,90(2)	0,93(3)
N (1/2 1/2 1/2)	0,50(6)N	1N	0,50(5)N
$B_{\rm iso}({\rm \AA}^2)$	1,00(5)	1,00(2)	0,98(3)

Рис. 3. Проекція кристалічної структури TiZr₃Ni₂N_{0.5} на площину XY.

Fig. 3. Projection of the $TiZr_3Ni_2N_{0.5}$ structure on *XY* plane.

Синтез, структура та властивості гідридів (Ti,Zr)₄ $Ni_2N_xH_y$. Ряд гідридів складу $Ti_4Ni_2N_{0.5}H_{6.9}$, $Ti_2Zr_2Ni_2NH_{7.4}$ та $TiZr_3Ni_2N_{0.5}H_{11}$ синтезували безпосередньою взаємодією однофазних зразків з газоподібним воднем. Гідрували за кімнатної температури в автоклаві за тиску 0,5...2,0 МРа після попередньої активації зразка нагріванням у вакуумі при 500°С упродовж 15 тіп. Кількість поглинутого водню вимірювали об'ємним методом. За результатами рентгенівського аналізу встановили, що синтезовані гідриди зберігають кубічну структуру вихідних субнітридів (рис. 2d-f, табл. 4).

Таблиця 4. Кристалографічні параметри синтезованих гідридів

Склад гідриду	Умови синтезу Р _{H2} (MPa)	a (Å)	$V(\text{\AA}^3)$	ΔV/V (%)	С _н , (ваг. %)
$Ti_4Ni_2N_{0,5}H_{6,9}$	0.7	11,9502(6)	1706,6(2)	17,2	2.2
Ti ₂ Zr ₂ Ni ₂ NH _{7,4}	0.5	12,4252(4)	1918,3(1)	14,4	1,8
TiZr ₃ Ni ₂ N _{0,5} H ₁₁	2.0	12,7132(6)	2054,8(2)	17,6	2,5

Криві термодесорбції водню у вакуум з гідридів азотстабілізованих сполук $Ti_4Ni_2N_{0.5}$, $Ti_2Zr_2Ni_2N$ і $TiZr_3Ni_2N_{0.5}$ наведено на рис. 4. Виділення водню з гідриду $Ti_4Ni_2N_{0.5}$ починається при 215°C, а його максимум припадає на температуру 241°C. Виділення водню з гідридів $Ti_2Zr_2Ni_2N$ і $TiZr_3Ni_2N_{0.5}$ починається при 180...230°C, а максимальне виділення фіксували при 326 та 289°C. Це свідчить, що зі збільшенням вмісту цирконію гідриди стають стабільнішими.

Електрохімічні зарядно-розрядні властивості сплавів $(Ti,Zr)_4(Ni,Co)_2N_x$. Електрохімічні дослідження циклічної стабільності виконали для шести зразків (табл. 5) за струмів заряду та розряду I = 75 mA/g або 100 mA/g. Найліпші розрядні характеристики спостерігали для сплаву Ti₄Ni₂N_{0.5}. Його максимальна розрядна ємність становила 307 mA·h/g, що є більше порівняно з Ti₂Ni та Ti₄Ni₂O_x [12]. Циклічна стабільність для усіх досліджених зразків невисока (рис. 5).

Таблиця 5. Властивості електродів на основі сплавів (Ti,Zr)₄(Co,Ni)₂N_x

Електрод	I _{charge/discharge} , mA/g	C _{max} , mA∙h/g	S ₅₀ , %
$Ti_4Ni_2N_{0,5}$	75/75	307	17
Ti ₃ ZrNi ₂ N _{0,5}	75/75	89	52
$Ti_4Co_2N_{0,5}$	75/75	37	38
$Ti_4Ni_2N_{0,5}$	100/100	277	21
$Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}$	100/100	203	29
$Ti_{3,8}Zr_{0,2}Ni_2N$	100/100	182	20

Рис. 5. Циклічна стабільність електродів на основі $(Ti,Zr)_4(Co,Ni)_2N_x$ за струмів заряду та розряду I = 75 mA/g (*a*) та 100 mA/g (*b*): $I, 4 - Ti_4Ni_2N_{0,5}; 2 - Ti_3ZrNi_2N_{0,5}; 3 - Ti_4Co_2N_{0,5}; 5 - Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}; 6 - Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}$.

Fig. 5. Cyclic stability for the $(Ti,Zr)_4(Co,Ni)_2N_x$ electrodes at I = 75 mA/g (a) and 100 mA/g (b): 1, 4 – Ti₄Ni₂N_{0.5}; 2 – Ti₃ZrNi₂N_{0.5}; 3 – Ti₄Co₂N_{0.5}; 5 – Ti_{3.8}Zr_{0.2}Ni₂N_{0.5}; 6 – Ti_{3.8}Zr_{0.2}Ni₂N.

