УДК 539.43:669.715

ВПЛИВ ДОМІШОК ЗАЛІЗА І КРЕМНІЮ НА ЕКСПЛУАТАЦІЙНУ ДЕГРАДАЦІЮ СПЛАВІВ СИСТЕМ Al-Cu-Mg I Al-Zn-Mg-Cu

О. П. ОСТАШ¹, Р. В. ЧЕПІЛЬ¹, О. В. АБОЛІХІНА², О. І. СЕМЕНЕЦЬ², В. А. ЗНОВА², Ю. В. ГОЛОВАТЮК¹

¹ Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів; ² ДП "АНТОНОВ", Київ

Досліджено мікро- і наноструктуру та фізико-механічні характеристики алюмінієвих сплавів Д16чТ, В95пчТ1 і В95пчТ2 (закордонних аналогів сплавів 2524-Т3, 7475-Т6 і 7475-Т761, відповідно) у вихідному стані та після модельної деградації, яка імітує вплив їх довготривалої експлуатації. За отриманими характеристиками міцності σ_{YS} і σ_{UTS} , пластичності δ , порога втоми ΔK_{th} , циклічної в'язкості руйнування ΔK_{fc} і питомої електропровідності σ встановлено, що за підвищення чистоти цих сплавів за домішками кремнію (до 0,08...0,18 wt.%) і заліза (до 0,2...0,23 wt.%) відсутня їх деградація за тривалої дії температурно-силових чинників, які імітують вплив експлуатаційних.

Ключові слова: алюмінієві сплави, деградація, мікроструктура, фізико-механічні властивості.

The micro- and nanostructure and physicomechanical characteristics of $\square 16$ чT, B95пчT1 and B95пчT2 aluminum alloys (the foreign analogues of 2524-T3, 7475-T6 and 7475-T761 alloys, respectively) in as-received state and after model degradation, which simulates the influence of long-term exploitation of these alloys, are investigated. It is established, based on the obtained characteristics of strength σ_{YS} and σ_{UTS} , ductility δ_5 , fatigue threshold ΔK_{th} , cyclic fracture toughness ΔK_{fc} and specific electrical conductivity σ , that with a decrease of the impurities content (silicon up to 0.08...0.18 wt.% and iron up to 0.2...0.23 wt.%) there is no their degradation under durable effect of temperature and force factors which simulate the operational factors.

Keywords: aluminum alloys, degradation, microstructure, physical and mechanical properties.

Вступ. Для обшивки фюзеляжу і крил літаків "АНТОНОВ" використовували листи з високоміцних сплавів систем Al–Cu–Mg (типу Д16) і Al–Zn–Mg–Cu (типу В95) – аналогів сплавів закордонного виробництва типу 2024 і 7075, відповідно, в станах Д16Т (2024-ТЗ) після гартування і природного старіння та В95Т1 (7075-Т6) після гартування і штучного старіння.

Сплави Д16АТНВ і В95Т1 з високим вмістом домішок заліза і кремнію (0,5 wt.% кожного) під час довготривалої експлуатації деградують [1, 2], тобто змінюється вихідна тонка структура і формується мікропошкодженість, через що погіршуються їх механічні характеристики. Аналогічні процеси відбуваються під час модельної деградації [1], коли імітують тривалий вплив експлуатаційних чинників (механічних напружень, температури і циклічного навантаження). Подібні результати про експлуатаційну деградацію сплавів систем Al–Cu–Mg i Al–Zn–Mg–Cu та елементів авіаконструкцій з них отримали інші дослідники [3–5].

Контактна особа: О. П. ОСТАШ, e-mail: fmidep17@gmail.com

Встановили [2], що моніторити їх деградацію можна, вимірюючи питому електропровідність. Зокрема, у нижній обшивці зі сплаву Д16АТНВ в зоні нервюри № 2 крила (2НК) літака АН-12 після 40 років експлуатації вона зростає на 11% (рис. 1), що супроводжується падінням його пластичності (відносного видовження δ) на 20% і порога втоми (ΔK_{th}) на 12% [1, 2]. У верхній обшивці зі сплаву В95Т1 деградація в зоні 2НК інтенсивніша (рис. 1): питома електропровідність зростає на 29%, а пластичність і поріг втоми зменшуються на 40 і 37%, відповідно [1, 2].

