## СИНТЕЗ ТА ДОСЛІДЖЕННЯ ОКСИДУ ZrO<sub>2</sub>–SiO<sub>2</sub>, ДОПОВАНОГО ЙОНАМИ Sn (IV)

С. В. ПРУДІУС<sup>1</sup>, Н. Л. ГЕС<sup>1</sup>, О. І. ІНЬШИНА<sup>1</sup>, О. Ю. ХИЖУН<sup>2</sup>

<sup>1</sup> Інститут сорбції та проблем ендоекології НАН України, Київ;
<sup>2</sup> Інститут проблем матеріалознавства ім. І. М. Францевича НАН України, Київ

Змішані потрійні ZrO<sub>2</sub>–SiO<sub>2</sub>–SnO<sub>2</sub> оксиди синтезовано золь-гель методом за атомного співвідношення компонентів Zr:Si:Sn = 1:2:x, де x = 0,1+4,0. Методами термогравіметрії та рентгенофазового аналізу встановлено, що в зразках, в яких  $x \le 2$ , висока гомогенність розподілу катіонів Sn<sup>4+</sup> (x = 4). З подальшим збільшенням їх вмісту утворюється окрема фаза діоксиду олова, яка відповідає тетрагональній кристалічній структурі типу рутилу. Виявлено, що з введенням йонів олова в матрицю оксидів ZrO<sub>2</sub>–SiO<sub>2</sub> кислотність зразків також збільшується. Зокрема, максимальна сила кислотних центрів ( $H_0$ ) зростає з –11,35 для ZrSi<sub>2</sub> до –14,52 за переходу від ZrSi<sub>2</sub>Sn<sub>0,4</sub> до ZrSi<sub>2</sub>Sn. У РФ-спектрах високоенергетичні зсуви Zr 3d<sub>5/2</sub>- і Sn 3d<sub>5/2</sub>-рівнів вказують на зміщення електронної густини від атомів цирконію та олова до атомів кремнію. Зафіксовано октаедрично та тетраедрично координовані катіони Sn<sup>4+</sup> на поверхні зразків ZrSi<sub>2</sub>Sn<sub>x</sub>, які відносять до бренстедівських та льюїсівських кислотних центрів. Центрами Бренстеда можуть бути місткові –ОН групи на катіонах <sup>VIII</sup>Zr<sup>4+</sup> та <sup>IV</sup>Sn<sup>4+</sup>, а Льюїса – координаційно ненасичені центри цирконію та олова.

**Ключові слова**: потрійний оксид, діоксид олова, ZrO<sub>2</sub>–SiO<sub>2</sub>, сила кислотних центрів, суперкислота.

Mixed  $\text{ZrO}_2$ -SiO $_2$ -SiO $_2$ -SiO $_2$  oxides have been synthesized by sol-gel method with atomic ratios of components Zr:Si:Sn = 1:2:x, were  $x = 0.1 \div 4.0$ . Using thermogravimetric and XRD analysis it is shown that for samples with  $x \le 2$  high homogeneity of  $\text{Sn}^{4+}$  (x = 4) cation distribution is observed. Further increase of their content leads to the formation of a separate phase of tin dioxide, which corresponds to tetragonal crystal structure of the rutile type. It is shown that introduction of tin ions in  $\text{ZrO}_2$ -SiO $_2$  matrix leads to the increase in acidity of the obtained samples, too. Therefore, maximal strength of acid sites increases from -11.35 for  $\text{ZrSi}_2$  to -14.52 for  $\text{ZrSi}_2\text{Sn}_{.4}$  and  $\text{ZrSi}_2\text{Sn}$ . In XPS spectra, high energy shifts of Zr  $3d_{5/2}$  and Sn  $3d_{5/2}$  core levels indicate the shift of electron density from zirconium and tin atoms to silica atoms. The presence of octahedral and tetrahedral coordinated Sn<sup>4+</sup> on the surface of the  $\text{ZrSi}_2\text{Sn}_x$  samples, which refers to Brönsted and Lewis acid sites, is observed. The bridging -OH groups on <sup>VIII</sup>Zr<sup>4+</sup> and <sup>IV</sup>Sn<sup>4+</sup> cations could be Bronsted sites and coordinated-unsaturated zirconium and tin cations are Lewis sites.

Keywords: ternary oxide, tin dioxide,  $ZrO_2$ -SiO<sub>2</sub>, acid sites strength, superacid.