Можна констатувати, що часткова заміна титану на цирконій призводить до зменшення початкової розрядної ємності та може суттєво поліпшити циклічну тривкість сплаву. В цілому ж для азотовмісних сполук не спостерігаємо значного поліпшення ємності за заміни Ti \rightarrow Zr, яке характерне для подібних кисеньмодифікованих сплавів [12–14]. Вміст нітрогену у Ti_{3,8}Zr_{0,2}Ni₂ також суттєво не впливає на розрядні характеристики електродів. Низьку ємність (37 mA·h/g) спостерігали для сплаву Ti₄Co₂N_{0,5}, який досліджували для порівняння. На рис. 6 наведені приклади розрядних кривих у координатах потенціал—ємність для електродів

 $Ti_4Ni_2N_{0,5}$ та $Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}$ за струмів розряду I = 100 mA/g. Електрохімічне окиснення водню починається в околі потенціалу –1,05 V (vs. Ag/AgCl), далі спостерігаємо лінійне зниження потенціалу до –0,90 V, а різкий його спад до –0,6 V відповідає завершенню виходу і розряду атомів водню.

Рис. 6. Розрядні криві електродів $Ti_4Ni_2N_{0,5}(a)$ та $Ti_{3,8}Zr_{0,2}Ni_2N_{0,5}(b)$ у циклі з максимальною ємністю (1) та останньому циклі (2) відповідно.

Fig. 6. Discharge curves for the cycle with maximum capacity (1) and last one (2) of the $Ti_4Ni_2N_{0.5}(a)$ and $Ti_{3.8}Zr_{0.2}Ni_2N_{0.5}(b)$ electrodes.

висновки

Синтезовано ряд вихідних субнітридів (η -фаз) та їх гідридів із загальною формулою (Ti,Zr)₄Ni₂N_xH_y. Показано, що під час гідрування не змінюється структура вихідної металічної матриці (CT Fe₃W₃C). Утворення проміжних сполук Ti₃ZrNi₂N_{0,5}, Ti₂Zr₂Ni₂N та Ti₃ZrNi₂N_{0,5} свідчить про формування твердого розчину між фазами Ti₂NiN_x та Zr₂NiN_x. Такий розчин характерний і для кисеньмодифікованих сплавів [12], проте утворення в низці випадків багатофазних сплавів (Ti,Zr)₄Ni₂N_x за концентрації азоту x = 0,5 свідчить про його слабший стабілізаційний вплив (порівняно з киснем) для цього типу сполук. Досліджені сплави (Ti,Zr)₄Ni₂N_x поглинали до 2,5 wt.% водню. Електрохімічні властивості показали високі початкові значення розрядної ємності (до 307 mA·h/g) для електрода на основі Ti₄Ni₂N_{0,5} та невисоку циклічну тривкість ($S_{50} < 52\%$). За умови поліпшення цього параметра електродний матеріал на основі Ti₄Ni₂N_x може становити практичний інтерес через його низьку вартість.

РЕЗЮМЕ. Синтезировано ряд новых субнитридов (Ti,Zr)₄Ni₂N_{0,5-1,0} со структурой типа Fe₃W₃C (пространственная группа *Fd*-3*m*, *Z* = 16, символ Пирсона *cF*112). Исследованы водородсорбционные свойства сплавов как из газовой фазы, так и электрохимически. Выявлено, что славы способны поглощать до 2,5 wt.% водорода. Максимальную разрядную емкость наблюдали для Ti₄Ni₂N_{0,5}. Синтезированы три новых гидрида (Ti₄Ni₂N_{0,5}H_{6,9}, Ti₂Zr₂Ni₂NH_{7,4}, TiZr₃Ni₂N_{0,5}H₁) и исследована их структура. Последние сохраняют структуру исходной матрицы с увеличенным объемом решетки до 18%.

SUMMARY. A number of new subnitrides $(Ti,Zr)_4Ni_2N_{0.5-1.0}$ with the Fe₃W₃C structure type (space group *Fd-3m*, Z = 16, the Pearson symbol *cF*112) have been synthesized. Gas phase and electrochemical hydrogenation/dehydrogenation of the prepared alloys have been studied. The subnitrides can absorb up to 2.5 wt.% of hydrogen. The maximum discharge capacity is observed for $Ti_4Ni_2N_{0.5}$. Three new hydrides $(Ti_4Ni_2N_{0.5}H_{6.9}, Ti_2Zr_2Ni_2NH_{7.4}, TiZr_3Ni_2N_{0.5}H_{11})$ have been obtained and their crystal structures studied. All of them retain the structure of the original matrix with an increased lattice volume up to 18%.

 Nevitt M. V. Stabilization of certain Ti₂Ni phases by oxygen // Trans. Metallurg. Soc. AIME. - 1960. - 218. - P. 327-331.