Аналіз тонкої структури виявив [2], що можливою причиною падіння пластичності і тріщиностійкості деградованих сплавів Д16АТНВ і В95Т1 після довготривалої експлуатації є мікророзтріскування виділень інтерметалідів, які містять залізо і кремній (типу (Cu, Fe, Mn)Al₆, (Cu, Zn, Fe, Mn)₃Si₂Al₁₅, Mg₂Si), та декогезія вздовж міжфазних меж інтерметалід–матриця. Тобто так проявляється негативний вплив домішок заліза і кремнію на службові характеристики алюмінієвих сплавів типу Д16 і В95 [6–8].

Мета цього дослідження – вивчити вплив модельної деградації сплавів систем Al-Cu-Mg i Al-Zn-Mg-Cu підвищеної чистоти за домішками заліза і кремнію на їх фізико-механічні властивості та порівняти ці результати з отриманими для сплаву з високим вмістом домішок.

Матеріал і методика. Випробовували зразки, вирізані з листів товщиною 4...5 mm зі сплавів Д16ч і В95пч з пониженим вмістом кремнію і заліза (виготовлених згідно з ГОСТ 4784-97 та ОСТ 190026-80, відповідно), а також з листа товщиною 3,5 mm зі сплаву В95 з підвищеним їх вмістом (табл. 1).

Ці сплави були у стані після гартування і природного старіння (Д16чТ, аналог сплаву 2524-ТЗ), а також гартування і одно- (В95пчТ1, аналог 7475-Т6; В95Т1, аналог 7075-Т6) та двостадійного (В95пчТ2, аналог 7475-Т761) штучного старіння. Їх вивчали у вихідному стані і після модельної (Д16чТ, В95пчТ1, В95пчТ2) та експлуатаційної впродовж 40 років (В95Т1) деградації. Модельну здійснювали за відомою методикою [1] при 190°С за трьома режимами: М1 – за дії номінальних напружень $\sigma_{nom} = 80$ МРа тривалістю $N = 10^5$ cycles; M2 – 100 МРа і 10^5 cycles;

M3 – 100 MPa i 2·10⁵ cycles. Зразки сплаву B95T1 після експлуатаційної деградації вирізали з верхньої обшивки крила літака AH-12 у зонах нервюри (rib) № 14 (14RW) та між нервюрами № 3 і 2 (3RW–2RW), де діяли, відповідно, мінімальні і максимальні робочі напруження [2]. Останні досліджували також після додаткової модельної деградації за режимом M3.

Сплав	Вміст хімічних елементів, wt.%											
	Cu	Mg	Zn	Mn	Cr	Ti	Si	Fe	Al			
Д16ч	4,25	1,55	0,05	0,48	0,01	0,04	0,18	0,20	Решта			
В95пч	1,50	2,30	5,45	0,23	0,12	0,04	0,08	0,23	_ // _			
B95	1,85	2,43	6,35	0,41	0,10	0,03	0,48	0,49	_ // _			

Таблиця 1. Досліджувані матеріали

Мікроструктуру сплавів та локальний вміст хімічних елементів вивчали в сканувальному електронному мікроскопі TESCAN Vega3 LMH зі системою EDX AZTEK, а тонку структуру – на фольгах, використовуючи трансмісійний електронний мікроскоп JEOL JEM2100-F зі системою EDX INCA. Питому електропровідність (σ) визначали вихрострумовим методом приладом, який дає можливість вимірювати через плакувальний шар і лакофарбове покриття з похибкою ±0,1 MS/m [9, 10]. Стандартні характеристики міцності та пластичності (границі плинності σ_{VTS} і міцності σ_{UTS} та відносне видовження δ_5) встановлювали на зразках-смугах завдовжки 150 mm і перерізом робочої частини 20×(4...5) mm.