Вступ. Змішані системи на основі диоксидів цирконію і кремнію все частіше застосовують як селективні сорбенти, йонообмінні матеріали і каталізатори для багатьох реакцій [1–3]. Умови синтезу  $SiO_2$ – $ZrO_2$  оксиду залежать від кислотноосновних властивостей його поверхні, структурних особливостей і можливості подальшого використання в сорбції та каталізі [4–6]. Згідно з працею [6], під час синтезу  $ZrO_2$ –SiO<sub>2</sub> з допомогою золь-гель технології можна одержувати поруваті матеріали з однорідним розподілом компонентів на атомарному рівні за співвідношення Zr:Si = 1:2. При цьому кількість кислотних центрів у  $ZrO_2$ –SiO<sub>2</sub> зразках

Контактна особа: С. В. ПРУДІУС, e-mail: svitprud@gmail.com

максимальна [4–6] та спостерігається висока селективність цільових продуктів, наприклад, у реакціях ацилювання, переестерифікації метил-трет-бутилового естеру з етанолом, а також крекінгу вакуумного газойлю [7–9].

Модифікування бінарного  $SiO_2$ –ZrO<sub>2</sub> оксиду іншими оксидами металів, здатними стабілізувати необхідну структуру, призводить до утворення нових матеріалів з оптимальними фізико-хімічними характеристиками і донорно-акцепторними властивостями. Зокрема, оксид церію у бінарній системі  $ZrO_2$ –SiO<sub>2</sub> стабілізує формування тетрагональної фази ZrO<sub>2</sub> та поліпшує механічні властивості системи CeO<sub>2</sub>–ZrO<sub>2</sub>–SiO<sub>2</sub> [10]. Золь-гель методом синтезували [11] плівки потрійного змішаного оксиду TiO<sub>2</sub>–ZrO<sub>2</sub>–SiO<sub>2</sub> (21:9:70), каталітична активність яких зростала під час фотовідновлення Cr(VI) до Cr(III) порівняно з бінарною системою ZrO<sub>2</sub>–SiO<sub>2</sub>.

Недавно синтезовано потрійний суперкислотний  $ZrO_2-SiO_2-Al_2O_3$  оксид, який проявив високу активність під час олігомеризації тетрагідрофурану при 40°C [12]. Синтезовано також потрійний сильнокислотний  $ZrO_2-SiO_2-SnO_2$  оксид, який ефективно каталізує реакцію ацилювання толуолу оцтовим ангідридом при 150°C у проточному реакторі [13]. Проте мало вивчений взаємовплив компонентів на текстурні та структурні перетворення в оксидній системі  $ZrO_2-SiO_2$  зі збільшенням вмісту катіонів олова. Також зацікавлюють дослідження їх стану в оксидній матриці  $ZrO_2-SiO_2$  та вплив на концентрацію, тип та силу кислотних центрів у потрійному оксиді  $ZrO_2-SiO_2-SiO_2$ .

Тому нижче синтезовано потрійний змішаний ZrO<sub>2</sub>–SiO<sub>2</sub>–SnO<sub>2</sub> оксид та вивчено вплив катіонів олова на його текстурні, структурні та кислотні властивості.

**Експериментальна частина.** Серію оксидних зразків  $ZrO_2$ –SiO<sub>2</sub>–SnO<sub>2</sub> (атомне співвідношення Zr:Si:Sn = 1:2:x, де  $x = 0,1\div4,0$ ) синтезували золь-гель методом. Як вихідні речовини використовували октагідрат оксихлориду цирконію (ZrOCl<sub>2</sub>·8H<sub>2</sub>O), тетраетоксісилан (TEOC), пентагідрат хлорид олова (SnCl<sub>4</sub>·5H<sub>2</sub>O) та карбамід ((NH<sub>2</sub>)<sub>2</sub>CO). Для попереднього гідролізу TEOC змішували з водноетанольним розчином за співвідношення TEOC:C<sub>2</sub>H<sub>5</sub>OH:H<sub>2</sub>O = 15:8:77 mass%, при цьому значення pH ~ 6...7 регулювали, використовуючи 1М розчин HNO<sub>3</sub>. Одержаний розчин додавали до водного розчину оксихлориду цирконію та хлориду олова. Щоб запобігти швидкому осадженню гідроксидів металів, у розчин додавали трикратний надлишок карбаміду та витримували дві доби при 93°C. Утворені ксерогелі промивали водою, висушували при 120°C та прожарювали 2 h при 750°C. Зразки ZrO<sub>2</sub>–SiO<sub>2</sub>–SnO<sub>2</sub> позначали як ZrSi<sub>2</sub>Sn<sub>x</sub>, де x – атомне співвідношення Sn<sup>4+</sup>i Zr<sup>4+</sup> при Si<sup>4+</sup>/Zr<sup>4+</sup> = 2.