- Wasserstoff in intermetallischen phasen am Beispiel des Systems Titan–Nickel Wasserstoff / H. Buchner, M. A. Gutjahr, K. D. Beccu, H. Säufferer // Z. Metallkunde. – 1972. – Bd.63, H. 8. – P. 497–500.
- 3. *Mackay R., Miller G. J., and Franzen H. F.* New oxides of the filled–Ti₂Ni type structure // J. Alloys and Comp. – 1994. – **204**. – P. 109–118.
- 4. *Binary* Alloy Phase Diagrams / Eds:. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzac // American Society for Metals. OH: Materials Park, 1990. **3**. 2876 p.
- 5. Шанк Ф. А. Структуры двойных сплавов. М.: Металлургия, 1973. 760 с.
- 6. *Mueller M. H. and Knoff H. W.* The crystal structure of Ti₂Cu, Ti₂Ni, Ti₄Ni₂O, and Ti₄Cu₂O // Trans. Metallugr. Soc. AIME. 1963. **227**, № 3. P. 675–678.
- Zavaliy I. Yu., Riabov A. B., and Yartys V. A. Hydrogen absorption and phase structural characteristics of oxygen–containing Zr–V alloys substituted by Hf, Ti, Nb, Fe // J. Alloys Comp. 1995. 219. P. 34–37.
- Zavaliy I. Hydrogen storage capacity of Zr-based η-phases in the dependence on oxygen content // J. Alloys Comp. 1999. 291. P. 102–109.
- The crystal structure of the oxygen–stabilized η-phase Zr₃V₃O_xD_{9.6} / I. Yu. Zavaliy, W. B. Yelon, P. Yu. Zavalij, I. V. Saldan, and V. K. Pecharsky // J. Alloys Comp. – 2000. – 309. – P. 75–82.
- (*Hf*,*Zr*)₂*Fe* and Zr₄Fe₂O_x compounds and their hydrides: phase equilibria, crystal structure and magnetic properties / I. Zavaliy, A. Riabov, V. Yartys, G. Wiesinger, H. Michor, and G. Hilsher // J. Alloys Comp. 1998. 265. P. 6–14.
- Further studies of HDDR process in Zr-based oxygen-stabilized compounds / I. Yu. Zavaliy, O. Gutfleisch, V. A. Yartys, and I. R. Harris // Proc. VII Int. Conf. "Hydrogen Materials Science and Chemistry of Metal Hydrides". – Alushta, 2001. – P. 336–339.
- Phase-structural characteristics of (Ti_{1-x}Zr_x)₄Ni₂O_{0.3} alloys and their hydrogen gas and electrochemical absorption–desorption properties / I. Yu. Zavaliy, G. Woicik, G. Mlynarek, I. V. Saldan, V. A. Yartys, and M. Kopczyk // J. Alloys Comp. 2001. **314**. P. 124–131.
- Завалій І. Ю, Салдан І. В. Дослідження воднесорбційних сплавів Ті(Zr)–Ni як електродних матеріалів для Ni–MГ акумуляторів // Фiз.-хім. механіка матеріалів. 2002. 38, № 4. С. 53–60.

(*Zavalii I. Yu., Saldan I. V.* Investigation of Ti(Zr–Ni) hydrogen-sorbing alloys as electrode materials for nickel–metal-hydride storage batteries // Materials Science. – 2002. – **38**, № 4. – P. 526–533.)

14. Салдан І. В., Ковальчук І. В., Завалій І. Ю. Вплив кисневого модифікування та легування на зарядно-розрядні характеристики МГ-електродів на основі сплавів Ті₂Ni // Фіз.хім. механіка матеріалів. – 2003. – **39**, № 4. – С. 70–76.

(Saldan I. V., Koval'chuk I. V., Zavalii I. Yu. Influence of oxygen modification and alloying on the charge–discharge characteristics of metal-hydride electrodes based on Ti_2Ni // Materials Science. – 2003. – **39**, No 4. – P. 545–553.)

- 15. *Hydrogenation* characteristics of ternary alloys containing Ti_4Ni_2X (X = O, N, C) / H. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, and M. Haruta // J. Alloys Comp. -2000. -311. P. 188-193.
- Hydrogenation characteristics of Ti₂Ni and Ti₄Ni₂X (X = O, N, C) / H. Takeshita, H. Tanaka, T. Kiyobayashi, N. Takeichi, and N. Kuriyama // J. Alloys Comp. – 2002. – 330–332. – P. 517–521.
- 17. *Kraus W. and Nolge G.* PowderCell for Windows. Version 2.3. Berlin: Federal Institute for Materials Research and Testing, 1999.
- 18. Rodriguez-Carvajal J. Program: FullProf. Lab. Leon Brillouin. CEA-CNRS, 1998.
- CSD-universal program packet for single crystal or powder structure data treatment / L. G. Akselrud, Yu. N. Grin, P. Yu Zavalii, V. K. Recharsky, and V. S. Fundamenskii // Coll. Abs. 12 European Crystallogr. – Moscow, 1989. – 3. – P. 155.

Одержано 13.04.2017