Характеристики циклічної тріщиностійкості (ЦТ) оцінювали за стандартною методикою [11], будуючи залежності швидкості росту da/dN втомної макротріщини від розмаху коефіцієнта інтенсивності напружень ΔK у зразках-смугах завдовжки 150 mm і перерізом $40 \times (4...5)$ mm за циклічного розтягу з асиметрією R = 0,1 і частотою 8...10 Hz циклу навантаження в лабораторному повітрі. Довжину тріщини фіксували оптично з похибкою ±0,01 mm. Характеристиками ЦТ вибрали поріг втоми ΔK_{th} і циклічну в'язкість руйнування ΔK_{fc} – значення ΔK при $da/dN = 10^{-10}$ і 10^{-5} m/cycle, відповідно. Зразки для випробувань на міцність і тріщиностійкість вирізали вздовж напряму вальцювання листа (ДП-зразки). Особливості мікромеханізмів руйнування досліджували на втомних зламах зразків за допомогою сканувального електронного мікроскопа Zeis EVO-40XVP зі системою EDX INCA.

Результати та їх обговорення. У вихідному стані сплавам Д16чТ і В95пчТ1 властива значна варіативність розміру зерна (30...120 і 20...90 µm, відповідно): середній розмір у сплаві В95пчТ1 менший приблизно в 1,4 рази, ніж у сплаві Д16чТ. Для обох зафіксували досить рівномірний розподіл первинних інтерметалідів переважно глобулярної форми, які дещо дрібніші у сплаві В95пчТ1: 2...15 проти 4...15 µm (рис. 2*a*, *b*). Локальний хімічний аналіз засвідчив, що кремній і залізо містяться тільки в первинних інтерметалідах, які також багаті на мідь (рис. 2*a*, *b*).

Аналіз тонкої структури, сформованої під час старіння, вказує на те, що в сплаві Д16чТ виділення вторинних інтерметалідів глобулярні, близькі до кулястих, розміром не більше 150 nm, які рівномірно розподілені в тілі зерна, а вздовж меж зерен поодинокі (рис. 2c). В сплаві В95пчТ1 вони також розташовані досить рівномірно, а на межах зерен їх небагато (рис. 2d): розмір глобулярних не перевищує 70 nm, а еліпсовидних 180 nm. В обох сплавах вторинні інтерметаліди за хімічним складом відповідають первинним (рис. $2a, c \ i b, d$).

Zona	Element, wt.%							Zono	Element, wt.%									
Zone	Al	Cu	Mg	Mn	Cr	Ti	Si	Fe	Zone	Al	Zn	Mg	Cu	Mn	Cr	Ti	Si	Fe
М	95,73	2,58	1,53	0,10	0,00	0,06	0,00	0,00	М	93,20	2,42	2,54	1,84	0,00	0,00	0,00	0,00	0,00
Ι	85,98	5,12	1,38	3,89	0,16	0,00	0,30	3,17	Ι	85,14	4,29	4,55	2,96	1,90	0,40	0,10	0,29	0,37

Рис. 2. Мікро- (*a*, *b*) і наноструктура (*c*, *d*), а також локальний хімічний склад сплавів Д16чТ (*a*, *c*) і В95пчТ1 (*b*, *d*): М – матриця; І – первинні і вторинні інтерметаліди; наведено усереднені дані 3–5 вимірів.

Fig. 2. Micro- (*a*, *b*) and nanostructure (*c*, *d*) and local chemical composition of Д16чТ (*a*, *c*) and В95пчТ1 (*b*, *d*) alloys: M – matrix; I – primary and secondary intermetallics; the average data of 3–5 measurements are given.