Термічні дослідження здійснювали на серійному дериватографі Q-1500D (Угорщина) в інтервалі 290...1270 К, використовуючи платиновий тигель. Швидкість нагрівання зразків 10 К · min<sup>-1</sup>. Їх рентгенограми реєстрували на дифрактрометрі ДРОН-4-07 у відфільтрованому нікелем Си $K_{\alpha}$ -випромінюванні за геометрії зйомки за Бреггом–Брентано в інтервалі 10...85°. Середній розмір кристалітів оксиду олова визначали за рівнянням Шеррера відносно найінтенсивнішого піка. Ізотерми адсорбції-десорбції азоту одержали з допомогою приладу Quantachrome Nova 2200e Surface Area and Pore Size Analyser. Методом трансмісійної електронної мікроскопії (ТЕМ) вивчали структуру та розмір частинок зразків на обладнанні JEM-1200 EX (JEOL, Японія) за пришвидшувальної напруги 80 kW, використовуючи цифрову фотокамеру Gatan.

Спектри відбиття (UV-Vis) зразків досліджували у повітрі, вживаючи як еталон BaSO<sub>4</sub>, в діапазоні 200...700 nm спектрофотометром Shimadzu UV-2450. Рентгенівські фотоелектронні (РФ) спектри отримали за допомогою приладу UHV-Analysis-System (SPECS, Німеччина), обладнаного напівсферичним аналізатором РНОІВОЅ 150 (використовували рентгенівське  $MgK_{\alpha}$ -випромінювання з  $E = 1253,6 \text{ eV}, P_{\text{max}} = 100 \text{ W}$ ). Енергетичну шкалу спектрометра калібрували, застосовуючи еталонні зразки зі золота і міді [14]. Ефекти поверхневого заряду зразків враховували за результатами вимірів енергії зв'язку внутрішніх C1s-електронів від вуглеводневих адсорбатів (її значення приймали рівним 284,6 eV) [15]. Для порівняння одержали також РФ-спектри внутрішніх електронів у вихідних зразках ZrO<sub>2</sub>–SiO<sub>2</sub>, а також ZrO<sub>2</sub>, SiO<sub>2</sub> і SnO<sub>2</sub>. Реконструювали РФ-спектри, розкладаючи їх на компоненти за допомогою програми OriginPro 2019 у додатку Peak Deconvolution (версія 1.5). Під час побудови спектрів використовували пропорційну базову лінію (алгоритм Ширлі) та симетричний профіль піків компонентів з апроксимацією за функціями Гаусса та Лоренца (співвідношення функцій 70:30).

Загальну кількість кислотних центрів отримали методом зворотного титрування за допомогою розчину н-бутиламіну в циклогексані в присутності індикатора – бромтимолового синього. Силу кислотних центрів та розподіл зразків за нею визначали за стандартною методикою, застосовуючи 0,1% розчин у циклогексані відповідних індикаторів Гамметта [16]. Активність зразків оцінювали в тестовій реакції перетворення 2-метил–3-бутин–2-олу (МБОН) за відомою методикою [17].

Результати та обговорення. Склад та текстурні характеристики синтезованих зразків наведено в табл. 1. Відомо, що зразок ZrSi<sub>2</sub> є аморфним до 950°С [18]. На рис. 1 подано результати дослідження системи ZrSi<sub>2</sub>Sn<sub>x</sub> за допомогою термогравіметричного аналізу і побудовано інтегральну, диференціальну і диференціально-термічну криві. Як бачимо, за  $x \le 2$  кристалізація діоксидів відсутня до 1000°С, що вказує на суттєву гомогенність системи. подальше збільшення вмісту Sn<sup>4+</sup> (x = 4) у зразку призводить до кристалізації SnO<sub>2</sub>, яка починається при 500°С.

Усім зразкам притаманна високорозвинена поверхня (290...360 m<sup>2</sup>/g), яка поступово зменшується зі збільшенням кількості діоксиду олова. Для зраз-



Рис. 1. Інтегральні (1), диференціальні (2) та диференціально-термічні (3) криві зразка ZrSi<sub>2</sub>Sn<sub>4</sub>.

Fig. 1. Integral (1), differential (2) and differential-thermal (3) curves of the ZrSi<sub>2</sub>Sn<sub>4</sub> sample.

ків ZrSi<sub>2</sub>Sn<sub>x</sub>, де  $x \le 2$ , середній діаметр пор змінюється незначно, тоді як для зразка ZrSi<sub>2</sub>Sn<sub>4</sub> – різко збільшується (табл. 1). Криві розподілу пор за розміром (рис. 2), одержані за ізотермою десорбції методом DFT (функціональної теорії щільності), для зразків ZrSi<sub>2</sub>Sn<sub>4</sub> та SnO<sub>2</sub> подібні. Це може свідчити про формування окремої фази діоксиду олова в матриці ZrSi<sub>2</sub>.