Під час модельної деградації структура сплавів Д16чТ, В95пчТ1 і В95пчТ2 з пониженим вмістом кремнію і заліза, очевидно, відчутно не змінилася, оскільки їх характеристики міцності, пластичності і тріщиностійкості після різних режимів температурно-силового впливу практично такі ж, як для вихідного стану (табл. 2; рис. 3). При цьому практично сталими залишаються значення структурно чутливої характеристики σ (табл. 2), яка змінюється в межах похибки вимірювань. Зауважимо, що модельно сплави деградували також за вищих номінальних

напружень і тривалішої їх дії (режим M3) порівняно з використовуваним раніше режимом M1 [1, 2].

	, <u>.</u>	· I ·	F 1 -				
0	C	σ_{YS}	σ_{UTS}	δ5,	$\Delta K_{\rm th}$	$\Delta K_{\rm fc}$	σ,
Сплав	Стан матеріалу	MPa		%	MPa	MS/m	
Д16чТ	Вихідний	344	461	15,1	3,8	45	20,2
	M1	350	470	15,0	-	-	20,2
	M2	345	465	14,8	_	_	20,4
	M3	346	460	15,0	3,8	44	20,3
	Вихідний	499	544	10,4	2,5	31	21,7
D05T1	M1	492	548	10,0	-	-	21,6
B9311411	M2	495	546	9,8	-	_	21,8
	M3	490	542	10,2	2,4	30	21,6
В95пчТ2	Вихідний	442	505	11,0	2,2	32	23,9
	M3	444	506	10,8	2,2	32	23,8
B95T1	Експл. (14RW) [2]	480	521	11,0	3,8	30	21,0
	Експл. (3RW-2RW) [2]	490	518	6,0	2,3	24	24,0
	(3RW - 2RW) + M3	484	516	4,6	1,4	21	24,3

Таблиця 2. Фізико-механічні характеристики досліджуваних сплавів

Примітка: подано усереднені дані випробувань 3–5 зразків; RW – нервюра крила (rib of the wing).

Експлуатаційна деградація сплаву B95T1 з підвищеним вмістом кремнію і заліза зумовлювала суттєву зміну його фізико-механічних характеристик: порівняно з матеріалом у зоні 14HK, де він близький до вихідного, в зоні 3HK–2HK падають характеристики δ , ΔK_{th} , ΔK_{fc} і зростає σ (табл. 2). Після додаткової модельної деградації за режимом M3 механічні характеристики (δ , ΔK_{th} , ΔK_{fc}) зразків сплаву B95T1, вирізаних у зоні 3HK–2HK обшивки крила, знижуються суттєвіше за деякого підвищення електропровідності (табл. 2). Особливо це стосується опору росту втомної макротріщини (рис. 3*d*), коли поріг втоми ΔK_{th} падає ще на 39%.

Таким чином, виявили позитивний вплив зниження вмісту домішок кремнію і заліза у сплавах типу Д16 і В95 на послаблення їх схильності до деградації під час тривалої експлуатації.

Мікрофрактографічний аналіз засвідчив, що за високих швидкостей росту втомної тріщини $da/dN \sim 10^{-6}$ m/cycle, коли завжди можна фіксувати мікроособливості зламу, властиві крихким мікромеханізмам її поширення, для сплаву В95пчТ1 після модельної деградації вони практично відсутні (рис. 4*a*): реалізується, в основному, в'язкий ямковий мікромеханізм руйнування, де дрібні (~ 10 µm) рівномірно розподілені включення інтерметалідів не є ініціаторами локального мікророзтріскування.

Рис. 4. Мікрофрактограми (*a*-*c*) за швидкості росту втомної тріщини *da/dN* ~ 10⁻⁶ m/cycle і локальний хімічний склад (*d*, *e*) сплавів В95пчТ1 після модельної (*a*) та В95Т1 після експлуатаційної деградації в зоні ЗНК–2НК крила і додаткової модельної за режимом МЗ (*b*-*e*).

Fig. 4. Microfractograms (a-c) at the rate of fatigue crack growth $da/dN \sim 10^{-6}$ m/cycle and local chemical composition (d, e) of the B95 π 4T1 alloy after model degradation (a)and B95T1 alloy after exploitation degradation in 3RW–2RW wing zone and additional model degradation according to M3 regime (b-e).