Наведено (рис. 3) дифрактограми зразків  $ZrSi_2Sn_x$  з різними атомними співвідношеннями, на який інтенсивність дифузних гало при  $2\theta = 30^{\circ}$  та  $51^{\circ}$ , яка пов'язана з аморфною структурою  $ZrO_2$ –SiO<sub>2</sub> матриці, зменшується, можливо, внаслідок збільшення вмісту аморфного оксиду олова. Відсутність вузьких піків, властивих зразкам діоксиду олова, де  $x \le 2$ , вказує на його високу дисперсність на поверхні чи в об'ємі матриці  $ZrO_2$ –SiO<sub>2</sub>, що збігається з результатами термогравіметричного аналізу. На дифрактограмі зразка  $ZrSi_2Sn_4$  присутні характерні піки (рис. 3), які відповідають тетрагональній кристалічній структурі типу рутилу  $SnO_2$ [19] зі середнім розміром кристалітів  $d_{cr} = 6$  nm. Дослідження мікроструктури зразків за допомогою TEM (рис. 4) виявили, що частинки подвійного оксиду  $ZrSi_2$  близькі за формою до сферичної зі середнім розміром 3...4 nm, який з додаванням йонів олова поступово зростає до 8...12 nm для потрійного оксиду  $ZrSi_2Sn_4$ .

| Зразок                              | Атомне<br>співвідно-<br>шення<br>Zr:Si:Sn | Питома<br>площа<br>поверхні<br><i>S</i> , m <sup>2</sup> /g | Об'єм<br>пор <i>V</i> ,<br>cm <sup>3</sup> /g | Середній<br>діаметр<br>пор <i>d</i> ,<br>nm | Фазовий<br>склад                                                      | Концен-<br>трація<br>кислот-<br>них<br>центрів,<br>[HB],<br>mmole/g | Макси-<br>мальна<br>сила<br>кислот-<br>них<br>центрів,<br><i>H</i> <sub>0max</sub> |
|-------------------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|
| ZrSi <sub>2</sub>                   | 1:2:0,0                                   | 360                                                         | 0,3                                           | 3,0                                         | Аморфний                                                              | 1,7                                                                 | -11,35                                                                             |
| ZrSi <sub>2</sub> Sn <sub>0,1</sub> | 1:2:0,1                                   | 360                                                         | 0,2                                           | 2,5                                         | Аморфний                                                              | 1,4                                                                 | -13,75                                                                             |
| $ZrSi_2Sn_{0,4}$                    | 1:2:0,4                                   | 340                                                         | 0,2                                           | 2,4                                         | Аморфний                                                              | 1,5                                                                 | -14,52                                                                             |
| ZrSi <sub>2</sub> Sn <sub>1</sub>   | 1:2:1,0                                   | 300                                                         | 0,2                                           | 2,5                                         | Аморфний                                                              | 1,4                                                                 | -13,75                                                                             |
| ZrSi <sub>2</sub> Sn <sub>2</sub>   | 1:2:2,0                                   | 240                                                         | 0,2                                           | 2,6                                         | Аморфний                                                              | 1,0                                                                 | -12,44                                                                             |
| ZrSi <sub>2</sub> Sn <sub>4</sub>   | 1:2:4,0                                   | 205                                                         | 0,2                                           | 3,8                                         | Крист.<br>SnO <sub>2</sub> <i>d</i> <sub>cr</sub> =6 nm<br>/ аморфний | 0,9                                                                 | -8,2                                                                               |

Таблиця 1. Склад, текстурні та кислотні характеристики ZrO2-SiO2-SnO2 зразків



Рис. 2. Розподіл DFT за розмірами пор зразків SnO<sub>2</sub> та ZrSi<sub>2</sub>Sn<sub>x</sub>, кальцинованих при 750°C: 1 - x = 0,1; 2 - 0,4; 3 - 1,0; 4 - 2,0; 5 - 4,0.

Fig. 2. DFT pore size distribution of SnO<sub>2</sub> and ZrSi<sub>2</sub>Sn<sub>x</sub> samples, calcined at 750°C: 1 - x = 0.1; 2 - 0.4; 3 - 1.0; 4 - 2.0; 5 - 4.0.

Рис. 3. Дифрактограми зразків ZrSi<sub>2</sub>Sn<sub>x</sub>, кальцинованих при 750°C: l - x = 4,0; 2 - 0,1; 3 - 0,4; 4 - 1,0; 5 - 2,0.

Fig. 3. XRD patterns of  $\text{ZrSi}_2\text{Sn}_x$  samples, calcinated at 750°C: l - x = 4.0; 2 - 0.1; 3 - 0.4; 4 - 1.0; 5 - 2.0.