Іншу картину спостерігали в зламах сплаву B95T1 після експлуатаційної в зоні ЗНК–2НК крила і додатково модельної деградації (рис. 4b, c): видно значні зони крихкого руйнування і вторинні мікротріщини, що спричинене розтріскуванням великих (> 20 µm) інтерметалідів та розшаруванням уздовж їх меж з матрицею. Локальний хімічний аналіз виявив, що ці інтерметаліди подібні до описаних в літературі типу Mg₂Si (рис. 4*d*) і (Fe, Zn, Cu, Mn)₃Si₂Al₁₅ (рис. 4*e*).

ВИСНОВКИ

Встановлено, що відома [1, 2] деградація під час тривалої (40 років) експлуатації сплаву B95T1 з високим вмістом кремнію і заліза (до 0,5 wt.% кожного) зумовлена локальним мікророзтріскуванням великих (> 20 µm) включень інтерметалідів та розшаруванням уздовж міжфазних меж інтерметалід–матриця. Після модельної деградації сплавів Д16чт, B95пчT1 і B95пчT2 з пониженим вмістом кремнію (0,08...0,18 wt.%) і заліза (0,2...0,23 wt.%) порівняно з вихідним станом відносне видовження δ , поріг втоми ΔK_{th} , циклічна в'язкість руйнування ΔK_{fc} і питома електропровідність σ , які чутливі до деградації алюмінієвих сплавів типу Д16 і B95 під час їх довготривалої експлуатації [1, 2], практично не змінюються.

- Ostash O. P., Andreiko I. M., and Holovatyuk Yu. V. Degradation of materials and fatigue durability of aircraft constructions after long-term operation // Materials Science. – 2006. – 42, № 4. – P. 427–439.
- Evaluation of aluminum alloys degradation in aging aircraft / O. Ostash, V. Uchanin, O. Semenets, Yu. Holovatyuk, L. Kovalchuk, and V. Derecha // Res. in Nondestructive Evaluation. - 2018. - 29 (3). - P. 156-166.
- Sheuring I. N. and Grandt Jr A. F. Mechanical properties of aircraft materials subjected to long periods of service usage // Transactions ASME. – 1997. – 119, October. – P. 380–386.
- Nesterenko G. I. Fatigue and damage tolerance of ageing aircraft structures // J. Soc. Non-Destructive Testing Monitoring Diagnostics. – 2000. – № 3. – P. 20–28.
- Nesterenko G. I. and Nesterenko B. G. Ensuring structural damage tolerance of Russian aircraft // Int. J. Fatigue. – 2009. – 31 (6). – P. 1054–1061.
- Кишкина С. И. Сопротивление разрушению алюминиевых сплавов. М.: Металлургия, 1981. – 280 с.
- 7. *Фриляндер И. Н.* Алюминиевые деформируемые конструкционные сплавы. М.: Металлургия, 1979. 208 с.
- Белецкий В. М., Кривов Г. А. Алюминиевые сплавы. Состав, свойства, технология, применение. – К.: КОМИНТЕХ, 2005. – 366 с.
- Технічна діагностика матеріалів і конструкцій: Довідн. пос. у 8-ми т. / За заг. ред.
 Т. Назарчука. Т. 4: Електрофізичні методи неруйнівного контролю дефектності елементів конструкцій / Р. М. Джала, В. Р. Джала, І. Б. Івасів, В. Г. Рибачук, В. М. Учанін. Львів: Простір-М, 2018. 356 с.
- 10. *Назарчук 3. Т., Учанін В. М., Кулинич Я. П.* Оптимізація параметрів вихрострумового контролю деградаційних змін питомої електропровідності алюмінієвих сплавів старіючих літаків // Відбір і обробка інформації. 2019. № 47. С. 5–11.
- 11. *Standard* test methods for measurement of fatigue crack growth rates, ASTM E647-08, V03.01, ASTM, 2008.

Одержано 27.01.2022