З введенням йонів олова в матрицю  $ZrO_2$ –SiO<sub>2</sub> збільшується кислотність зразків (табл. 1). За розподілом кислотних центрів за силою на поверхні зразка  $ZrSi_2Sn_{0,4}$  (рис. 5) виявили ~10% суперкислотних (-13,16  $\ge H_0 \ge$  -14,52) та ~40% кислотних центрів меншої сили (-8,2  $\ge H_0 \ge$  -11,35). Для порівняння, поверхня зразка  $ZrSi_2$  містить ~45% кислотних центрів з максимальною силою -8,2  $\ge H_0 \ge$  -11,35.

Такий їх розподіл корелює з активністю  $ZrO_2$ –SiO $_2$ -SnO $_2$  зразків у реакції дегідратації 2-метил–3-бутин–2-олу (МБОН, 69 а.о.м.) до 3-метил–3-бутен–1-іну (Мьупе, 66 а.о.м.) та ізомеризації МБОН у 3-метил–2-бутен–1-аль (Prenal, 84 а.о.м.). Крива швидкості утворення Мьупе (рис. 6) має широке гало в області 70°С, яке, імовірно, обумовлено центрами з максимальною силою –8,2  $\ge H_0 \ge$  –12,14 [5]. Для ізомеризації МБОН в Prenal потрібні сильніші кислотні центри [5]. Наприклад, для WO<sub>3</sub>–ZrO<sub>2</sub> зразка ( $H_0 \ge$  –14,52) пік Prenal утворюється при 110°С [5], а для зразка ZrSi<sub>2</sub>Sn<sub>0.4</sub> – при 110...120°С (рис. 6).



Рис. 4. ТЕМ зображення ZrSi<sub>2</sub> (*a*), ZrSi<sub>2</sub>Sn<sub>0,4</sub> (*b*) та ZrSi<sub>2</sub>Sn<sub>4</sub> (*c*).

## Fig. 4. TEM images of ZrSi<sub>2</sub> (a), ZrSi<sub>2</sub>Sn<sub>0.4</sub> (b) and ZrSi<sub>2</sub>Sn<sub>4</sub> (c).

За результатами електронної спектроскопії дифузного відбиття визначили стан катіонів олова Sn<sup>4+</sup> в оксидній матриці, які можуть знаходитись у трьох типах координаційного оточення з відповідними спектроскопічними характеристиками: ізольовані тетраедрично (207 nm) та октаедрично (224 nm) координовані йони Sn<sup>4+</sup>, а також гексакоординовані (280 nm), які утворюють полімерні кластери SnO<sub>6</sub>, наприклад, у структурі SnO<sub>2</sub> [19].



Рис. 5. Розподіл кислотних центрів за силою для оксидів  $ZrSi_2Sn_{0,4}$  та  $ZrSi_2:$   $\blacksquare - ZrO_2 - SiO_2; \Box - ZrO_2 - SiO_2 - SnO_2.$ 

Fig. 5. Concentration-strength acid site distribution on  $ZrSi_2Sn_{0.4}$  and  $ZrSi_2$  surface.  $\square - ZrO_2 - SiO_2$ ;  $\square - ZrO_2 - SiO_2 - SnO_2$ .

Рис. 6. Спектри термопрограмованої реакції утворення Mbyne (66 а.о.м) (крива *1*) та Prenal (84 а.о.м) (крива 2) з МБОН (69 а.о.м) (крива *3*), адсорбованого на ZrSi<sub>2</sub>Sn<sub>0.4</sub>.

Fig. 6. Thermoprogrammed reaction spectra of formation Mbyne (m/e = 66) (curve 1) and Prenal (m/e = 84) (curve 2) with MBOH (m/e = 69) (curve 3), adsorbed on  $ZrSi_2Sn_{0.4}$ .

Смуги поглинання при 206 та 220 nm (рис. 7) у спектрах зразків ZrSi<sub>2</sub>Sn<sub>x</sub> з  $x \le 1$  вказують на присутність ізольованих тетраедрично та октаедрично координованих йонів Sn<sup>4+</sup> у матриці ZrO<sub>2</sub>–SiO<sub>2</sub>, які відносять до бренстедівських та

льюїсівских кислотних центрів [19]. Центрами Бренстеда можуть бути місткові – ОН групи на катіонах <sup>VIII</sup>Zr<sup>4+</sup> та <sup>IV</sup>Sn<sup>4+</sup> [16]. У спектрах зразків з Sn<sup>4+</sup>  $\geq$  2 спостерігається плече при 250...300 nm (рис. 7). Очевидно, що подальше зростання вмісту олова призводить до пріоритетного формування зв'язку Sn–O–Sn, яке завершується утворенням окремої фази SnO<sub>2</sub> для зразка ZrSi<sub>2</sub>Sn<sub>4</sub>.



Стан поверхні синтезованих зразків вивчали також методом рентгенівської фотоелектронної спектроскопії. Відповідні значення енергій зв'язку ( $E_b$ ), які узгоджуються з теоретичними та експериментальними [20–24], наведені в табл. 2. Спектри Zr 3*d*-рівнів розкладали на зв'язані пари компонент з параметрами  $\Delta E_b$  (3 $d_{3/2}$ – $-3d_{5/2}$ ) = 2,4 eV,  $I_{3d_{3/2}}/I_{3d_{5/2}}$  = 0,72, FWHM = 2 eV (рис. 8). Домінувала компонента із  $E_b$  = 182,8 nm, яку можна віднести до Zr<sup>4+</sup> станів зв'язку Sn–O–Zr–O–Si в ZrSi<sub>2</sub>Sn<sub>0,4</sub>. Спектральна особливість в області 183,4 eV відповідає Zr<sup>4+</sup> станам зв'язку Zr–O––Si в ZrO<sub>2</sub>–SiO<sub>2</sub>, що узгоджується з результатами для ZrSiO<sub>4</sub> [21]. Компонента з  $E_b$  = 182,1 eV відповідає Zr<sup>4+</sup> в ZrO<sub>2</sub> [20, 21, 23, 24], що збігається з максимумом Zr3d<sub>5/2</sub> лінії реперного зразка ZrO<sub>2</sub>.

Таблиця 2. Значення енергій зв'язку (*E<sub>b</sub>*) рівнів 3*d*, Si 2*p* Zr i 3*d* Sn в ZrSi<sub>2</sub>Sn<sub>0,4</sub>, ZrSi<sub>2</sub>, ZrO<sub>2</sub>, SiO<sub>2</sub> та SnO<sub>2</sub>

| <b>D</b> m/      |              | Zr 3 <i>d</i> <sub>5/2</sub> | Si 2p | Sn 3d <sub>5/2</sub> |  |  |
|------------------|--------------|------------------------------|-------|----------------------|--|--|
| зразок           |              | $E_b$ , eV                   |       |                      |  |  |
| ZrSi Sn          | Zr–O–Zr      | 182,1                        |       |                      |  |  |
|                  | Sn-O-Zr-O-Si | 182,8                        | 102.0 | 487,3                |  |  |
| 21312311         | Zr–O–Si      | 183,4                        | 102,9 |                      |  |  |
|                  | Zr–O–Sn      | 184,4                        |       |                      |  |  |
| 7:5:             | Zr–O–Si      | 183,4                        | 102.7 | _                    |  |  |
| 21312            | Zr–O–Zr      | 182,3                        | 102,7 |                      |  |  |
| ZrO <sub>2</sub> | -            | 182,2                        | -     | -                    |  |  |
| SiO <sub>2</sub> | _            | _                            | 103,4 | _                    |  |  |
| SnO <sub>2</sub> | _            | _                            | -     | 486,7                |  |  |

Максимуми Zr  $3d_{5/2}$  i Sn  $3d_{5/2}$  рівнів, що відповідають Zr<sup>4+</sup> та Sn<sup>4+</sup> у Zr–O–Sn– O–Si зв'язках ZrSi<sub>2</sub>Sn<sub>0,4</sub> (182,8 та 487,3 eV), зсунуті у бік вищих енергій зв'язку порівняно з енергією вихідних діоксидів ZrO<sub>2</sub> i SnO<sub>2</sub> (182,2 та 486,7 eV) (табл. 2). Водночас, РФ-спектри внутрішніх Si 2*p*-електронів зміщуються до нижчих енергій зв'язку в змішаних ZrSi<sub>2</sub> та ZrSi<sub>2</sub>Sn<sub>0,4</sub> оксидах. Подібний високоенергетичний зсув Zr  $3d_{5/2}$ -рівня в РФ-спектрах спостерігали для циркону (ZrSiO<sub>4</sub>) та ZrO<sub>2</sub>– SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> оксиду [21, 12]. Ці зсуви в спектрах зразка ZrSi<sub>2</sub>Sn вказують на зміщення електронної густини від атомів цирконію та олова до атомів кремнію. Таким чином, надлишковий позитивний заряд на катіонах цирконію та олова на поверхні  $ZrO_2$ – $SiO_2$ – $SnO_2$  оксиду може формувати суперкислотні центри Лью-їса ( $H_0 > -12$ ):



Рис. 8. Рентгенівські фотоелектронні спектри Zr 3*d*-рівня для ZrSi<sub>2</sub>Sn<sub>0,4</sub> (*a*), ZrSi<sub>2</sub> (*b*) та ZrO<sub>2</sub>(*c*). Fig. 8. X-ray photoelectron Zr spectra of the 3*d*-level for ZrSi<sub>2</sub>Sn<sub>0,4</sub> (*a*), ZrSi<sub>2</sub> (*b*) and ZrO<sub>2</sub>(*c*).

## висновки

Синтезовано потрійний ZrO<sub>2</sub>-SiO<sub>2</sub>-SnO<sub>2</sub> оксид та визначено вплив вмісту йонів олова на текстурні, структурні та кислотні перетворення в оксидній системі. Встановлено, що найвищі сила  $(H_0 = -14,52)$  та концентрація ([HB] = = 1,5 mmole/g) кислотних центрів властиві зразку ZrSi<sub>2</sub>Sn<sub>0,4</sub>. За даними електронної спектроскопії дифузного відбиття та рентгенівської фотоелектронної спектроскопії запропоновано схему суперкислотного центра та виявлено, що суперкислотність ZrO2-SiO2-SnO2 оксиду пов'язана з утворенням координаційно ненасичених йонів  $Zr^{4+}$  та  ${}^{IV}Sn^{4+}$  як сильних центрів Льюїса.



- Retention behavior of basic a solutes on zirconia-silica composite stationary phases up ports in normal phase liquid chromatography / R. A. Shalliker, M. Rizk, C. Stocksiek, A. P. Sweeney // J. of Liquid Chromatography and Related Techn. – 2002. – 2, № 4. – P. 561–572. https://doi.org/10.1081/JLC-120008811
- Sorption mechanism for Cs<sup>+</sup>, Co<sub>2</sub><sup>+</sup> and Eu<sub>3</sub><sup>+</sup> on amorphous zirconium silicate as cation exchanger / I. M. El-Naggar, E. A. Mowafy, Y. F. El-Aryan, M. G. Abd El-Wahed // Solid State Ionics. 2007. **178**. P. 741–747. https://doi.org/10.1016/j.ssi.2007.03.009
- New industrial process of PTMG catalyzed by solid acid / T. Setoyama, M. Kobayashi, Y. Kabata, T. Kawai, and A. Nakanishi // Catalysis Today. 2002. 73. P. 29–37. https://doi.org/10.1016/S0920-5861(01)00515-6
- Prudius S. V. Synthesis of mesoporous acid oxides ZrO<sub>2</sub>-SiO<sub>2</sub> // Catalysis and Petrochemistry. - 2010. - 18. - P. 1-5.
- Hammett acidity function for mixed ZrO<sub>2</sub>-SiO<sub>2</sub> oxide at elevated temperatures / E. I. Inshina, D. V. Shistka, G. M. Telbiz, and V. V. Brei // Chemistry, Physics and Techn. of Surf. - 2012. - 3, № 4. - P. 395-400.
- Tarafdar A., Panda A. B., and Pramanik P. Synthesis of ZrO<sub>2</sub>–SiO<sub>2</sub> mesocomposite with high ZrO<sub>2</sub> content via a novel sol–gel method // Microporous and Mesoporous Mat. – 2005.
  - 84. – P. 223–228. https://doi.org/10.1016/j.micromeso.2005.05.014
- Inshina E. I. and Brei V. V. Acylation of methyl tert-butyl ether by acetic anhydride on acid Amberlist-15 and ZrO<sub>2</sub>-SiO<sub>2</sub> Catalysts // Theoretical and Experimental Chemistry. – 2013.

- **49**, № 5. - P. 320–325. https://doi.org/10.1007/s11237-013-9332-8

- Inshina O. I., Sharanda M. E., and Brei V. V. Transetherification of methyl tert-butyl ether with ethanol over acidic ZrO<sub>2</sub>–SiO<sub>2</sub> oxide and Dowex DR-2030 sulphoresin catalyst // Catalysis and Petrochemistry. – 2014. – 23. – P. 5–7.
- Патент Україна (2016) № U 2016 04724, B01J29/08; B01J37/00; C10G11/00, 11/05. Спосіб одержання цирконій силікатного каталізатора крекінгу вакуумного газойлю / В. В. Брей, С. В. Прудіус, О. І. Іньшина, К. М. Хоменко. – Заявл. 28.04.2016.
- Vasanthavel S., Derby B., and Kannan S. Stabilization of a t-ZrO<sub>2</sub> polymorph in a glassy SiO<sub>2</sub> matrix at elevated temperatures accomplished by ceria additions // Dalton Transaction. - 2017. - 46. - P. 6884–6893.
- Nanosized TiO<sub>2</sub>-based mixed oxide films: sol-gel synthesis, structure, electrochemical characteristics and photocatalytic activity / N. Smirnova, Y. Gnatyuk, N. Vityuk, O. Linnik, A. Eremenko, V. Vorobets, and G. Kolbasov // Int. J. of Mat. Eng. 3, № 6. P. 124–135. doi: 10.5923/j.ijme.20130306.02
- Synthesis and study of superacid ZrO<sub>2</sub>–SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> mixed oxide / O. Inshina, A. Korduban, G. Tel'biz, and V. Brei // Adsorption Sci. Techn. – 2017. – 35. – P. 439–447. doi.org/10.1177/0263617417694887
- Sythesis and research of new superacid ZrO<sub>2</sub>-SiO<sub>2</sub>-SnO<sub>2</sub> oxide / S. V. Prudius, N. L. Hes, V. V. Trachevskiy, and V. V. Brei // Dopovidi Nacionalnoi akademii nauk Ukraini. – 2019. – 11. – P. 73–80.
- Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of pyrazine intercalated MoO<sub>3</sub> hybrid nanostructures / S. Rajagopal, D. Nataraj, O. Y. Khyzhun, Y. Djaoued, J. Robichaud, K. Senthil, and D. Mangalaraj // Cryst. Eng. Comm. – 2011. – 13, № 7. – P. 2358–2368. doi: 10.1039/C0CE00303D
- Photocatalytic properties of tin dioxide doped with chromium(III), silver and zinc compounds in the oxidation of organic substrates by the action of visible light / S. V. Khalameida, M. N. Samsonenko, V. V. Sydorchuk, V. L. Starchevskyy, O. I. Zakutevskyy, and O. Y. Khyzhun // Theoretical and Experimental Chemistry. 2017. 53, № 1. P. 40–46. doi: 10.1007/s11237-017-9499-5
- New Solid Acids and Bases: Their Catalytic Properties / K. Tanabe, M. Misono, Y. Ono, and H. Hattoni. – Amsterdam: Elsevier, 1989. – 365 p.
- 17. *Brei V. V.* Correlation between the strength of the basic sites of catalysts and their activity in the decomposition of 2-methyl–3-butyn–2-ol as a test reaction // Theoretical and Experimental Chem. 2008. **44**, № 5. P. 320–324. https://doi.org/10.1007/s11237-008-9040-y
- Effect of microwave assisted and conventional thermal heating on the evolution of nanostructured inorganic–organic hybrid materials to binary ZrO<sub>2</sub>–SiO<sub>2</sub> oxides / S. Mascotto, O. Tsetsgee, K. Mu<sup>-</sup>Iler, C. Maccato, B. Smarsly, D. Brandhuber, E. Tondello, and S. Gross // J. of Mat. Chem. – 2007. – 17. – P. 4331–4342.
- Mesoporous tin oxide: An efficient catalyst with versatile applications in acid and oxidation catalysis / P. Manjunathan, V. S. Marakatti, P. Chandra, A. B. Kulal, Sh. B. Umbarkar, R. Ravishankar, and G. V. Shanbhag // Catalysis Today. – 2018. – 309, № 1. – P. 61–76. https://doi.org/10.1016/j.cattod.2017.10.009
- Handbook of X-ray Photoelectron Spectroscopy / C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg. – Eden Prairie, MN, USA: Perkin-Elmer Co., Physical Electronics Division, 1979.
- Guittet M. J., Crocombette J. P., and Gautier Soyer M. Bonding and XPS chemical shifts in ZrSiO4 versus SiO<sub>2</sub> and ZrO<sub>2</sub>: Charge transfer and electrostatic effects // Phys. Rev. B. - 2001. - 63, № 12. - P. 117-125.
- 22. Barr T. L. and Lishka M. A. ESCA studies of the surface chemistry of zeolites // J. Am. Chem. Soc. 1986. **108**, № 12. P. 3178–3186.
- Using photoelectron spectroscopy to observe oxygen spillover to zirconia / P. Lackner, Z. Zou, S. Mayr, U. Diebold, and M. Schmid // Physical Chemistry Chemical Physics. - 2019. - 21, № 32. - P. 17613-17620.
- 24. Ultrafast proton-assisted tunneling through ZrO<sub>2</sub> in dye-sensitized SnO<sub>2</sub>-core/ZrO<sub>2</sub>-shell films / J. R. Swierk, N. S. McCool, J. A. Röhr, S. Hedström, S. J. Konezny, C. T. Nemes, X. Pengtao, V. S. Batista, T. E. Mallouk, and C. A. Schmuttenmaer // Chemical Communications. 2018. 54, № 57. P. 7971–7974.